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Abstract

A regression model is considered where earnings are explained by schooling
and ability. It is assumed that schooling is measured with error and that there
are no data on ability. Regressing earnings on observed schooling then yields an
estimate of the return to schooling that is subject to positive omitted variable
bias (OVB) and negative measurement error bias (MEB). The effects on the OVB
and the MEB from using family background variables as proxies for ability are
investigated theoretically and empirically. The theoretical analysis demonstrates
that the impact on the OVB is uncertain, while the MEB invariably increases in
magnitude. The empirical analysis shows that the MEB generally dominates the
OVB. As the measurement error increases and/or more family background vari-
ables are added, the total bias rapidly becomes negative, driving the estimated
return further and further away from the true value.
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1 Introduction

Many practitioners estimating the return to schooling have noted the tendency for
the return estimates to fall when, for want of ability measures, family background
variables are included in the earnings equation. Could this be a general property,
i.e. is it possible to demonstrate analytically that it holds under a large variety of
circumstances?

Lam and Schoeni (1993) claim that this is indeed the case. Referring to Welch
(1975) and Griliches (1977), they note that if there is measurement error in the school-
ing variable, the inclusion of a variable that is correlated with a worker’s schooling may
increase the measurement error bias as well as reduce the omitted variable bias. To
take this into account, they provide equations for the asymptotic bias in the estimated
return to schooling where the total bias is additively decomposed into omitted variable
bias and measurement error bias, before and after the inclusion of a family background
variable. Without proof, they claim (op. cit., p. 719) that “. . . under plausible as-
sumptions . . . ”: i) the omitted variable bias is positive in both cases but smaller after
the inclusion of the family background variable and ii) the measurement error bias is
negative in both cases but larger in magnitude when the family background variable
is included. The addition of the family background variable is thus claimed to affect
the omitted variable bias and the measurement error bias in the same direction; both
changes lower the estimated return to schooling.

In a subsequent empirical analysis, Lam and Schoeni (op cit) implicitly extend these
theoretical conclusions, drawn in the context of a single family background variable,
to the case with many family background variables.

The purpose of this paper is threefold. The first purpose is to correct an error
in Lam and Schoeni’s theoretical analysis of the effects of including a single family
background variable in the earnings regression. Section 2 demonstrates that while their
conclusion ii) is right, conclusion i) is in general incorrect. It is shown, however, that
there are restrictive conditions under which i) does hold true. We also consider related
results that have been established earlier in another literature, focussing specifically
on omitted variable bias.

The second purpose is to extend the theoretical analysis to an arbitrary number
(K) of family background variables. Section 3 shows, i.a., that the property that there
are conditions under which the omitted variable bias is reduced towards zero does not
carry over to the case with two or more family background variables. The measurement
error bias results obtained in the context of one family background variable do extend
to the general case, however.

The final purpose is to provide an empirical assessment of the effects of proxying
ability by means of family background variables. How is the omitted variable bias and
the measurement error bias affected? What does this imply for the total bias?

To answer these questions we need data on ability, i.e., the information whose
absence is the very reason for the problem considered. It might seem odd to address the
problem of proxying ability when data on ability are actually available, but only in this
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way can conclusions be drawn about the consequences of proxying when ability data
are not at hand. Second, as schooling is treated as predetermined in the theoretical
analysis we either need information substantiating this assumption or, otherwise, an
instrument for observed schooling.

The unique data set that we employ satisfies these requirements. It is a panel
data set, covering 555 males, born 1928 in the city of Malmö in the south of Sweden.
Details on the data are provided in Section 5. In Section 4 we derive estimates of the
omitted variable bias and the measurement error bias conditional on a given ratio of
the measurement error variance to the total variance in schooling, thus establishing
that explicit information on the amount of measurement error in the schooling variable
is not a prerequisite for the empirical analysis in Section 6. Concluding comments are
provided in Section 7.

2 The case with one family background variable

To facilitate comparison with the results in Lam and Schoeni (op cit) we derive our
basic results in the context of the stylized model that they employ. Next, in Section
2.2, we show how the analysis can be extended to accommodate an arbitrary number
of control varibles.

2.1 Correction of the results in Lam and Schoeni (1993)

The starting point in Lam and Schoeni (henceforth LS) is the following equation, giving
the “true” relation between (log) earnings, Y, schooling, S, and (unknown) ability, A,
for the ith individual

Yi = β0 + βsSi + βaAi + ui, where βs, βa > 0, (1)

and ui is a random disturbance with zero mean and constant variance.1 For simplicity,
the individual observations will be treated as random draws from the same underlying
population. The ui are thus viewed as realizations of the random variable u, charac-
terized by E(u) = 0 and V ar(u) = σ2

u. In addition, it is assumed that the schooling
variable is measured with error, such that observed schooling, S∗, can be expressed
according to

S∗
i = Si + wi, (2)

where w represents pure measurement error uncorrelated with S, i.e. E (w) = 0,
V ar(w) = σ2

w, and Cov(S,w) = 0. Finally, LS implicitly take w to be uncorrelated
with A and u, as well, and both u and w to be uncorrelated with the family background
variable, F. Thus:

Cov(w,S) = Cov(w,A) = Cov(w, u) = Cov(w,F ) = Cov(u, F ) = 0. (3)

1Lam and Schoeni do not explicitly state the positivity constraints on βs and βa. They consistently
use these restrictions in their discussion about omitted variable bias and measurement error bias,
however.
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Another assumption implicitly made by LS is that schooling can be treated as a pre-
determined variable. In general, this is a strong assumption; see, e.g., Card (1999).
However, in the present context it is merely a simplifying assumption which allows us
to focus on the problems of omitted variable bias and measurement error bias.2

LS first consider the case when Y is simply regressed on S∗, i.e. when the unob-
served ability variable is disregarded and the measurement error in schooling ignored.
The probability limit of the estimated return to education is then given by

plim β̂S = βs − βsλ + βaβ̂AS(1 − λ), (4)

where λ is the noise-to-signal ratio, i.e.

λ ≡ V ar(w)

V ar(S∗)
, 0 ≤ λ < 1, (5)

and β̂AS is the coefficient from a hypothetical regression of ability on true schooling

β̂AS ≡ Cov(A,S)

V ar(S)
, β̂AS > 0 (6)

The second term on the RHS of (4) is the measurement error bias and the third term is
the omitted variable bias. It can be seen that the measurement error bias is negative,
and increasing in magnitude with the variance of the measurement error. Since it is
assumed that schooling and ability are positively correlated, cf (6), the omitted variable
bias is positive. It should be noted that, in general, one cannot rule out the possibility
that the measurement error bias dominates the omitted variable bias, in which case
the total bias is negative.

Given (4), LS consider how the probability limit of the estimate β̂S is affected if
a measure of family background, F , is added to the regression. Their result for this
case contains an error, however. The correct expression is provided in Proposition 1.
LS’s equation is considered immediately after the proposition. Three corollaries to
Proposition 1 are then given. The last of these provides a bridge between the general
result in Proposition 1 and the equation suggested by LS.

