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Abstract

The techniques of exploratory data analysis include a resistant
rule, based on a linear combination of quartiles, for identification of
outliers. This paper shows that the substitution of the quartiles with
the median leads to a better performance in the non-Gaussian case.
The improvement occurs in terms of resistance and efficiency, and
an outside rate that is less affected by the sample size.
The paper also studies issues of practical importance in the spirit

of robustness by considering moderately skewed and fat tail distri-
butions obtained as special cases of the Generalized Lambda Distri-
bution
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1 Introduction

The ideas and techniques of exploratory data analysis (EDA) have received
considerable attention in the statistical literature (see, for example, Tukey,
1977 and the two books edited by Hoaglin, Mosteller, and Tukey, 1983 and
1985) and they are a cornerstone in applied statistical analysis. Among
other techniques, EDA provides a rule to screen for potential outliers in
symmetric univariate data (cf. the Boxplot rule). The rule is based on
selected order-statistics, and the emphasis is on resistance of the rule.

The notion of outliers is vague, and identification of them is not neces-
sarily of interest per se. There exists a vast literature on this topic, e.g.,
Barnett (1978), Barnett and Lewis (1995), Beckman and Cook (1983),
Hampel et al. (1986), and aforementioned books by Tukey (1977) and
Hoaglin et al. (1983, 1985). Rather than reviewing the contents of these
works and the centuries of work they refer to, I will present three examples
calling for simple and resistant outlier rules. First, in data obtained from
physical measurements, outliers may point at recording or measurement
errors, and even suggest calibrating problems with the measuring device
or discordance between observers. Second, the existence of outliers may
caution the analyst to search for statistical procedures that accommodate
outliers, e.g. the analyst may prefer the Kruskal-Wallis procedure rather
than the classical F-test procedure for Analysis of Variance. Third, stat-
istics derived from very large data sets of moderate quality, for which a
careful examination of each observation is prohibitively expensive, may be
stabilized by automatic trimming of outliers.

In this paper I propose an improvement of the Boxplot rule by includ-
ing the sample median in the linear combination of order statistics, rather
than only the first and the third quartiles. It will be shown by theoretical
reasoning and by simulations that such a slight modification of the rule
leads to higher precision and resistance, and a reduction of the bias of the
rule in small samples.

This comparative study extends beyond Gaussian data by considering
batches of data which moderately deviate therefrom. This is a desirable
extension since perfect normality is rarely obtained in applied work, even
after application of a suitable transformation.

The paper proceeds as follows. In section 2, the rules are outlined
and their resistance and efficiency compared. The outside rate, i.e. the
expected proportion of labelled outliers in a non-contaminated sample,
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has been found in small samples to deviate considerably from its asymp-
totic counterpart. Section 3 is devoted to this problem. In section 4,
a compact representation relates the outside rate to the sample size and
other variables in the interest of clarifying miscellaneous issues of practical
relevance. A short summary ends the paper.

2 Resistance and efficiency

To focus ideas and simplify notation, consider a sample of size n with
observations x1, ..., xm, y1, ..yn−m, where X ∼ F and F is the distribu-
tion of interest. Note that the outliers, i.e. y1, ..yn−m, do not belong to
F and they are not necessarily identically distributed. In the following,
contamination is taken to mean a situation where m < n and the degree
of contamination is p = (n−m) /n.
Given a potentially contaminated sample, the conventional way of de-

fining the Boxplot rule, hereafter referred to as Tukey’s rule, is

cU = q3 + k1 (q3 − q1) , (1)

where q1 and q3 are the sample quartiles, of which a precise definition
applicable for small samples will be deferred to section 3, and k1 is a
constant selected to meet a pre-specified outside rate under some model.
Outsiders are the observations in the sample which exceed in value the
upper cut-off point cU (For simplicity, attention is restricted to outsiders
in the right tail). The outside rate in non-contaminated samples, i.e.
p = 0, of size n will be denoted rn and the population or asymptotic
outside rate r∞ in the following. In general, the outside rate is inversely
related to k1, whereas the relation to n will be examined below. A slight
modification of (1) is

cU = q2 + k2 (q3 − q1) , (2)

where q2 is the sample median. The Median Rule, as it hereafter will be
referred to, is a natural competing definition.
Not surprisingly, the Tukey and the Median Rule share several prop-

erties. They are both invariant to change of location and scale, and have
a breakdown point of roughly 25% (the breakdown point gives the frac-
tion of outliers the estimator can cope with, see Huber 1981). Secondly,
asymptotically, they are equivalent for symmetric batches of data if k2 =
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k1 + 0.5. Thirdly, the labelling of outliers or the outside rate in small
non-contaminated samples is highly dependent on the quantile estimation
technique employed and, presumably, the distribution from which the data
derives. The latter undesired properties will be addressed in the next two
sections.
The first comparison concerns the resistance of the rules. Hampel et al.

