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Abstract 
This paper re-examines inference for cluster samples. Sensitivity analysis is proposed 
as a new method to perform inference when the number of groups is small. Based on 
estimations using disaggregated data, the sensitivity of the standard errors with respect to 
the variance of the cluster effects can be examined in order to distinguish a causal effect 
from random shocks. The method even handles just-identified models. One important 
example of a just-identified model is the two groups and two time periods difference-in­
differences setting. The method allows for different types of correlation over time and 
between groups in the cluster effects. 
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1 Introduction 
In many studies the analysis sample consists of observations from a number of groups, 

for example families, regions, municipalities, or schools. These cluster samples impose 

inference problems, as the outcomes for the individuals within the groups usually cannot 

be assumed to be independent. Moulton (1990) shows that such intra-group correlation 

may severely bias the standard errors. This clustering problem occurs in many difference­

in-differences (DID) settings, where one usually use variation between groups and over 

time to estimate the effect of a policy on outcomes at the individual level. As such the DID 

methodology is compelling, since it has the possibility of offering transparent evidence, 

which is also reflected in the exploding number of studies using the approach, for surveys 

see e.g. Meyer (1995) and Angrist & Krueger (2000). Many of these studies use data from 

only a small number of groups, such as data for men and women, a couple of states, or 

data from only a few schools or villages. For more examples see e.g. Ashenfelter & Card 

(1985), Meyer et al. (1995), Card & Krueger (1994), Gruber & Poterba (1994), Eissa 

& Liebman (1996), Imbens et al. (2001), Eberts et al. (2002), and Finkelstein (2002). 

The purpose of this paper is to provide a new method of performing inference when the 

number of groups is small, as is the case in these studies. 

The importance of performing correct inference is also reflected in the growing num­

ber of studies addressing the inference problem.1 One key insight from this literature 

is that the number of groups is important when deciding how to address the clustering 

problem. If the analysis sample consists of data from a larger number of groups, several 

solutions to the inference problem are available; the cluster formula developed by Liang 

& Zeger (1986), different bootstrap procedures (see e.g. Cameron et al. (2008)), or para­

metric methods (see e.g. Moulton (1990)). As expected however several Monte Carlo 

studies show that these methods perform rather poorly if the number of groups is small.2 

1See e.g. Moulton 1986, 1990, Arrelano (1987), Bell & McCaffrey (2002), Wooldridge 2003, 2006 Bertrand 
et al. (2004), Kezdi (2004), Conley & Taber (2005), Donald & Lang (2007), Hansen2007a, 2007b, Ibragi­
mov & Muller (2007), Abadie et al. (2007) and Cameron et al. (2008). Related studies are Abadie (2005) 
and Athey & Imbens (2006) which study semi-parametric and non-parametric DID estimation. 

2See e.g. Bertrand et al. (2004), Donald & Lang (2007), Cameron et al. (2008), Ibragimov & Muller (2007), 
and Hansen (2007a). 

IFAU – Cluster sample inference using sensitivity analysis: the case with few groups 3 



To address this problem Donald & Lang (2007) introduce a between estimator based 

on data aggregated at group level.3 They show that under certain assumptions, the aggre­

gated error term is i.i.d normal and standard normal inference can be applied even if the 

sample consists of data from a small number of groups. Their method works as long as 

the number of groups is not too small. Since their method is based on aggregated data 

their inference will be conservative in the absence of within group correlation, or if the 

within group correlation is small. In the limit case when the model is just-identified, i.e. 

when the number of aggregated observations equals the number of variables varying at 

group level it not possible to perform Donald & Lang (2007).4 An important example of 

a just-identified model is the two groups and two time periods DID setting. Another alter­

native is the two-stage minimum distance approach suggested by Wooldridge (2006). One 

important by-product of this approach is a simple test for the presence of within cluster 

correlation. However, as for the Donald & Lang (2007) approach the test does not work if 

the model is just-identified, as it is then based on a chi-square statistic with zero degrees 

of freedom. A final alternative is to use bias corrected standard errors as suggested by Bell 

& McCaffrey (2002). The method has two limitations; it does not work if the number of 

groups becomes too small or if the model includes a dummy variable taking the value one 

for exactly one cluster and zero otherwise. 

As a response this paper proposes to use sensitivity analysis as a new method of per­

forming inference when the number of groups is small. Design sensitivity analysis has 

traditionally been used to test whether an estimate is sensitive to different kinds of selec­

tivity bias: see e.g. Cornfield et al. (1959) and Bross (1966), further see e.g. Rosenbaum 

& Rubin (1983), Lin et al. (1998), Copas & Eguchi (2001), Imbens (2003), Rosenbaum 

(2004) and de Luna & Lundin (n.d.). In these papers sensitivity analysis is performed 

with respect to the unconfoundedness assumption or with respect to the assumption of 

random missing data. If these assumptions hold, the usual estimators are unbiased and 

the sensitivity analysis amounts to assessing how far one can deviate from for example 

the unconfoundedness assumption before changing the estimate by some pre-specified 

3Under certain assumptions the aggregation can be made on group-time level, instead of group-level. 
4The inference is then based on a t-statistic with zero degrees of freedom. 
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amount. 