Proposition 1 Given (1), (2), and (3), OLS regression of Y on S∗ and a family
background measure, F , yields an estimate of βs whose probability limit is given by

plimβ̂S·F = βs − βs
λ

1 − R2
S∗F

+ βaβ̂AS (1 − λ)
(
1 − θ · ρ2

AF ·S∗

)
(7)

where λ and β̂AS are defined by (5) and (6), respectively. Further, R2
S∗F (< 1) is the

squared correlation of S∗ and F , and ρ2
AF ·S∗ is the squared partial correlation of ability

2It is always possible to think of S as an instrument for schooling – rather than schooling itself –
and w as an associated random error. Thus, if schooling is endogenous our results can be applied once
an instrument has been substituted for the schooling variable.
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and the family background measure when one controls for schooling, i.e.

ρ2
AF ·S∗ =


 ρAF − ρAS∗ · ρS∗F√

1 − ρ2
AS∗

√
1 − ρ2

S∗F




2

,

while θ is defined according to

θ =
ρS∗F /ρAS∗ − ρAS∗ · ρS∗F

ρAF − ρAS∗ · ρS∗F

; ρAF − ρAS∗ · ρS∗F 6= 0,

where ρS∗F , ρAS∗, and ρAF denote bivariate correlations.

Proof. See Appendix.

The equation provided by LS [eq. (8) in their paper] is

plimβ̂S·F = βs − βs
λ

1 − R2
S∗·F

+ βaβ̂AS (1 − λ)
(
1 − ρ2

AF ·S∗

)
. (8)

This equation differs from equation (7) with respect to the final term, i.e. the expression
for the omitted variable bias. More specifically, the last parenthesis reads

(
1 − ρ2

AF ·S∗

)

instead of
(
1 − θ · ρ2

AF ·S∗

)
in (7). Since ρ2

AF ·S∗ ∈ [0, 1] by construction, and ρ2
AF ·S∗ ∈

]0, 1[ by assumption, (8) implies that the omitted variable bias invariably decreases
towards zero upon the inclusion of a family background variable. Corollary 2 shows,
however, that the omitted variable bias may well increase, thus driving the estimate of
βs upward, rather than downward. This possibility was, for obvious reasons, overlooked
by LS.

Corollary 2 If schooling and the family background variable are correlated, i.e. if
R2

S∗F > 0, then the inclusion of the family background variable unambiguously in-
creases the measurement error bias, compared to when no family background variable
is included. If R2

S∗F = 0 the measurement error bias will be unchanged. The effect on
the omitted variable bias cannot be determined a priori; the omitted variable bias may
decrease or it may increase. This is true also in the absence of measurement error.

Proof The first part of the corollary follows trivially from the facts that, by construc-
tion, R2

S∗F ∈ [0, 1] and, by assumption, R2
S∗F < 1. The second part follows from the

fact that θ may be both negative and positive. Moreover, θ is not bounded, either
from below or from above. If θ is negative the omitted variable bias increases with
certainty. If θ is positive the omitted variable bias may decrease – if θ is small enough
to ascertain that θ ·ρ2

AF ·S∗ < 1. But it might also increase – if θ is large enough to yield
θ · ρ2

AF ·S∗ < 1.3 Finally, comparison of (4) and Proposition 1 shows that the effect on

3In principle, θ = 0 is also a possibility. However, that requires ρAS = 1, which is a pathological
case in the sense that it implies that the parameters in (1) cannot be identified.
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the omitted variable bias is manifested in the factor (1− θ · ρ2
AF ·S∗); it is independent

of the factor (1 − λ), i.e. the extent of measurement error. Q.E.D.

To provide some intuition for Corollary 2, note that controlling for F means purging
the schooling variable of ”A – factors” and of other factors as well. At some point, the
latter, negative, effect will outweigh the former, positive, effect.

In Corollary 3 we discuss a special case of the general situation considered in
Corollary 2. A constraint on θ is provided which ascertains that the omitted variable
bias stays positive and is reduced towards zero. A condition is also given which is
necessary, but not sufficient, for this constraint to be satisfied.

Corollary 3 If, and only if, 0 < θ ≤ 1/ρ2
AF ·S∗ then the positive omitted variable bias

will remain positive and be reduced towards zero when the family background variable
is added to the earnings equation. A necessary, but not sufficient, condition for these
inequalities to hold is that sign(ρAF ) = sign(ρS∗F ).

Proof. That the constraint implies that the omitted variable is reduced while staying
positive follows directly from the fact that the change in the bias is determined by
(1 − θ · ρ2

AF ·S∗) where ρ2
AF ·S∗ ∈]0, 1]. For values of θ above the value of ρ2

AF ·S∗ the
omitted variable bias changes sign. For θ = 0 the omitted variable bias is unaffected
and thus not reduced. For θ < 0 the omitted variable bias increases.

To prove the necessary condition, first consider the case when ρS∗F > 0. In this
case the numerator of θ is unambiguously positive; cf. the definition of θ in Proposition
1 and remember that ρAS∗ = ρAS ∈]0, 1[, by assumption. A necessary requirement for
θ to be positive, which in turn is necessary for θ to belong to ]0, 1/ρ2

AF ·S∗], is thus
that the denominator of θ is positive, too. This requires ρAF > 0. But it may be
that 0 < ρAF < ρAS∗ · ρS∗F in which case θ < 0. Hence, for ρS∗F > 0 the condition
ρAF > 0 is necessary but not sufficient for the omitted variable bias to remain positive
and be reduced towards zero. In a perfectly analogous way it can be shown that if
ρS∗F < 0 then ρAF < 0 is a necessary but not sufficient condition for maintaining the
omitted variable bias positive and decreasing it towards zero. The case ρS∗F = 0 can
be disregarded because it implies θ = 0. Putting the results for the cases ρS∗F > 0
and ρS∗F < 0 together one obtains the necessary but not sufficient condition stated in
the corollary. Q.E.D.

Corollary 4 considers a special case of the special case characterized in Corollary
3, namely when θ = 1, the constraint implicitly imposed by LS. Corollary 4 provides
an interpretation of this constraint, in terms of the correlation between schooling and
family background, conditional on ability.

Corollary 4 If the correlation between schooling and family background is equal to
zero when ability is controlled for, i.e. if ρS∗F ·A = 0, then θ = 1. This is a sufficient,
but not necessary, condition for the positive omitted variable bias to decrease towards
zero when one family background variable is included in the earnings regression.
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Proof. Note that, by definition,

ρS∗F ·A =
ρS∗F − ρAS∗ · ρAF√
1 − ρ2

AS∗

√
1 − ρ2

AF

(9)

Thus, if ρS∗F ·A = 0 then (ρS∗F /ρAS∗) = ρAF and, consequently, θ = 1. Given θ = 1,
the second part follows directly from Corollary 3. Q.E.D.