(1986) discuss the magnitude of the fraction of outliers in batches of data,
and make the point that one should not be surprised to find 10 percent
of the observations to be erroneous. This insight has implications for the
choice of an outlier detection rule, as it is to be expected that small to
moderately large samples contain not a single outlier, but rather multiples
of outliers. Hence, there is a need for methods for which the presence of
an outlier is not masking the existence of itself and other outliers in the
same batch. Resistance is taken to mean a rule that does not suffer from
the aforementioned problem.
As an operational definition of resistance I consider the deviation in

upper cut-off point obtained from a p-contaminated sample with respect
to the non-contaminated population counterpart. Formally, I consider the
deviation

∣∣cU (r∞, p)− CU (r∞, p = 0)
∣∣ to be the parameter of interest,

where cU (·) denotes the sample estimate of the upper cut-off point and
CU (·) the population upper cut-off point. Ideally, the deviation should be
small for any distribution and a realistic degree of contamination.
To explore the relative deviation for a broad class of distributions, the

Generalized Lambda Distribution, GLD(α3, α4), is handy (Ramberg et al.,
1979). It permits the skewness and the kurtosis to be varied one at the
time. Figure 1 and 2 provide a subset of obtained relative deviation of the
Tukey and the Median Rule for varying degrees of kurtosis (figure 1) and
skewness (figure 2). In each of the two figures, three lines are provided
to show the results for three levels of contamination, p = 0.01, 0.05, 0.1.
Furthermore, results were obtained for various large sample outside rates,
r∞ = 0.01(0.01)0.2, although only the case r∞ = 0.01 is shown in the
figure. Figure 1 gives the ratio as a function of kurtosis, α4 = 2(1)10,
setting the skewness α3 = 0 and figure 2 gives the ratio as a function of
skewness, α3 = 0(0.25)2, for α4 = 9

1. The general impression is that the
Median Rule is quite more resistant than Tukey’s rule.
Just as a high resistance ensures that the upper cut-off point cU be

1The choice of α4 = 9 is driven by the desire to show the results for a sequence of
values of skewness, yet being within the admissible combination of skewness of kurtosis.
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Fig 1. Deviation (Tukey/median). The ratio as a function of kurtosis for three

levels of contamination, p. The top function refers p=0.01, below is p=0.05,0.1.
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Fig 2. The three l ines shows the ratio of deviation (Tukey/median) for three

levels of contamination, 0.01, 0.05, 0.1
starting from the top of the figure.

insensitive to outliers, thereby avoiding masking, it is desired that cU be
precisely determined from the bulk of the data. Such a stability of cU

carries over to the trimmed mean or whatever other statistic is sought for
the trimmed data. As the second comparison of the rules, the asymptotic
variation of the cut-off point, cU , is derived by using the following result
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(David, 1981),




q1
q2
q3


 ∼ N








Q1

Q2

Q3


 ,
1

n




3
16f2

1

2
16f1f2

1
16f1f3

2
16f1f2

4
16f2

2

2
16f2f3

1
16f1f3

2
16f2f3

3
16f2

3







. (3)

Here, upper-case letters are used to indicate population parameters, and
lower-case letters to indicate sample estimates of the parameters, and
fj , (j = 1, .., 3) , is the value of the density function evaluated at Qj . As it
stands, it is possible to derive the asymptotic relative efficiency, ARE =
V (cu2) /V (c

u
1), of the cutoffs for the two rules. Let C

U
1 denote the pop-

ulation upper cutoff provided by the first rule, and CU
2 the population

upper cutoff provided by the second. Since cU
1 and c

U
2 are linear functions

of the sample quartiles, they are also consistent estimates of the popula-
tion parameters and follow a normal distribution asymptotically. Hence,
the comparison can focus on their asymptotic variance. The asymptotic
variances are

V
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)
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1
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}
. (5)

These expressions can be evaluated given a density function, f , and by
considering a population outside rate, r∞, being deterministically and
inversely related to k2 and k1.
Once again, the ARE is studied by use of the Generalized Lambda