My sensitivity analysis approach is similar, but nevertheless different in spirit. Under 

the assumption of no within group correlation standard normal i.i.d. inference based on 

disaggregated data is applicable. If this assumption is violated any standard errors based 

on the assumption of no within group correlation will be biased downwards. It is shown 

that under certain assumptions this bias can be expressed in terms of a few parameters, 

called sensitivity parameters. In the basic case the variance is expressed in terms of a 

single sensitivity parameter, defined as the ratio between the variance of the group com­

mon error term creating within cluster correlation, and the variance of the individual error 

term. The sensitivity analysis then amounts to assessing how much one can deviate from 

the assumption of no within group correlation before changing the standard error estimate 

by some pre-specified amount. That is to investigate how sensitive the standard errors are 

to within group correlation. The test can also be inverted in order to calculate a cut-off 

value, where higher values of the sensitivity parameter or simply larger variance of the 

group common shocks renders a certain estimate insignificant. If this cut-off value is un­

reasonably large one can be confident that the null hypothesis of no effect can be rejected. 

Optimally one could use information from other sources, for instance data from other 

countries, other time periods, or for another outcome, in order to assess the reasonable 

size of the sensitivity parameter. The approach proposed in this paper is therefore similar 

to standard sensitivity analysis, since it also assesses how much one can deviate from an 

important assumption, but it is also different in spirit since it is performed with respect to 

bias in the standard errors and not with respect to bias in the point estimate. 

One key question is of course how to assess whether the sensitivity cut-off value is 

unreasonably large, that is how to assess the reasonable size of the within group correla­

tion. I believe that this has to be done on a case by case basis. However, one advantage 

with the approach here is that the basic sensitivity parameter is defined as a ratio between 

two variances. It gives a sensitivity parameter with a clear economic interpretation, which 

of course is a basic condition for an informative sensitivity analysis. The next step is the 

discussion about a reasonable size of the sensitivity parameter. In order to shed more light 

on this issue two applications are provided. The sensitivity analysis method is applied to 
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data analyzed in Meyer et al. (1995) on the effects of an increase in disability benefits on 

the duration of the period spent out of work and to Eissa & Liebman (1996) on the effects 

of an expansion in the earned income tax credit on labor supply. In both these studies key 

regressions are based on just-identified models. The sensitivity analyses indicate that the 

conclusion from the first study that the treatment effect is significant is not sensitive to de-

parture from the independence (no-cluster) assumption, whereas the results of the second 

study are sensitive to the same departure and its conclusion cannot therefore be trusted. It 

demonstrates that the sensitivity analysis approach is indeed helpful for determining the 

validity of treatment effects. 

By introducing sensitivity analysis in this way, this paper contributes in several ways. 

The method is applicable when the analysis sample consists of data from only a small 

number of groups. It even handles just-identified models. As no other method is applica­

ble in the just-identified case it is the best application of the sensitivity analysis method. 

If the model is not just-identified but the number of groups is still small, the Monte Carlo 

study in this paper show that the sensitivity analysis method offers an attractive alternative 

compared to other commonly used methods. The method is also able to handle different 

types of correlation in the cluster effects, most importantly correlation within the group 

over time and multi-way clustering. This is done by introducing several sensitivity pa­

rameters. 

The paper is structured as follows. Section 2 presents the basic model and analyzes 

the asymptotic bias (asymptotic in the number of disaggregated observations) of the OLS 

standard errors. Section 3 introduces the basic sensitivity analysis approach. Section 4 

extends these basic results to more general settings. It is shown that different assumptions 

about the cluster effects lead to different types of sensitivity analyses. Section 5 presents 

Monte Carlo estimates on the performance of the sensitivity analysis method. The method 

is also compared to other commonly used methods of performing inference. Section 6 

presents the two applications, and Section 7 concludes. 

IFAU – Cluster sample inference using sensitivity analysis: the case with few groups 6 



� 

�

2 Basic model and bias in the regular OLS standard 

errors 
Consider a standard time-series/cross section model. Take a linear model for the outcome 

y for individual i in time period t in group g as 

yigt = xigt β + eigt (1) 

eigt = cgt + εigt 

Here εigt is an individual time specific error, cgt is a cluster effect which varies across 

groups and time, and xigt the regressors. Of course individuals can represent any disag­

gregated unit. The regressors may or may not include fixed group effects and/or fixed 

time effects. This model covers a wide range of different models, including a ”simple” 

cross-section, with data from for instance a couple of schools or villages. Another impor­

tant example is the heavily used standard DID model. In a regression framework, a usual 

DID model is 

yigt = αg + αt + bDgt + cgt + εigt , (2) 

including fixed time, αt , and fixed group effects, αg, and where Dgt is an indicator func­

tion taking the value one if the intervention of interest is implemented in group g at time 

point t and zero otherwise. The treatment effect is hence identified through the variation 

between groups and over time. In this setting cgt can be given a specific interpretation as 

any group-time specific shocks.5 

Define N = ∑G 
∑

T ngt , where G is the number of groups, T is the number of time 

periods, and ngt is the number of individual observations for group g in time period t. If 

E[eigt |xigt ] = 0, the ordinary least square (OLS) estimate of β 

β = (X �X)−1X �Y (3) 

5cgt also captures any differences in the group mean due to changes in the composition of the group over 
time. If ngt is large this problem is mitigated. 
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is an unbiased estimate of β . Here Y is a N-vector collecting all yigt , X is a N × K matrix 

containing the observations of the independent variables, and accordingly β a K-vector 

of the coefficients of interest. 