At this point, a relevant question is whether the assumption θ = 1 is not implicit
in the model which provides the starting point of LS’s analysis, i.e. (1) – (3)? The
answer is no. The best way to see this is to note that just as the specification (1) – (3)
allows F to be an instrument for A, it also allows F to be an instrument for S∗. That
F is an admissible instrument for A follows from the properties Cov(u, F ) = 0, given
in (3), and ρAF ·S∗ 6= 0, which follows from Proposition 1. Likewise, Cov(u, F ) = 0
and ρS∗F ·A 6= 0 together imply that F is a valid instrument for S∗, too. The only
way to exclude the latter possibility is to explicitly specify that ρS∗F ·A = 0 and this is
certainly not done by LS.4

An alternative to the conditions provided in Corollary 3 and Corollary 4 is to
impose constraints on F that imply ρS∗F ·A = 0. One (trivial) example is provided
by McCallum (1972) and Wickens (1972) in the context of omitted variable bias only.
Applied to the present context, their analyses assume that F = A + η where η is a
random error exhibiting zero correlation with all of the model’s explanatory variables
and all of its random terms.5 Under this assumption ρS∗F = ρAS∗ and ρAF = 1,
implying that ρS∗F ·A = 0.

Yet another alternative is to consider if the assumption ρS∗F ·A = 0 can be justified
from an empirical point of view. Again, the answer is no. On the contrary, it is quite
natural to think of family background as reflecting both nature (ability) and nurture
(schooling). To the extent that this view is justified, ρS∗F ·A is most likely to be non-
zero. To illustrate this, we provide three examples of ρS∗F ·A at the end of Section
5.

2.2 Allowing for control variables

Frost (1979) provides (without proof) results that are qualitatively equivalent to Propo-
sition 1, in the context of omitted variable bias only.6 In so doing, he allows for an
arbitrary number of control variables, X1, X2, ..., XM . Frost’s approach amounts to
preceding the above analysis by purging the right hand side variables from the influ-
ences of the control variables. To this end, consider estimating the following regressions

4It should be noted that ρS∗F ·A is not affected by the fact that F is not included in equation (1).
Leaving out F amounts to assuming ρY F ·S,A = 0 which is equivalent to ρuF = 0. The latter implies
Cov (u, F ) = 0 which we have explicitly accounted for in (3).

5I.e. Cov (η, S∗) = Cov (η, A) = Cov (η, u) = Cov (η, w) = 0.
6We thank one of the referees for pointing out Frost’s work to us.
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by OLS:
Si = γ0 + γ1X1i + .... + γMXMi + eSi

Ai = δ0 + δ1X1i + .... + δMXMi + eAi

Fi = κ0 + κ1X1i + .... + κMXMi + eFi

(10)

What Frost’s analysis shows is that for λ = 0 the estimated residuals êSi
, êAi

, and êFi

can be substituted for Si, Ai, and Fi, respectively, in Proposition 1 and Corollaries 2 –
4, and the results will still go through – although they must, of course, be reinterpreted
as ”control-variables-corrected”.

Fortunately, allowing for λ 6= 0 is unproblematic. In this case, the first regression
is replaced by

S∗
i = γ0 + γ1X1i + .... + γMXMi + (eSi

+ wi) (11)

and êS∗
i

= ̂eSi
+ wi is substituted for S∗

i . Since Cov (eSi
, wi) = 0, by (3), we have

V ar (eSi
+ wi) = V ar (eSi

) + V ar (wi). This means that given an assumption about λ
(cf. Section 6), which yields an estimate of V ar (wi), an estimate of V ar (eSi

) can also
be determined, which would be needed in the ”control-variables-corrected” version of
(16) in Section 4.

3 Several family background variables

In this section the number of family background variables will be taken to be equal to
K ≥ 1. For analytical simplicity we abstract from control variables; from Section 2.2
it should be clear that this simplification can be made without loss of generality. The
K -variable counterpart to Proposition 1 is given by the following proposition.

Proposition 5 Given (1), (2), and (3), OLS regression of Y on S∗ and a K × 1
vector F of family background variables yields an estimate of βs whose probability limit
is given by

plimβ̂S·F = βs −βs ·
λ

1 − R2
S∗F

+ βaβ̂AS
(1 − λ)

1 − R2
S∗F

[
1−

K∑

j=1

ρAFj

ρAS∗

√
V ar (Fj)√
V ar (S∗)

plim (α̂j)

]

where λ and β̂AS are defined by (5) and (6), respectively, and α̂j is the OLS estimate
of the coefficient for Fj in the linear regression of S∗ on F.

Proof. See Appendix.

There are several features of Proposition 5 that are worth noting. The first is that the
result for the measurement error bias is a straightforward extension of the result in the
case with one family background variable. Inclusion of family background variables
will always increase the negative measurement bias, thus driving the estimate of βs

downward.
The second interesting property is that, like the measurement error bias, the omit-

ted variable bias is inversely related to 1 − R2
S∗F. Thus, the larger the part of the
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variance in S∗ explained by the family background variables the higher is the proba-
bility that the omitted variable bias increases, compared to when family background
variables are disregarded. This tendency may be balanced by the sum within brackets
but, in general, it is impossible to say anything about the relative weights of these
opposing forces.

To illustrate how difficult it is to say anything a priori about how the omitted
variable bias is affected in the general case, it is instructive to consider the case K = 2.
This is done in Example 1, below. The example also enables a simple, albeit non-
stringent, demonstration of the equivalence between Proposition 1 and Proposition 5
when K = 1.

Example 1 (The omitted variable bias for K=2) By means of standard results,
the probability limits of the coefficients in the regression of S∗ on F1 and F2 can be
expressed as

plim (α̂1) =

(
ρS∗F1

− ρF1F2
· ρS∗F2

)
(
1 − ρ2

F1F2

)
√

V ar (S∗)√
V ar (F1)

and

plim (α̂2) =

(
ρS∗F2

− ρF1F2
· ρS∗F1

)
(
1 − ρ2

F1F2

)
√

V ar (S∗)√
V ar (F2)

.

By Proposition 5, the omitted variable bias thus equals

βaβ̂AS
(1 − λ)

1 − R2
S∗F

{
1 −

[
ρAF1

(
ρS∗F1

− ρF1F2
· ρS∗F2

)
+ ρAF2

(
ρS∗F2

− ρF1F2
· ρS∗F1

)

ρAS∗ ·
(
1 − ρ2

F1F2

)
]}

.

Concentrating on the ratio within brackets, we see that the denominator is unam-
biguously positive, as ρAS∗ ∈]0, 1[, by assumption. A necessary, but not sufficient,
requirement to create a downward pressure on the omitted variable bias is thus that the
numerator is positive, too. However, the sign of the numerator depends to a large ex-
tent on the signs and relative magnitudes of ρAF1

and ρAF2
, both of which are unknown

and can lie anywhere in the closed interval [−1, 1].

Example 1 enables us to check that Proposition 1 and Proposition 5 yield the same
results for K = 1. To this end, set ρF1F2

= ρS∗F2
= ρAF2

= 0 and remember that, for
K = 1, R2

S∗F is equal to ρ2
S∗F1

. This reduces the expression for the omitted variable
bias in Example 1 to

βaβ̂AS(1 − λ) × 1

1 − ρ2
S∗F1

(
1 − ρAF1

· ρS∗F1

ρAS∗

)
.

By means of Table 3 it can be seen that numerical evaluation of the factor after “×”
yields the same result as evaluation of

(
1 − θ · ρ2

AF ·S∗

)
which demonstrates that the

two propositions are equivalent.
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4 Estimation of the omitted variable bias and the mea-

surement error bias

The analysis in this section corresponds to the following thought experiment: Assume
that, initially, the econometrician does not have access to information about ability
and, therefore, tries to proxy ability by means of family background variables. At a
later stage, (s)he gets access to a measure of ability and wants to use this information
to estimate the omitted variable and the measurement error biases associated with the
initial estimates. We take the initial stage as given here, i.e. we assume that we have
results from regressions of Y on S∗ and of Y on S∗ plus family background variables.