Distribution. Focusing first on the impact of kurtosis, figure 3 gives ARE
as a function of kurtosis, α4 = 2(1)10, setting α3 = 0. The figure clearly
indicates that the rules are equally efficient for symmetric batches of data.
This holds true for r∞ ∈ (0, 0.2), although only the natural choice of an
outside rate r∞ = 0.01 is shown in the figure.
Shifting the focus to the impact of skewness in the data, figure 3 also

shows by two lines ARE as a function of skewness, α3 = 0(0.25)2, setting
α4 = 9. As might be expected, the relative efficiency of Tukey’s rule de-
creases as the skewness in the data becomes more pronounced. The figure
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Fig 3. The solid line shows ARE as a function of kurtosis. The dashed/dotted

lines show ARE as a function of skewness for r=0.01,0.05 resp.
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shows the case where r∞ = 0.01, 0.05. The asymptotic variance calcula-
tions provide a very good insight as to what to expect in finite samples,
which is of more direct interest. I pursued small sample simulations to
confirm this claim. In short, the Median Rule had an equal or smaller
variance than the Tukey rule, with the notable exception of symmetric
distributions with a low value of the kurtosis for which case the Tukey
rule was slightly more efficient. However, in finite samples the issue of
bias arises and it will be the topic of the next section.

3 A comparison of the small sample outside rate

It is well known, in the application of Tukey’s rule, that if k1 = 1.5 and the
non-contaminated sample comes from a Gaussian distribution, then about
0.7 percent will be labelled outliers (Hoaglin, Iglewicz, and, Tukey, 1986),
provided that the sample is large. However, they have also shown that
for small sample sizes the outside rate may be as high as 10 percent. As
another example, Kimber (1990) finds empirically that the upper outside
rate per observation, rn, is approximately bounded by

100rn ≤ 4.8 + 17.5n
−1 (6)

for exponential data and a choice of k being 1.5. This finding is quite
noteworthy since it implies that even for a sample size being as large as
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100 observations, one can not hope large sample results to hold particularly
well. It goes without saying that it is an unattractive feature of the outlier
rule, and there is a need for a substantial reduction of the dependence on
the sample size to make the rule useful. Fortunately, this may be possible
in part as will be discussed in section 4.

The dependence on the sample size for the outside rate will also be the
subject for a comparison of the two rules. Particularly, the rules in (1)
and (2) will be compared by an approximation to the upper outside rate

per observation, rn, for a given r∞ and sample size n. The statistic, which
is the expected rate of outsiders found in a non-contaminated random
sample of size n, was first used by Kimber (1990). However, the outside
rate per observation has often been used in studies of symmetric distribu-
tions (Brant, 1990, Hoaglin et al., 1986). Before proceeding, however, the
important question on how to define sample quartiles must be addressed.

Equations (1) and (2) may look simple, but the definition of sample
quartiles has long been debated (see Cleveland, 1985, Freund and Perles,
1987, Frigge, Hoaglin, and Iglewicz, 1989, Harrell and Davis, 1982, Hoaglin
et al., 1983, Hoaglin and Iglewicz, 1987, Hyndman and Fan, 1996). Frigge,
Hoaglin, and Iglewicz, (1989) give eight definitions which have been used in
various statistical softwares and similar contexts. Most of these definitions
can be represented as

q1 = (1− g)x(j) + gx(j+1), (7)

where x(j) and x(j+1) are the j:th and the (j + 1):th ordered observations.
The controversy is in the choice of j and g, i.e. if and how interpola-
tion should be done. The Boxplot originally used j + g = [(n+ 3) /2] /2
([x] denotes the largest integer that does not exceed x), where j equals
the integer part of the ratio and g the remaining fraction (Tukey, 1977).
However, Frigge et al. (1989) recommend the use of the ideal or machine

fourth, for which j + g = n/4 + 5/12. As an example, figure 4 shows the
rn obtained by the original definition of fourth and by the ideal fourth.
The introduction of the ideal fourth was an important improvement since
the bias is decreased and the remaining bias is a smooth function of n.
Hence, the following results will build on the ideal fourth.

Because, in small samples, the outside rate is not amenable to analytic
calculation, simulations will be employed. Let M be the number of rep-
licates of size n drawn from the GLD(α3, α4), then the estimated upper
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Figure 4: An example of the small sample outside rate’s, rn, relation to
the sample size for two definitions of the sample quartiles. The circles
refer to Tukey’s definition of the fourth and the plus-symbols refer to the
ideal fourth. For the example, GLD(0,3), which comes very close to the
standard normal distribution, was used and the asymptotic outside rate,
r∞, was taken to be 0.03.

outside rate is

r̂n =

∑M
m=1

∑n
i=1 I

{
xi,m > cUm (r∞)