Next consider inference. Assume that 

E(ee�) = σ2C, 

where e is a N-vector collecting all eigt , and σ2 ≡ 1/N tr(ee�), and C is a positive-definite 

matrix that captures the correlation in the error terms between the individuals. The true 

covariance matrix is then 

V = σ2(X �X)−1X �CX(X �X)−1 , (4) 

which can be compared with the regular OLS covariance matrix formula 

V̂ = σ̂2(X �X)−1 . (5) 

The asymptotic bias (asymptotic in the number of individuals (N)) of the regular stan­

dard errors has been analyzed extensively: see e.g. Greenwald (1983): other contributions 

are Campbell (1977), Kloek (1981) and Holt & Scott (1982). To be clear here we mean 

asymptotic in the number of individuals (N). Following equation (9)-(11) in Greenwald 

(1983) and some algebraic manipulations6 gives the asymptotic bias in the estimated co­

variance matrix which can be expressed as 

E(V̂ ) −V = (6) 

�tr[(X �X)−1X �(I −C)X ] � 
σ

2 (X �X)−1 +(X �X)−1X �(I −C)X(X �X)−1 .
N − K 

Hence if C = I, that is the identity matrix, the estimated covariance matrix is an unbiased 

estimate of the true covariance matrix, and the estimated standard errors are unbiased. It 
6Notice that V and n are defined in a different way here compared to Greenwald (1983). The expression fol­
lows from substituting equation (10) and (11) in Greenwald (1983) into equation (9) in Greenwald (1983), 
breaking out σ 2 and simplifying. 
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holds if cgt = 0 for all g and all t, and if εigt is i.i.d. This general formula incorporates 

the two main reasons for bias in the standard errors into one expression. They are: (i) 

the cluster correlation problem caused by the presence of cgt , highlighted by Moulton 

(1990), and (ii) the policy autocorrelation problem caused by correlation over time in cgt , 

highlighted by Bertrand et al. (2004). The exact size of these problems depend on the 

case specific shape of C. 

For the model in equation (1) the bias is negative, i.e. V is larger than E(V̂ ). It 

should also be noted that the bias consist of two distinct parts. Thus in the case of cluster 

effects in form of within group correlation the OLS standard errors underestimate the true 

standard errors. First, the OLS estimator of the error variance σ̂2, is neither an unbiased 

nor a consistent estimator of the true error variance σ2, if the error covariance matrix does 

not satisfy the OLS assumptions. Second, and more obvious, even if the error variance 

is known, the standard errors are biased since the coefficient covariance matrix is mis­

specified. 

Sensitivity analysis for cluster samples 
The discussion in the previous section reveals that whether or not cgt = 0 is crucial for 

how to perform inference. If cgt = 0 regular OLS inference can be performed, possibly 

with control for heteroscedasticity. If cgt �= 0 on the other hand the regular OLS stan­

dard errors will be severely biased. As shown by Donald & Lang (2007) this has very 

important implications when the number of groups is small. They introduce a between 

estimator based on data aggregated at group level. It creates an all or nothing situation; 

under the assumption of cgt = 0 there are apparently narrow confidence intervals based on 

individual data, and under the assumption of cgt �= 0 there are apparently very wide confi­

dence intervals based on aggregated data. Needless to say arguing that cgt = 0 will almost 

always be very difficult, whereas arguing that the variance of cgt is small is reasonable in 

many applications. In the end it is the size variance of the within group correlation that 

matters. This is the key idea behind the new method proposed in this paper. 

Formally, the starting point for the sensitivity analysis method is the general formula 
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for the bias in the regular OLS standard errors presented in equation (6). This expression 

is based on derivations in Greenwald (1983), which among other expressions uses 

7E(σ̂2) = σ2(N − tr[(X �X)−1X �CX ])/(N − K). (7) 

Combining this expression with the definition of V in equation (4) and the definition of V̂

in equation (5), and noting that E(V̂ ) = E(σ̂2)(X �X) gives 

N − K
V = (X �X)−1X �CXE(V̂ ). (8)

N − tr[(X �X)−1X �CX ]

Further plim(V̂ ) = E(V̂ ) and thus E(V̂ ) can be consistently (in terms of number of indi­

viduals) estimated by V̂ . 

Starting with this equation the idea behind the sensitivity analysis is straightforward. 

Faced with a cluster sample with data from only a small number of groups, we can use 

disaggregated data and estimate β using OLS. Then estimate V̂ in equation (4) as if there 

were no cluster effects. Then notice that V̂ only gives correct standard errors if cgt = 0 for 

all g and t. However, as a sensitivity analysis we can use the expression above and express 

the bias in the covariance matrix in terms of different so called sensitivity parameters, and 

assess how large they have to be in order to change the variance of a parameter estimate by 

a certain amount: that is, if the results are insensitive to departures from the assumption 

of no within group correlation, it indicates that the results can be trusted. As shown below 

the exact specification of the sensitivity parameters will depend on the assumptions which 

can be imposed on C. 

Let us start with the simplest case. If ε is homoscedastic and if E(cgt cg�t ) = 0 for 

all t and all g � �, and E(cgt cgt � ) = 0 for all g and all t = t �, then the full error term, = g �

eigt = cgt + εigt , is homoscedastic8, equi-correlated within the group-time cell and uncor­

related between the group-time cells. Further assume ngt = n and xigt = xgt , that is, the 

7See derivations of equation (A.3) in Greenwald (1983).
 