¿From (4) and Proposition 1 we know that two unknown parameters involved in
the omitted variable bias and the measurement error bias are βs and βa. Given data on
true schooling, S, and ability, A, these parameters could be estimated by application
of OLS to (1). However, while we know A we lack information about S; what we have
is S∗. Accordingly, we can run a regression which is very close to (1), namely:

Yi = β0∗ + βs∗S
∗
i + βa∗Ai + u∗

i , where βs∗ , βa∗ > 0. (12)

The only difference between (12) and (1) is that in (12) observed schooling, S∗
i , re-

places true schooling, Si. This substitution will change the model’s parameters and
its stochastic disturbance, compared to (1); to reflect this we have attached a * to the
parameters and the disturbance.

Intuitively, it seems likely that OLS estimates of the parameters in (12) can provide
information about the parameters in (1) and, thus, be useful in the construction of
estimates of the omitted variable bias and the measurement error bias. Proposition 6
and Corollary 7 support this intuition.

Proposition 6 The OLS estimates of the parameters βs∗ and βa∗ in (12) have the
following probability limits

plim β̂s∗ = βs − βs

λ

1 − ρ2
AS∗

plimβ̂a∗ = βa + βs
λ · β̂S∗A

1 − ρ2
AS∗

(13)

where

β̂S∗A =
Cov (A,S∗)

V ar (A)
(14)

is the coefficient from a regression of observed schooling on ability.

Proof. See Appendix.
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Corollary 7 Conditional on a consistent estimate of λ, denoted λ†, consistent esti-
mates of βs and βa in (1) can be constructed as follows

β̃ s|λ† = β̂s∗ ·
(

1 − λ†

1 − ρ2
AS∗

)−1

β̃ a|λ† = β̂a∗ − β̃ s|λ† · λ† · β̂S∗A

1 − ρ2
AS∗

Proof. Implied by Proposition 6 and the properties of the plim operator.

By means of (4), Proposition 5 and Corollary 7 we can construct consistent estimates
of the omitted variable bias conditional on λ†, without and with family background
variables, according to:

ÔV B S∗|λ† = β̃ a|λ† β̂ AS|λ†

(
1 − λ†

)

ÔV B S∗,F|λ† = β̃ a|λ† β̂ AS|λ†

(
1 − λ†

)

× 1
1−R2

S∗F

[
1 −∑K

j=1

ρAFj

ρAS∗

√
V ar(Fj)√
V ar(S∗)

(α̂j)

]
.

(15)

Note that in the last row of (15) the consistent estimate âj has been substituted for the
corresponding probability limit in Proposition 5. This is OK because consistency of âj

is sufficient to ascertain consistency of ÔV B S∗,F|λ† , ceteris paribus. It still remains,

however, to determine the parameter β̂ AS|λ† . While the original parameter β̂AS in (6)
cannot be computed unless true schooling, S, is known, this is, fortunately, not the
case when we condition on λ†. We have:

β̂ AS|λ† ≡ Cov(A,S)
V ar(S)

∣∣∣
λ†

= Cov(A,S∗)

V ar(S∗)−λ†·V ar(S∗)

∣∣∣
λ†

= Cov(A,S∗)

V ar(S∗)(1−λ†)

∣∣∣∣
λ†

= ρAS∗

√
V ar(A)√
V ar(S∗)

1

(1−λ†)

∣∣∣∣
λ†

(16)

where the first equality follows from (2) and (3) and the third equality follow directly
from the definition of the coefficient of correlation.

Finally, we get the following consistent estimates of the measurement error bias be-
fore and after the inclusion of family background variables, again combining Corollary
7 with (4) and Proposition 5:

M̂EB S∗|λ† = − β̃ s|λ† λ†

M̂EB S∗,F|λ† = − β̃ s|λ†

λ†

1 − R2
S∗F

.

(17)
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5 Data and variable specifications

Our data set stems from a unique longitudinal survey, initiated in 1938 in the city
of Malmö, in the south of Sweden. For the purpose of disentangling the effects of
cognitive ability and social background on student achievement, a Swedish sociologist
conducted a survey involving all of the city’s third grade pupils. As the common school
starting age at the time was seven years of age, the children were generally in their
tenth year when they were interviewed in the spring of 1938. Altogether, 1 542 children
were surveyed. These individuals have been followed and recurrently interviewed until
1993, when they were 65 years old, the Swedish retirement age. Presumably, this
makes the Malmö survey one of the longest panels in the world.7

The variables that we use in this paper are defined in Table 1.

Table 1: Variable definitions
Y = ln of gross income in 1000s of SEK, 1968

S∗ = observed years of schooling, 1964

A = IQ, measured at age 10, i.e. 1938

F1 = Father’s education, in years, 1938

F2 = Family income in SEK, 1937

F3 = Family size in 1938

With respect to schooling, the original data contain information about the type and
level of education, and, in many cases, about whether the respondent completed the
education or not; altogether 42 alternatives are specified. Because of the large number
of detailed alternatives, the likelihood that individuals have been wrongly categorized
is small. A measurement error arises, however, when we transform the categorical data
to number of years of schooling. This transformation is based on information about
the stipulated number of years for each level and type – combination (compared to the
corresponding next lower level).

Specifically, individuals with completed educations have been assigned the stipu-
lated number of years. To individuals reporting incomplete educations we have as-
signed the stipulated years minus 1. As the difference in stipulated years between
two subsequent educational levels is at least two years, this means that the number of
years we assign to reported incomplete educations correspond to at least half of the
stipulated completion times. By doing so, we (strongly) increase the probability that
the continuous measurement error that we generate is symmetric around zero. To see
this, consider the following argument.

First, note that educations for which there is reported information on ”completed”
/ ”non-completed” the combinations of true and reported status give rise to four
possibilities: reported completed & truly completed (A), reported completed & truly
non-completed (B), reported non-completed & truly completed (C), and reported non-
completed & truly non-completed (D). For A our procedure yields a measurement
error equal to zero, corresponding to a degenerated symmetric distribution centered

7For information about the Malmö survey, see Fägerlind (1975) and Furu (2000).
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on zero. For D we know that all individuals have gone some way towards completing
the education. In the absence of information about the distribution of the true years of
schooling this means that the best estimate of the expected years must not be less than
half of the stipulated number of years. Assigning incomplete educations an expected
duration equal to the number of stipulated years - 1 fulfills this requirement since the
number of stipulated years is mostly > 2 (and never < 2). With this choice of expected
years we can hope to obtain measurement errors that are both positive and negative
and hopefully symmetrical around zero. And for the B (C) individuals the choice will
mean that the invariably positive (negative) measurement error will be smaller (in
absolute terms) than it would have been if the expected duration had been set to the
number of stipulated years ÷ 2.