}

nM
, (8)

where xi,m refers to observation i in replicate m, and I {·} is an indicator
function taking on unity if true, and zero otherwise. In the experiments,
M = [180000/n] samples are drawn and the number of outside obser-
vations in each sample is determined. For each sample and sample size
n = 6(1)25(5)50(10)100(50)300, the finite sample outside rate, rn, is es-
timated for r∞ = 0.01(0.01)0.2, α3 = 0(0.25)2, and α4 = 2(1)10, for
admissible combinations of skewness and kurtosis. The range of paramet-
ers to control skewness and kurtosis is sufficient for encompassing many
of the commonly used probability distributions, or at least to closely ap-
proximate them.
The aim is to find a reasonably simple function that approximates rn−
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r∞. In exploring the possibilities of expanding [rn − r∞] by linearization,
along the lines of David (1981), I found it reasonable to consider the bias
to be inversely related to n, yet the impact of the higher order terms was
difficult to determine analytically. Hence, I relied on regression analysis to
approximate the bias. The following functions provides the main results,
as a percentage of bias, where superscript t refers to Tukey’s rule and m
to the Median Rule

100
rt
n − r∞
r∞

= −
215.3

n
(9)

100
rm
n − r∞
r∞

= −
162.2

n
. (10)

In either case R2 was found to be 90%. The fit can be improved by
including the terms r∞ and r2

∞, in which case R
2 = 0.97. The inclusion

will not affect the comparison of the two rules and the terms are excluded
in the interest of simplicity. In comparing the two rules, it is worth noting
that the bias-percentage does not depend on the distribution. I was unable
to find any relation between the bias-percentage and the skewness and the
kurtosis of the distributions, despite a considerable effort to seek such
relations.

4 What determines rn and what should k2 be?

Equations (1) and (2) include the constants k1 and k2 on which I have been
silent. Although none of the above cited works has claimed a particular
choice of k1 to be optimal in some sense, one often sees k1 = 1.5 being
employed. The rationale is that under the Gaussian model, k1 = 1.5
implies that r∞ ≈ 0.035, i.e. a very small fraction of observations in a
large non-contaminated sample would be erroneously labelled outliers. By
studying the relationship between rn and the broad class of distributions
encompassed by GLD(α3, α4), perhaps a more compelling argument could
be given for a suitable choice of k2. As a side remark, recall that under
symmetry it is natural to take k2 = k1 + 0.5.
Relying on the simulated data in the previous section, I obtained the

reasonably good and stable fit

100rn = −8.07 +
3.71

n
+
17.63

k2
−
23.64

nk2
+ 0.83α3 + 0.48α

2
3 (11)

+0.48 (α4 − 3)− 0.04 (α4 − 3)
2 ,
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for which R2 = 99.2%. Moreover, the distribution of the relative error,
i.e. the ratio of the residual and the outside rate, is accurately and com-
pactly summarized by N (0, σ = 0.004). Hence, the regression curve gives
a predicted outside rate which rarely errors by more than one percent,
in either direction. On the other hand, the curve may predict negative
outside rates for large values of k2, a spurious result due to the fact that
r∞ < 0.01 was not included in the experimental setting.

Now, because of the choice of designing the experiment to include only
symmetric and right skewed distributions, one has that 2rU

n ≥ rU
n + rL

n ,
where the superscripts U and L refer to upper and lower outside rates
respectively, and strict equality holds under symmetry. It makes sense to
specify the desired asymptotic outside rate over both tails and derive the
appropriate value of k2, and then perform a calculation to adjust for the
sample size. Consider as an example the choices α3 = 0.5, α4 = 5, and a
target outside rate in both tails of 0.02. In this case, k2 is found to equal
about 2.3 and the outside rate has a lower bound for the Gaussian case at
0.2%. To preserve this property for a given sample size n, one takes

k2 =
17.63n− 23.64

7.74n− 3.71
.

Obviously, the function in (11) lends itself to consider an arbitrary distri-
bution appropriate for a specific application, yet, in the absence of com-
pelling subject-matter information, I find it reasonable to let k2 = 2.3 be
the default choice with the suitable adjustment for the sample size.

5 Summary

The results of the paper show that the Median Rule performs better than
Tukey’s rule with respect to the criteria being studied. I have been unable
to find any other arguments in favor of Tukey’s rule, and hence an imple-
mentation of the Median Rule seems warranted. Moreover, I have been
able to provide additional light on a suitable choice for the constant, k2,
in the rule, which ought to be of practical help. Finally, the suggestion
made by Hoaglin et al. (1987) to consider the ideal fourths as the sample
estimate of the quartiles leads to a dramatic improvement in both of the
rules.
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