8The sensitivity analysis throughout this paper is made under the homoscedasticity assumption. The as­
sumption makes it possible to write the bias in terms of single parameters. If one suspect heteroscedasticity, 
one approach is to use standard errors robust to heteroscedasticity in the spirit of White (1980), and use this 
covariance matrix instead of V̂ . The sensitivity analysis based on this specification will then be conservative. 
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regressors are constant within each group, and constant group size. This special case has 

been analyzed by Kloek (1981).9 He shows that under these assumptions equation (8) 

reduces to 
nGT − K

V = E(V̂ )τ (9)
nGT − Kτ 

with 
σ2 

c
τ = 1 +(n − 1) . (10)

σ2 + σ2
c ε 

Here σ2 is the variance of c, and σε 
2 the variance of ε . Expressing the ratio between these c 

two variances as σ2 = γσε 
2 gives c 

γ nGT − K
V = E(V̂ ) 1 +(n − 1) (11)

1 + γ nGT − K(1 +(n − 1)1+
γ

γ ) 

In other words the bias in the covariance matrix is expressed in terms of observables and 

a single unknown parameter γ , which is interpreted as the relation between the variance 

of the group-time error term and the variance of the individual error term.10 

Using standard textbook results; if γ = 0, that is if there is no within group correlation, 

and ∑ n jt is large
 
β̂ a a
t = � ∼ N(0,1), (12) 

E(V̂aa) 

where β̂ a is the ath element of β̂ , and V̂aa the element in the ath column and ath row of 

V̂ . Furthermore if γ �= 0 and known, c jt ∼ N(0,σ2)11, and ∑n jt is large c 

β̂ a β̂ a at = √ = � ∼ N(0,1). (13)
γ nGT −KVaa E(V̂aa)(1 +(n − 1)1+γ ) γnGT −K(1+(n−1) 1+γ ) 

9Kloek (1981) analyzes the one dimensional case with only a group dimension and no time dimension. A 
group-time version of his proof is presented in Appendix. 

10Actually γ is only potentially unknown. If the number of groups is larger σ2 can be consistently estimated c 
using the between group variation, and σ2 can be consistently estimated using the within group variation, ε 
and this gives p. 

11The normality assumption can be replaced by any other distributional assumption, for instance a uniform 
distribution. However this will complicate the sensitivity analysis, since the combined error term will have 
a mixed distribution. 
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It is then possible to use γ as a sensitivity parameter. After estimating β̂ a and con­

sistently estimating E(V̂aa) by V̂aa using the disaggregated data, the sensitivity analysis 

then amounts to assessing how much γ has to deviate from zero in order to change the 

standard errors by a pre-specified amount. The sensitivity analysis method is applicable 

as long as the model is identified. In the present case with variables constant within each 

group-time cell, this holds if GT ≥ K, i.e. if the number of group-time cells is larger than 

or equal to the number of explanatory variables. In other words our sensitivity analysis 

method even handles just-identified models, for instance the two groups and two time 

periods DID setting. As no other method is applicable in the just-identified case it is the 

best application of the sensitivity analysis method. If the model is not just-identified but 

the number of groups is still small the sensitivity analysis method offers an alternative to 

other commonly used methods such as the Donald & Lang (2007) approach. 

The test can also be inverted in order to calculate the γ value which corresponds to a 

specific p-value. One could for example be interested in the γ cut-off value which renders 

the estimated treatment effect statistically insignificant at α% level. This follows from 

setting t = Z1−α/2 and solve for γ in the equation (13) above 

(β̂ 2 − Z2 V̂aa)(nGT − K)a 1−α/2
γc,a = . (14)

(nZ2 V̂aa)(nGT − K) − β̂ 2(nGT − nK)1−α/2 a 

Here Zυ is the υ quantile of the standard normal distribution. Note that we have replaced 

E(V̂aa) with V̂aa as it is consistently estimated by V̂aa. Furthermore, note that γc,a depends 

on n, the number of observations for each group. This dependence comes both from V̂

which decreases as n increases and also directly as n enters the expression for γc,a. Taken 

together these two effects means that γc,a increases as n goes from being rather small to 

moderately large: however as n becomes large this effect flattens out, and γc,a is basically 

constant for large n. 

If γc,a is unreasonably large, one could be confident that the null-hypothesis about zero 

effect could be rejected. The key question then becomes: what is unreasonably large? At 

the end of the day, as with all sensitivity analyses, some judgment has to be made. Since 
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the true γ may vary a lot between different applications, we believe that the assessment 

has to be done on a case by case basis. However, the sensitivity analysis presented here 

avoids the common sensitivity analysis pitfall. That is, that one is left with a sensitivity 

parameter which is hard to interpret and thus hard to relate to economic conditions. Here 

the basic sensitivity parameter, γ , is defined as the ratio between two variances, which 

makes it both easier to interpret and easier to discuss. Optimally one could also use 

information from other sources to make the discussion more informative for instance data 

from another country, other time periods, or for another outcome. In some cases it may 

also be beneficial to re-scale γ . The two applications presented in Section 6 using data 

from Meyer et al. (1995) and Eissa & Liebman (1996) further exemplify how γ can be 

interpreted. 