Regarding the ability measure we follow the preferred practice in the literature
and use IQ test results.8 The test employed contained four themes: ”Word oppo-
sites”, ”Sentence completion”, ”Perception of identical figures”, and ”Disarranged
sentences”.9

Regarding the age at which the test has been conducted, it has been argued by
several authors that it is important to measure IQ at a young age to avoid the ability
measure from being contaminated by schooling.10 On the other hand, constructing
reliable tests for very young children is difficult. Age 10 strikes a balance between these
opposing considerations. Moreover, to the extent that education does influence test
results we want the influence to be similar across individuals. This, also, is an argument
for conducting the test at age 10 because, at the time, education was comprehensive
only up to the fourth grade.

The data include extensive information about family background. We have cho-
sen information about the father’s education, family income, and family size for two
reasons. The first reason is that these variables are standard choices in the literature.
Second, they are measured very closely in time to the IQ test. This should be an
advantage in view of the fact that we want to use the family background variables as
proxies for ability/IQ.

Information about (actual) work experience is missing in our data. However, since
we are considering a cohort of male individuals, differences in work experince will, for
given schooling, be determined by unemployment spells only. As the period between
WWII and 1968 was characterized by almost full employment in Sweden, neglect-
ing differences in unemployment across individuals is likely to be a matter of minor
importance.11

8In principle, it could conceivably be argued that there might a measurement error in the IQ test
results, just as in the schooling variable. However, since the concept of ability defies a strict definition,
ability has to be made operational on the basis of what can be measured. Given that, and the fact
that there is agreement upon IQ test results being the best available measure, it does not make sense
to talk about IQ (test results) measuring ability subject to a measurement error.

9A pilot test had been carried out on third-graders in municipalities in the south of Sweden in the
year preceeding the survey. Moreover, when the real test was conducted great effort was taken to
ascertain that the test conditions were the same for all students.

10See, e.g., Hansen et al. (2004), and the references contained therein.
11Regarding military service, it was compulsory in Sweden at the time. The lenght of duty varied
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Descriptive statistics are provided in Table 2.

Table 2: Descriptive statistics for the males in the Malmö study
Sub-sample used (N=555) Original Sample (N=834)

Mean Std.dev. Mean Std.dev.

Y 10.29 0.664 10.28 0.652
S∗ 8.867 2.571 8.853 2.554
A 98.26 15.75 97.73 16.02
F1 7.690 1.492 7.728 1.575
F2 3653 5780 3956 6861
F3 4.500 1.557 4.500 1.579

It can be seen in the table that the average length of schooling was close to nine
years for the 1928 cohort that we study. Since the school-starting age was 7 this
means that, on average, the individuals finished their studies in 1944. The average
time span between school end and the point in time when income is measured, 1968,
is thus 24 years. With this extensive time lag it is natural to assume Schooling to
be a predetermined variable. This assumption is supported by Sandgren (2005) who,
utilizing a very similar data set from the Malmö survey, cannot reject the hypothesis
that schooling is exogenous in the earnings regression.

Due to attrition and incomplete data for some individuals, the sample we use
comprises 2/3 of the original sample. According Table 2, the loss of observations has
barely affected means and standard deviations, however.

Coefficients of correlations are provided in Table 3.

Table 3: Coefficients of correlations
S∗ A F 1 F 2 F 3

A 0.4894
F1 0.4443 0.2177
F2 0.2767 0.1663 0.3605
F3 −0.1784 −0.1710 −0.0743 −0.0111
Y 0.4489 0.3386 0.1785 0.1722 −0.0609

Table 3 can be used to compute examples of a partial correlation which plays a crucial
role in Section 2.1, the partial correlation between schooling and family background,
controlling for ability; cf. Corollary 4. For simplicity, we here only consider one
background variable at a time, cf Table 4.

Table 4: Partial correlations between schooling and the family
backgrund variables (Fi), controlling for ability, ρS∗Fi·A

Fi

(
ρS∗Fi

, ρAFi
, ρAS∗

)
ρS∗Fi·A

F1 ( 0.4443, 0.2177, 0.4894) 0.3968
F2 ( 0.2767, 0.1663, 0.4894) 0.2271
F 3 (−0.1784, −0.1710, 0.4894) −0.1102
Note: For the computation of ρS∗Fi·A see (9)

somewhat across individuals, but not much.
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These examples clearly show that our data do not satisfy ρS∗F ·A = 0, which would
ascertain a reduction in omitted variable bias when a family background variable is
used as proxy for ability in the earnings equation.

6 Empirical analysis

In this section we apply the results derived in Section 4. As all our empirical results are
conditional on the unknown noise-to-signal ratio, we begin by considering the relevant
range for this parameter. We then compute the estimates of the return to schooling
and ability. Finally, we estimate the omitted variable bias, the measurement error
bias and the total bias when earnings are regressed on i) observed schooling only or ii)
observed schooling and various constellations of our three family background variables.

6.1 The noise-to-signal ratio

An estimate of the noise-to-signal ratio, i.e. λ, in Swedish data is provided by Isac-
sson (1999). He estimates λ to be 0.12 for imputed years of schooling, subject to a
continuous (classical) mesurement error of the type (2).

For our purposes, it is not important to have a precise estimate of λ. Since we
can estimate the omitted variable bias (OVB) and the measurement error (MEB) bias
associated with any λ we only need some idea about its range. Thus, it doesn’t matter
that the method we have used to impute years of schooling differs somewhat from the
method applied by Isacsson (1999).

We report estimates of OVB and MEB for three values on λ: 0.08, 0.13 and 0.18.12

For the total bias, which is of primary interest, we report estimates when λ varies
continuously between 0 and 0.20.

6.2 Estimates of the return to schooling and ability

The result of regressing ln(earnings) on schooling, subject to measurement error, and
on ablity is reported in Table 5.

Table 5: OLS estimates of the parameters in eq. (12)
Estimate Std. error t value

β0∗ 8.7910 0.1580 55.65

βs∗ 0.0961 0.0111 8.64

βa∗ 0.0066 0.0018 3.63

N = 555 R2= 0.22

The estimated return to schooling is 0.096. For comparison, Björklund and Kjellström
(2002) obtained a return estimate of 0.087 in an earnings equation for Swedish males,

12That we have chosen λ = 0.13 as our middle estimate, rather than Isacsson’s 0.12 estimate, is due
expository reasons.
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based on cross-section data for 1968, and using as regressors years of schooling and
years of work experience.13

To construct consistent estimates of βs and βa from the estimates in Table 5, we first

use Tables 2 and 3 to obtain ρ2
AS∗ = 0.2395 and β̂S∗A = ρAS∗

(√
V ar (S∗)/

√
V ar (A)

)
=

0.0799. Next, Corollary 7 yields:

Table 6: Estimates of βs and βa , conditional on λ†

λ†= 0.08 λ†= 0.13 λ†= 0.18

β̃ s|λ† 0.10740 0.11592 0.12590

β̃ a|λ† 0.00568 0.00501 0.00420

Comparing Tables 5 and 6, we see that, as expected, the OLS estimate of the return
to schooling is biased downwards, due to the measurement error in schooling. Given
that the return estimate is biased downwards, the OLS coefficient for ability must be
biased upwards. just as we find it to be.

6.3 Conditional estimates of omitted variable bias, measurement er-
ror bias, and total bias

Table 7 provides estimates of the omitted variable bias (OVB) and the measurement
error bias (MEB), corresponding to (15) and (17), respectively. With respect to the
OVB, the most important thing to note is that for a given noise-to-signal ratio inclusion
of family background variables has very small effect on the omitted variable bias.
Moreover, the bias is not monotonically decreasing in the number of family background
variables included. Of course, this is not surprising, given our theoretical results. With
increasing measurement error in schooling the bias decreases somewhat, but not very
much. For example, more than doubling λ† (going from 0.08 to 0.18) we obtain a
decrease of less than 0.5 percentage points, or slightly more than a quarter of the
initial bias (at λ† = 0.08).

Table 7: Estimates of omitted variable bias (OVB) and measurement

error bias (MEB), conditional on λ†, for different sets of
family background variables proxying for ability

λ†= 0.08 λ†= 0.13 λ†= 0.18
OVB MEB OVB MEB OVB MEB

No Fi’s .0170 -.0086 .0150 -.0151 .0126 -.0227

F1 = father’s educ. .0170 -.0107 .0150 -.0188 .0126 -.0282

F2 = family income .0167 -.0093 .0147 -.0163 .0124 -.0245

F3 = family size .0165 -.0089 .0145 -.0156 .0122 -.0234

F1 & F2 .0168 -.0109 .0148 -.0191 .0125 -.0288

F1 & F3 .0165 -.0110 .0145 -.0193 .0122 -.0290

F2 & F3 .0161 -.0096 .0142 -.0169 .0119 -.0254

F1 & F2 & F3 .0163 -.0112 .0143 -.0197 .0120 -.0296

Note: The estimates have computed using (15) and (17)

13The difference between the two estimates is not statistically significant.
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Turning to the estimates of the measurement error bias (MEB), we see that these
are larger (in absolute value) than the omitted variable bias estimates, except when the
measurement error is small (λ† = 0.08). The inclusion of family background variables
induces sizeable increases in the MEB. For instance, when λ† = 0.13 and all three of the
family background variables are included the (absolute value of the) MEB increases by
almost 0.5 percentage points compared to when no background variables are included.
The OVB is virtually unaffected by the same operation. And, in contrast to the
OVB, the MEB is monotonically related to the number of included family background
variables. The MEB is also much more sensitive to λ† than is the OVB. Going from
λ† = 0.08 to λ† = 0.18 increases the MEB by more than 250 percent, i.e. the relative
change in the bias is larger than the relative change in the noise-to-signal ratio.

The total bias, TB, is equal to OVB + MEB. Since the MEB dominates the OVB,
the TB has the same general properties as the MEB. In particular, inclusion of ad-
ditional family background variables will always make the TB fall. Referring back to
very beginning of this paper, this means that Lam and Schoeni (1993) were right in
claiming that the estimated return to schooling can always be made to decrease, by
inclusion of family background variables.

A decrease in the TB can be a good thing if the TB is positive to begin with. It’s
a bad thing if the decrease occurs when the TB is negative already; in this case the
change implies a move further away from the true return to schooling. This case is
illustrated in Table 7 for λ† = 0.13. When no family background variables are included
the TB is negative, but very small – virtually zero – because the OVB and the MEB
cancel out. Adding family background variables merely has the effect of making a very
good return estimate increasingly more biased.

To see when the use of family background variables turns from a useful to a wasteful
practice we need to consider the total bias as a continuous function of λ†. This is done
in Figure 1, which shows the estimated TB, in percent of β̃ s|λ† , in two cases. In the
first case, no family background variables are included in the regression and in the
second case F1, F2, and F3 are included. The figure also shows the difference between
the absolute values of the relative TBs in the two cases. The vertical dotted line
delimits the areas where the inclusion of the family background variables decreases the
TB – to the left of the line – and where the bias increases – to the right.

Figure 1: Total bias, in % of β̃ s|λ, as a function of λ, in the absence of family
background variables, TB (λ)|S∗ , and when F1, F2, and F3 are included, TB (λ)|S∗,F

about here

First, note how little the inclusion of the background variables decreases the relative
TB when λ = 0. The reduction equals 20.5−19.6 = 0.9 percentage points of the return
estimate. With λ strictly positive, the family background variables at first yield an
increasing advantage in terms of relative TB. But this advantage is present only when
λ < 0.117. Moreover, it is quite small; only when λ varies between 0.04 and 0.11 is
the decrease at least 2 percent of the corresponding return estimate. And the gain is
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largest when the bias is small to begin with. The maximum reduction occurs when the
bias without family background variables is less than 4 percent of the estimated true
return (at λ ≈ 0.105). If λ grows beyond 0.12 the relative TB rapidly becomes much
larger with family background variables than without. For instance, when λ = 0.18 the
relative TB is 6 percentage points larger with family background variables included,
than when they are left out.

Qualitatively, the results in Figure 1 are the same if, instead, only one or two family
background variables are included. The quantitative difference is that the gains/losses
in the total bias are smaller (in absolute terms) if the number of background variables
is reduced.

7 Concluding comments

This study was inspired by a remarkable claim, implied by an analysis in Lam and
Schoeni (1993): using family background variables as proxies for unobserved ability in
earnings regressions you can drive the estimated return to schooling down to arbitrarily
low levels. A compact way to summarize our findings is that Lam and Schoeni were
right – but for the wrong reasons.

We have shown that Lam and Schoeni’s assertion that inclusion of family back-
ground variables will reduce the positive omitted variable bias (OVB) and increase the
negative measurement error bias (MEB) is partly incorrect. The OVB may increase,
as well as decrease. We also demonstrate, though, that in the context of a single family
background variable the OVB will indeed decrease for sure if the correlation between
schooling and family background is identically zero when one controls for ability. But
this a restrictive assumption; in our empirics we find that when ability is controlled
for, the correlation between schooling and family background is far from zero.

Unlike Lam and Schoeni, we also conduct a theoretical analysis of the case with
several family background variables. We show that the MEB result in the one variable
case can be extended to the K - variable case. The indeterminacy of the OVB, on
the other hand, becomes even larger; the conditions which ascertain that the OVB is
reduced in the one variable case can not be extended to the case when K ≥ 2.

Theoretically, the reduction in the estimated return induced by increased MEB can
thus be counteracted by increases in OVB. The effect on the total bias, i.e. MEB +
OVB, hence becomes an empirical matter.

For the empirical analysis, we derive OVB and MEB estimates that are consistent,
conditional on the ratio of measurement error variance to total variance in observed
schooling (λ). The estimators are applied to a unique Swedish data set that is ex-
tremely well suited to our analysis.

Our empirical results yield three conclusions. First, to the extent that inclusion
of family background variables leads to increases in OVB, these increases are very
small. Secondly, all changes in the OVB are very small, irrespective of whether they
are positive or negative. Thirdly, except for small values on λ – below 0.13 in our
application – the OVB is dominated by the MEB, implying a negative total bias.
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Furthermore, the MEB is much more sensitive than the OVB to changes in the number
of family background variables and in λ. And additional family background variables
and increases in λ both monotonically increase the magnitude of the MEB.