If either the assumption of either ngt = n or xigt = xgt is relaxed the sensitivity analysis 

is still straightforward. Note that the general formula for the bias presented in equa­

tion (8) nevertheless holds. In the basic case with ngt = n or xigt = xgt this expression 

could be simplified considerably. In general under assumption E(cgt cg�t ) = 0, assump­

tion E(cgt cgt � ) = 0, and with the model specified as in equation (1), C has the familiar 

block-diagonal structure
 ⎤⎡ 
C1 . . . 0 
. . . ⎢⎢⎢⎣ 
0 . . . CGT 

with CGT = [(1 − 1+
γ

γ )Igt + 1+
γ

γ Jgt ]. Here IGT is an ngt times ngt identity matrix, and Jgt is 

an ngt times ngt matrix of ones: γc,a is then found by numerically solving for γ in 

β̂ aZ1−α/2 = √ , (16)
Vaa 

with V defined as in equation (8) and C defined as in equation (15) above. From calcu­

lations I note that in general γc,a is quite insensitive to violations of ngt = n, except when 

some groups are very large and others are very small. 

⎥⎥⎥⎦

C =
 (15)
.
 . ...
 .
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4 Extended sensitivity analysis 

4.1 Correlation over time in the cluster effects 

The sensitivity analysis presented in the previous section is applicable under a num­

ber of assumptions about cgt . Most notably E(cgt cg�t ) = 0 for all t and all g =� g�, and 

E(cgt cgt � ) = 0 for all g and all t � .= t � In many studies E(cgt cgt � ) = 0 for all g is a re­

strictive assumption. In a model with fixed group and fixed time effects, cgt captures any 

group-time shocks. Consider a study on the effects of minimum wages on employment 

using variation across regions and over time. The group-time shocks then capture all re­

gional specific shocks in employment. If present they are most likely correlated over time. 

This problem, often refereed to as the policy autocorrelation problem, was highlighted by 

Bertrand et al. (2004). 

This subsection therefore relax the assumption that E(cgt cgt � ) = 0: instead we assume 

an AR(1) structure for cgt 

cgt = κcgt−1 + dgt , (17) 

where dgt is assumed to be a white noise series with mean zero and variance σd 
2. Further, 

assume that |κ| < 1. I make the natural extension of the basic sensitivity analysis and 

define σ2 = γσε 
2. It gives two sensitivity parameters, γ and κ , instead of the single sensi­d 

tivity parameter γ . Then if κ = 0 the basic sensitivity analysis is applicable. To be clear, 

κ is interpreted as the first-order autocorrelation coefficient for cgt , and γ as the relation 

between the variance of the group-time specific shock and the variance of the unobserved 

heterogeneity. 

Consider the case with repeated cross-section data. Assume that data on ngt individu­

als from group g in time period t are available. The general formula presented in equation 

(8) for the covariance matrix still hold. However, since cgt is allowed to follow an arbi­

trary AR(1) process, C will obviously differ from the basic sensitivity analysis. In order 

to express C in terms of κ and γ we use the well know properties of an AR(1) process. It 

turns that out if ngt = n and xigt = xgt holds, there is a simple expression for the relation 
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between V and V̂

Vaa ≈ E(V̂aa)(1 +(n − 1) 
γ 

+ n 
γ 

Haa) (18)
1 + γ − κ2 1 + γ − κ2 

where Haa is the element in the ath column and ath row of H given by 

H = (
 ∑∑ xgt xgt )
−1

∑
∑
∑
 (κ |t−t �|xgt xgt � ) 
g t g t �t �=t 

The proof can be found in Appendix. 

Based on this simple expression for the bias in the regular OLS standard errors, one 

can assess the sensitivity of the standard errors with respect to both the autocorrelation and 

the variance of the group-time specific shocks. As for the basic sensitivity analysis one 

may be interested in the cut-off value which renders an interesting estimate insignificant. 

In this case with two sensitivity parameters a natural way to proceed is to solve for γ for 

a range of values of κ . Let us that interest lies in the effect of variable a, then the cut-off 

value for γ is 
(β̂ 2 − Z2 V̂aa)(1 − κ2)a α/2

γc,a = . (19)
(nZ2 V̂aa)(1 + Haa) − β̂ 2 

α/2 a 

Again note that E(V̂aa) is replaced with V̂aa as it is consistently estimated by V̂aa. If the 

combinations of γc,a and κ values are unreasonable large, one could be confident in that 

the null hypothesis about zero effect should be rejected. Also note that γc,a can either 

increase or decrease with κ , as Haa can either increase or decrease with κ . 