Proxying ability by family background is thus generally a bad idea because the bias
that one wants to influence – the OVB – is barely affected, while the side-effect – an
increase in the MEB – is substantial and generally makes the total bias larger than in
the absence of the background variables. For example, if λ = 0.13 the total bias when
family background variables are excluded is in our data estimated to be virtually zero;
−0.08 percent of the estimated true return. Adding three family background variables
increases the relative bias to −4.6 percent. Moreover, when the inclusion of family
background variables indeed does reduce the total bias, the reduction is largest when
the bias is small to begin with, i.e. when a reduction is not very important.

It might be argued that our analysis is too stylized to provide useful insights about
how omitted variables and measurement error affect estimates of the rate of return to
education. We don’t think so. Essentially, there are two potential problems: endo-
geneity of schooling and the lack of variables beside schooling and ability.

Regarding the lack of variables beside schooling and ability, we have shown how an
arbitrary number of control variables can be accounted for; cf. Section II.

Concerning the endogeneity problem, assume that schooling, S, is endogenous.
This means that S is a stochastic variable that is correlated with the stochastic dis-
turbance in the wage equation. The standard remedy to this problem is to find an
instrument for S. Such an instrument is another stochastic variable that is correlated
with S but not with the disturbance term. Our S∗ variable can be interpreted in
precisely this way. Accordingly, our analysis can either be interpreted as concerning
the case when the measure of schooling is predetermined or as taking place after an
instrument has been found for the endogenous schooling variable.
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A Appendix: Proof of Propositions

Proof of Proposition 1. Denote mean sums of squares and cross-products according
to

qs∗s∗ =
1

N

N∑

i=1

(
S∗

i − S̄∗
)2

and qs∗f =
1

N

N∑

i=1

(
S∗

i − S̄∗
) (

Fi − F̄
)
.

Then, by standard results for regressions involving two regressors and in accordance
with well-known properties of probability limits,

plimβ̂S·F =
plim (qff ) plim (qs∗y) − plim (qs∗f ) plim (qfy)

plim (qs∗s∗) plim (qff ) − [plim (qs∗f )]2

To evaluate this expression, first note that,

plim (qff ) = V ar (F ) . (18)

Next, by (2) and (3)

plim (qs∗s∗) = V ar (S∗) = V ar (S) + var (w) . (19)

plim (qs∗f ) = Cov (S∗, F ) = Cov (S,F ) (20)

Further, by (1) and (3),

plim (qfy) = βsCov (S,F ) + βaCov (A,F ) = βsCov (S∗, F ) + βa (A,F ) , (21)

where the last equality follows from (20). Finally, by (1) – (3),

plim (qs∗y) = βsV ar (S) + βaCov (A,S∗) = βsV ar (S) + βaCov (A,S) . (22)

Collecting results and rearranging we get

plimβ̂S·F =
βs{V ar(S)V ar(F )−[Cov(S∗,F )]2}

V ar(S∗)V ar(F )−[Cov(S∗,F )]2

+βa[V ar(F )Cov(A,S)−Cov(S∗,F )Cov(A,F )]

V ar(S∗)V ar(F )−[Cov(S∗,F )]2

(23)

To simplify the first term in (23), first substitute [V ar (S∗) − V ar (w)] for V ar (S),
then divide the numerator and the denominator by [V ar (S∗) V ar (F )], and, finally,
use (5). This yields

βs{V ar (S)V ar (F ) − [Cov (S∗, F )]2}
V ar (S∗) V ar (F ) − [Cov (S∗, F )]2

= βs − βs
λ

1 − ρ2
S∗F

. (24)
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To rewrite the second term in (23) first divide the numerator and the denominator
by [V ar (S∗)V ar (F )] and note that, by (2)

Cov (A,S)

V ar (S∗)
= β̂AS (1 − λ) , (25)

where β̂AS and λ are defined by (6) and (5), respectively. This yields

βa[V ar (F ) Cov (A,S) − Cov (S∗, F ) Cov (A,F )]

V ar (S∗)V ar (F ) − [Cov (S∗, F )]2
= βaβ̂AS (1 − λ) · ζ (26)

where

ζ =
1 − ρ2

S∗F
Cov(A,F )V ar(S∗)

Cov(S∗,F )Cov(A,S)

1 − ρ2
S∗F

(27)

Using the equality Cov (A,S) = Cov (A,S∗) and rearranging one can rewrite ζ
according to

ζ = 1 −
ρ2

S∗F
ρAF−ρS∗F ·ρAS∗

ρS∗F ·ρAS∗

1 − ρ2
S∗F

. (28)

It remains to prove that the second term on the RHS of (28) is equal to the product
θ · ρ2

AF ·S∗. Multiplication of the numerator and the denominator by
(
1 − ρ2

AS∗

)
yields

ρ2
S∗F

ρAF−ρS∗F ·ρAS∗

ρS∗F ·ρAS∗

1 − ρ2
S∗F

=
[(ρS∗F /ρAS∗) − ρS∗F · ρAS∗ ] (ρAF − ρS∗F · ρAS∗)(

1 − ρ2
S∗F

) (
1 − ρ2

AS∗

) (29)

= θ · ρ2
AF ·S∗,

where θ and ρAF ·S∗ are defined in Proposition 1. Now, substitute this equality in (28)
and, subsequently, (28) in (26). The resulting expression and (24) can then be used
in (23). Finally, to get (7), note that in the case with only one family background
variable ρ2

S∗F = R2
S∗F . Q.E.D.

Proof of Proposition 5. Let the (K + 1) square matrix Qxx be defined as

Qxx =




qs∗s∗ qs∗f

(1 × 1) (1 × K)
qfs∗ Qff

(K × 1) (K × K)




where

qs∗s∗ =
1

N

N∑

i=1

(S∗
i − S̄∗)2,

and the typical elements of the vector qfs∗(= q′
s∗f ) and the matrix Qff are

qfs∗ = (qfjs∗) =

[
1

N

N∑

i=1

(Fij − F̄j)(S
∗
i − S̄∗)

]
,
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and

Qff = (qfkfj
) =

[
1

N

N∑

i=1

(Fik − F̄k)(Fij − F̄j)

]
,

respectively. Similarly, denote by qxy the (K + 1) × 1 vector whose first element is

qs∗y =
1

N

N∑

i=1

(S∗
i − S̄∗)(Yi − Ȳ )

and whose following elements are

qfjy =
1

N

N∑

i=1

(Fij − F̄j)(Yi − Ȳ ), j = 1, . . . K.

The OLS estimate of βs is given by the first element of (K + 1) vector

Q−1
xxqxy =

1

det(Qxx)
adj(Qxx)qxy (30)

where

adj(Qxx) =




Cs∗s∗ Cf1s∗ . . . CfKs∗

Cf1s∗ Cf1f1 . . . Cf1fK

...
...

. . .
...