If either ngt = n or xigt = xgt do not hold it is not possible to obtain a closed from 

solution for γc,a. But using numerical methods, it is possible to solve for γ in 

β̂ aZ1−α/2 = √ , (20)
Vaa 

for a range of values of κ and the desired significance level. Here V is defined in equation 

(8), and C is defined in equation (A.13) presented in appendix. 
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4.2 Multi-way clustering 

Consider an application where we have data from a number of regions and where the re­

gion is defined as the group. In the sensitivity analysis presented so far, the assumption 

of E(cgt cg�t ) = 0 is crucial. In other words it is assumed that the outcomes for individ­

uals within a region are correlated and that there is no correlation between individuals 

on different sides of the border between two different regions. Most likely this will be 

violated in many applications. Here this assumption is relaxed in the situation with cross­

section data. Assume that the groups can be divided into group clusters containing one or 

more groups. Dropping the time dimension, the outcome y for individual i in group g in 

group-cluster s is 

yigs = xigsβ + cgs + εigs. (21) 

Retain the definition of γ from the basic sensitivity analysis as σ2 = γσ2 γ is then c ε . 

again interpreted as the relation between the variance of the group-time shocks and the 

variance of the individual unobserved heterogeneity. Further assume that if s � � then= s
12E(cgscg�s� ) = 0 and if s = s� then E(cgscg�s� ) = ξ σc 

2. ξ should be interpreted as the 

relation between the inter-group correlation and the intra-group correlation for groups in 

the same cluster of groups. This means that it will be far below one in many applications. 

Note that the general expression for the covariance matrix presented in equation (8) 

holds. If the above assumptions hold, and if ng = n and xigt = xgt hold, the derivations in 

the appendix show that there is a simple relation between Vaa and V̂aa 

Vaa ≈ V̂aa(1 +(n − 1) 
γ 

+ n 
γ

ξ Maa) (22)
1 + γ 1 + γ 

where Maa is the element in the ath column and ath row of M given by 

M = (
 ∑∑ xgsx� )−1
gs ∑∑∑ (xgsxg�s).
 

s g s g g� �=g 

12It is obviously possible to also allow for an time-dimension, which generally gives sensitivity analysis in 
three parameters, which would measure the variance, the autocorrelation respectively the between group 
correlation in the cluster effects. 
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Again there are two sensitivity parameters, γ and ξ . As in the previous case one can 

proceed to solve for γc,a for a range of values of ξ . Let us that the interest lies in the effect 

of variable a: then 
β̂ 2 − Z2 ˆa α/2Vaa 

γc,a = . (23)
ˆ(nZ

α

2 
/2Vaa)(1 + ξ Maa) − β̂ 2 

a 

If these combinations of γc,a and ξ values are unreasonable large, one could be confident 

that the null hypothesis about zero effect should be rejected. One could also interpret the 

division of the groups into group clusters as a sensitivity analysis. The standard errors 

may be sensitive to some divisions but not to others. Note that introducing multi-way 

clustering in the way done here increases the standard errors, and thus γc,a decreases with 

ξ . 

If either ngt = n or xigt = xgt do not hold it is not possible to obtain a closed from 

solution for γc,a. But it is possible to solve for γ in 

β̂ aZ1−α/2 = √ , (24)
Vaa 

for a range of values of ξ and the desired significance level. Here V is defined in equation 

(8), and C is defined in equation (A.25) presented in the appendix. 

Monte Carlo evidence 
This section provides Monte Carlo estimates of the performance of the proposed sensi­

tivity analysis method. The small sample properties of the method and the sensitive of 

method is to the choice of reasonable γ are investigated. The sensitivity analysis method 

is also compared to other commonly used inference methods. I consider a DID set up. 

The treatment is assumed to vary at group-time level, and the interest lies in estimating 

the effect of this treatment on individual outcomes. 

Assume that the underlying model is 

yigt = cgt + εigt . 
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The group error term, cgt , and the individual error term, εigt , are both independent normals 

with variance σ2 and σε 
2. Take σ2 = 0.1 and σ2 = 1. Note that the result is not sensitive c c ε 

to this choice. I experiment with different numbers of of groups (G) and different number 

of time periods (T ). Data are generated with a constant group-time cell size, ngt = n. In 

all experiments 50,000 simulations are performed. 

I estimate models of the form 

yigt = αg + αt + bDgt + cgt + εigt . 

This represents a general DID setting, with fixed group effects, αg, fixed time effect, αt , 

and a treatment indicator variable, Dgt , taking the value one if the treatment is imposed in 

group g at time point t. b is then the treatment effect. The treatment status is randomly 

assigned. In the basic case we take two time periods (T = 2) and two groups (G = 2). 

The treatment status is then assigned to one of the groups (G1 = 1), and they experience 

the treatment in the second period. Besides the basic case, other combinations of T ,G 

and D are considered 13. To be precise, the basic model with T = 2, G = 2 and G1 = 1 

includes two group dummies, one time dummy for the second period, and one treatment 

dummy taking the value one in the second period for group two. The models for other 

combinations of T ,G and D follow in the same way. 

5.1 Small sample properties 

As shown in Section 3, the sensitivity analysis method can be used to derive a cut-off 

value, γc. This value can be seen as a test-statistic. If one is confident that this value is 

unreasonably large one should reject the null-hypothesis of zero effect. In other words the 

critical value is decided by the researchers knowledge about reasonable values of γ . 

If the researcher knows the true relation between σ2 and σε 
2, referred to as γt = σ2/σ2 

c c ε , 

then theoretically if N is large a test for b = 0 using γc as a test-statistic and using γt as 

the critical value should have the correct size. This should hold for any combination of 

T ≥ 2,G ≥ 2 and G > G1. This subsection confirms this property. I also examine the 

small sample properties of this approach. To this end the approach is somewhat mod­

13If T > 2 the treatment occurs after T /2 − 0.5 if T is a odd number and after T /2 if T is an even number. 
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Table 1: Monte Carlo results for the small sample properties of the sensitivity analysis method. 

Group Size (n) 
G = 2, T = 2 

G1 = 1 
G = 3, T = 2 

G1 = 1 
G = 3, T = 3 

G1 = 1 
G = 5, T = 5 

G1 = 2 

10 
20 
50 
100 
1000 

0.0503 
0.0496 
0.0505 
0.0484 
0.0505 

0.0492 
0.0489 
0.0516 
0.0519 
0.0504 

0.0495 
0.0512 
0.0494 
0.0501 
0.0495 

0.0504 
0.0500 
0.0500 
0.0505 
0.0494 

Notes: Monte Carlo results for the treatment parameter which enters the model with a true coefficient of b = 0. The 
model and the data generating process is described in detail in the text. Each cell in the table reports the rejection rate 
for 5% level tests using the sensitivity analysis γc as test-statistic, and γt as critical value. Test based on a tnGT −G−T . 
T is the number of time periods, G the number of groups, and G1 the number of groups who receives the treatment. 
The number of simulations is 50,000. 

ified. Asymptotically (in N) the sensitivity analysis method can be based on a normal 

distribution, regardless of the distribution of the individual error, ε . If N is small but ε is 

normally distributed the analysis should be based on a t-distribution with nGT − G − T 

degrees of freedom. This follows since the t-statistic reported in equation (12) has an 

exact t-distribution instead of a normal distribution. 

Table 1 present the results from this exercise. Each cell of Table 1 represents the 

rejection rate under the specific combination of n,T ,G,D, and γt . As apparent from the 

table, the sensitivity analysis method works as intended for all sample sizes. It confirms 

that the derived properties of the sensitivity analysis method are correct. This is not 

surprising since the sensitivity analysis is based on OLS estimates with well established 

properties. It does not however give evidence for an inferential method in a strict statistical 

sense as the exact value of the used critical value γt is not known in practice. In practice 

reasonable values of γt have to be assessed, for instance using other data sources. 

5.2 Robustness and comparison with other inference methods 

The researcher may have information through other data sources, or for other outcomes, 

which enables a closer prediction of γt . However information that enables an exact esti­

mate of γt is not likely to be available. The second experiment therefore test the robustness 

of the results with respect to assessing an incorrect γt . Distinguish between the true ratio 

between the two error variances, γt and the ratio that the researcher thinks is the correct 

one, γr. If γc > γr the sensitivity analysis suggests rejecting the null-hypothesis of zero 

effect. If γt > γr this leads to over-rejection of the null-hypothesis. Here the severity of 
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this problem is tested. 

As a comparison the sensitivity analysis method is contrasted with other methods com­

monly used to perform inference. The other methods include OLS estimates without any 

adjustment of the standard errors, labeled OLS regular. Furthermore, OLS estimates with 

the commonly used Eicker-White heteroscedasticiy robust standard errors for grouped 

data. I either ”cluster” at group level or ”cluster” at the group-time level, i.e. variance 

matrices which is robust to within group correlation, and robust to within group-time cell 

correlation, respectively. These inference methods are labeled cluster group and cluster 

group-time. They are by far the most common ways of correcting for the use of individual 

data and outcomes that vary only on at group level. The general cluster formula is 

C�
∑ ∑∑

�� C �� C 

c=1 c=1 c=1 

N − 1 C
V̂cluster = 

N − K C − 1
 
X � c X �ûcûc X � cXcXc Xcc

where c indicates the cluster and C the number of clusters. Further, ûc is a vector contain­

ing the OLS residuals, and Xc is a matrix containing the observations of the independent 

variables for the individuals in cluster c. Also note that a degrees of freedom correction is 

used. The tests are based on a tC−1, i.e. tG−1 for clustering at the group level, and tGT −1 

for clustering at the group-time level. 

The two-step estimator suggested by Donald & Lang (2007) is also considered. In the 

present case with explanatory variables which vary only at group-level, and in the absence 

of correlation over time in cgt , the first step is aggregation at the group-time level. This 

gives 

ȳgt = αg + αt + β Xgt + cgt + ε̄gt , 

where ȳgt and ε̄gt are the group-time averages of yigt and eigt . The second step amounts to 

estimating this model using OLS. In the present case when both the error terms are inde­

pendent normals the resulting t-statistic for the hypothesis test of b = 0 has a t-distribution 

with GT − K degrees of freedom. The number of variables, K, is here G + T . 

The upper panel of Table 2 presents the results for the sensitivity analysis method, 

and the lower panel presents the results for the other four methods. Size is for 5% level 
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tests for the treatment parameter which enters the model with a true coefficient of b = 0. 

Power is 5% level test versus the alternative that b = 0.1. In this analysis we take n = 200. 

Before interpreting these results note that the power should be compared for tests with 

the same nominal size. Furthermore, the terminology size and power for the sensitivity 

analysis method is not entirely correct from a statistical point of view. The sensitivity 

analysis gives a ”test-statistic” as a cut-off value, γc, but the cut-off value is decided by 

the researchers assessment of a reasonable size off γ . In that sense it is a test, which makes 

it reasonable to report the size and power. Also note that the main point of this section is 

to explore how sensitive the results are to the assessment of a reasonable size off γ . 