CfKs∗ Cf1fK
. . . CfKfK




is the transpose of the matrix of cofactors of Qxx. Thus, Cs∗s∗ =det(Qff ) and, e.g.,
Cf3s∗ is (−1) times the determinant of the matrix obtained by deleting the first column
and the fourth row of Qxx. Accordingly,

plimβ̂S·F =
plim(qs∗y) · plim(Cs∗s∗) +

∑K
j=1 plim(qfjy) plim(Cfjs∗)

plim[det(Qxx)]

To simplify this expression, first use (22), (19), and (21) to get

plimβ̂S·F = βs

[V ar(S∗)−V ar(w)] plim(Cs∗s∗)+
∑K

j=1 Cov(S∗Fj) plim(Cfjs∗)

plim[det(Qxx)]

+ βa

Cov(A,S)·plim(Cs∗s∗)+
∑K

j=1 Cov(A,Fj) plim(Cfjs∗)

plim[det(Qxx)]

(31)

We now further simplify the two terms in (31) in turn. Concerning the first term, note
that in accordance with the rules for Laplace expansions of determinants

V ar(S∗)plim(Cs∗s∗) +
K∑

j=1

Cov(S∗, Fj)plim(Cfjs∗) = plim[det(Qxx)] (32)
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Thus, by (32), (5), and (30)

βs

[V ar(S∗)−V ar(w)]plim(Cs∗s∗)+
∑K

j=1 Cov(S∗,Fj)plim(Cfjs∗)

plim[det(Qxx)] =

βs − βsλV ar (S∗) plim
(
Q−1

s∗s∗
)

(33)

where Q−1
s∗s∗ denotes the first element in the first row of Q−1

xx , i.e.

Q−1
s∗s∗ = Cs∗s∗/det(Qxx) = det(Qff )/det(Qxx) (34)

It remains to show that V ar(S∗)plim(Q−1
s∗s∗) = (1 − R2

S∗·F)−1. Using (32) and the
rules for the plim operator we get

V ar(S∗)plim(Q−1
s∗s∗) =


1 −

∑K
j=1 Cov(S∗, Fj)plim

[
−Cfjs∗

det(Qff )

]

V ar(S∗)




−1

(35)

As the (asymptotic) R2
S∗·F can be written

R2
S∗·F =

∑K
k=1 Cov(S∗, Fj)plimα̂j

V ar(S∗)
(36)

where α̂j denotes the OLS estimate of the j th slope coefficient in the regression of
S∗ on F [cf. Maddala(1977, p. 107)], the final step amounts to demonstrating that
[−Cfjs∗/det(Qff )] = α̂j . To this end, write the minor of the element qs∗fj

in Qxx as
det(Ms∗fj

) and denote by Ψj the matrix obtained by replacing the j th column of Qff

by the column vector qfs∗. Then

−Cfjs∗

det(Qff ) =
−[(−1)(j+1)+1det(Ms∗fj

)]

det(Qff )

=
−[(−1)(j+1)+1(−1)j−1det(Ψj)]

det(Qff ) =
det(Ψj)
det(Qff ) = α̂j

(37)

The first equality follows directly from the definition of the cofactor Cfjs∗ . The second
equality is due to the fact that Ψj can be obtained by (j-1 ) interchanges of the columns
in Ms∗fj

, each of which results in the associated determinant being multiplied by (-1).

The third equality follows because (−1)2(j+1) = 1∀j. The final equality is just an
application of Cramer’s rule to the system Qff α̂ = qfs∗. Substituting (37) in (35),
using (36), and inserting the result in (33) we get the two first terms on the RHS in
Proposition 5.

To rewrite the second term in (31) first use (25), (34), and the equality

V ar(S∗)plim(Q−1
s∗s∗) = (1 − R2

S∗F)−1
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implied by (35) – (37) to get

βa

Cov(A,S)·plim(Cs∗s∗ )+
∑K

j=1 Cov(A,Fj)plim
(
Cfjs∗

)

plim[det(Qxx)] =

βaβ̂AS
(1−λ)

1−R2
S∗F

[1 + Φ]

(38)

The variable Φ is given by

Φ =
∑K

j=1
Cov(A,Fj)
Cov(A,S∗)

plim[Cfjs∗/det(Qxx)]

plim(Q−1
s∗s∗)

= −∑K
j=1

Cov(A,Fj)
Cov(A,S∗)plim

[
−Cfjs∗

det(Qff )

] (39)

where Cov(A,S) = Cov(A,S∗) has been used to obtain the first equality. To get
the second equality, (34) has been employed and the sign of Cfjs∗ has been changed,
whereupon the whole expression has been multiplied by -1. By (37), the term within
brackets is equal to α̂j . Finally, some straightforward manipulations yield

Cov(A,Fj)

Cov(A,S∗)
=

ρAFj

ρAS∗

√
V ar(Fj)√
V ar(S∗)

(40)

Substituting (40) in (39) and inserting the result in (38) we get the last term on the
RHS in Proposition 5. Q.E.D.

Proof of Proposition 6. The proof in the following can alternatively be replaced by
a proof based on application og the results in Carroll et al. (1995, Ch. 2.2.3).

Using the same notation and the same arguments as in the proof of Proposition 1,
we can write the OLS estimate of βS∗ as

plim β̂S∗ =
plim (qaa) plim (qs∗y) − plim (qs∗a) plim (qay)

plim (qs∗s∗) plim (qaa) − [plim (qs∗a)]
2 (41)

To evaluate (41), first note that by analogy with (18):

plim (qaa) = V ar (A) , (42)

while plim(qs∗y) is given by (22). Further, by analogy with (20) and (21), respectively,

plim (qs∗a) = Cov (S∗, A) = Cov (S,A) (43)

and

plim (qay) = βsCov (A,S) + βaV ar (A) = βsCov (A,S∗) + βaV ar (A) , (44)
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while plim(qs∗s∗) is given (19). Using (42), (22), (43), (44), and (19) in (41), we obtain,
after some simplifications

plim β̂S∗ = βs
V ar (S)V ar (A) − [Cov (S,A)]2{

V ar (S) V ar (A) − [Cov (S,A)]2
}

+ V ar (w) V ar (A)
. (45)

Noting that V ar(S) = V ar(S∗)−V ar (w), and using (43) and (5), we can rewrite (45)
according to

plim β̂S∗ = βs − βs
V ar(w)V ar(A)

V ar(S∗)V ar(A)−[Cov(S∗,A)]2

= βs − βs

λ

1 − [Cov(S∗,A)]2

V ar(S∗)V ar(A)

= βs − βs

λ

1 − ρ2
AS∗

(46)

where the last equality follows from the definition of the coefficient of correlation
between A and S∗. This proves the first part of Proposition 3.

By analogy with (41), the OLS estimate of βa∗ can be written

plimβ̂a∗ =
plim (qs∗s∗) plim (qay) − plim (qs∗a) plim (qs∗y)

plim (qs∗s∗) plim (qaa) − [plim (qs∗a)]
2 . (47)

Using (19), (44), (43), (22), and (42), and simplifying, we get

plimβ̂a∗ = βa + βs
[V ar (S∗)Cov (A,S∗) − V ar (S)Cov (A,S∗)]

V ar (S∗)V ar (A) − [Cov (S∗, A)]2
. (48)

Simplifying further by means of the equality V ar (S∗) = V ar (S) + V ar (w) and the
definitions of ρAS∗ , λ, and β̂S∗A we obtain

plimβ̂a∗ = βa + βs
V ar(w)Cov(A,S∗)

V ar(S∗)V ar(A)−[Cov(S∗,A)]2

= βa + βs

V ar(w)
V ar(S∗) ·

Cov(A,S∗)
V ar(A)

1 − ρ2
AS∗

= βa + βs
λ·β̂S∗A

1−ρ2
AS∗

,

(49)

which yields the last part of Proposition 6. Q.E:D.
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