First, consider the performance of the other methods commonly used to perform infer­

ence. The results for the OLS estimates using regular standard errors and the two cluster 

formulas confirm what has been found in earlier studies, see e.g. Bertrand et al. (2004), 

Donald & Lang (2007), Cameron et al. (2007), and Hansen (2007a). The regular uncor­

rected OLS estimates have large size distortions. The rejection rate for 5% level tests is 

0.256 with G = 2, T = 2, G = 1. The two OLS cluster estimators also suffer from large 

size distortions. As expected these methods behave poorly if the number of groups is 

small: after all they were designed for the case with a large number of groups. If the 

number of groups is only moderately small, say G = 5 and T = 5, these tests perform 

somewhat better.14 

Next, consider the performance of the Donald & Lang (2007) two step estimator. If the 

model is just-identified as in the case with G = 2 and T = 2 the test of the null hypothesis 

should be done using a t-statistic with zero degrees of freedom. In other words it is 

not possible to use this test for just-identified models. Next consider how the two step 

estimator performs if the groups become somewhat larger, but are still very small. The 

results in Column 2, 3 and 4 show that the DL estimator has correct size if the model is 

not just-identified. This confirm the results in Donald & Lang (2007). However, if the 

number of groups is very small (Column 2 and 3) the power of the DL estimator is low. 

Let us compare these results with the results for the sensitivity analysis method, which 

14Notice that this experiment is set up with no correlation between the groups or over time in cgt . If that were 
the case we could expect these cluster estimators to perform even worse. The size distortions for G = 5 and 
T = 5 would then be likely to also be very large. 
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Table 2: Monte Carlo results for the sensitivity analysis method when the true relation between the 
variance of the group-time error and the individual error is unknown. 

G = 2, T = 2 
G1 = 1 

G = 3, T = 2 
G1 = 1 

G = 3, T = 3 
G1 = 1 

G = 5, T = 5 
G1 = 2 

Size Power Size Power Size Power Size Power 

Sensitivity analysis 
γt = 0.010 
γr = 0.005 
γr = 0.008 
γr = 0.009 
γr = 0.010 
γr = 0.011 
γr = 0.012 
γr = 0.015 
γr = 0.020 

0.111 
0.069 
0.057 
0.050 
0.044 
0.038 
0.024 
0.011 

0.671 
0.587 
0.562 
0.531 
0.504 
0.481 
0.411 
0.314 

0.112 
0.068 
0.058 
0.048 
0.041 
0.036 
0.024 
0.012 

0.778 
0.701 
0.677 
0.657 
0.627 
0.609 
0.539 
0.431 

0.108 
0.066 
0.058 
0.050 
0.044 
0.038 
0.024 
0.011 

0.870 
0.816 
0.794 
0.779 
0.758 
0.739 
0.675 
0.575 

0.112 
0.069 
0.059 
0.050 
0.044 
0.037 
0.024 
0.012 

1.000 
0.999 
0.999 
0.998 
0.998 
0.998 
0.996 
0.992 

OLS regular 
Cluster group-time 
Cluster group 
DL two step 

0.256 
1.000 
1.000 
n.a. 

0.817 
0.978 
0.978 
n.a. 

0.257 
0.562 
0.276 
0.051 

0.889 
0.934 
0.684 
0.148 

0.260 
0.370 
0.280 
0.051 

0.945 
0.944 
0.750 
0.462 

0.257 
0.133 
0.107 
0.050 

1.000 
0.973 
0.996 
0.998 

Notes: Monte Carlo results for simulated data. The model and the data generating process is described in detail in the 
text. γt is the true relation between the variance of the group-time error and the individual error, and γr the assessed 
relation between these two variance. Further T is the number of time periods, G the number of groups, G1 the number 
of groups who receives the treatment, and ngt the sample size for each group-time cell. Size is for 5% level tests for 
the treatment parameter which enters the model with a true coefficient of b = 0. Power is 5% level test versus the 
alternative that b = 0.1. The number of simulations is 50,000. 

uses γc as the test-statistic and γr as the critical value.15 First, consider the results when 

γt = γr, i.e. the researcher is able to correctly assess the size of within group correlation. 

As before the test has the correct size. Since the size of the test for the sensitivity analysis 

method and the DL method are the same for the results in Column 2-4, the power esti­

mates are comparable. The results show that the power is higher in the sensitivity analysis 

method. If the number of groups is very small, as in Column 2 and 3, the difference is 

large. For example if G = 3, T = 2, and G = 1 the power is 0.657 for the sensitivity anal­

ysis compared to 0.148 for the DL two step estimator. If the number of groups becomes 

somewhat larger as in Column 4 the difference is smaller. In this case the Donald & Lang 

(2007) two step estimator is likely to be preferable to sensitivity analysis. Also note that 

even if G = 2, T = 2, G1 = 1 the power of the sensitivity analysis test is high. 

The previous comparison was based on the assumption that the researcher is able to 

15I will use the terminology ”size” and ”test” here even though the sensitivity analysis method is not a statis­
tical test, as the critical value is assessed and not calculated. 
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assess the correct value of γ . In practice this is unreasonable. It is therefore also interesting 

to see what happens if γt not equal to γr, i.e. when the researcher is unable to exactly infer 

γ . These results are also presented in Table 2. These results show that the sensitivity 

analysis method performs well if the difference between γr and γt is rather small. For 

example, the rejection rate for 5% level tests is 0.069 if γr = 0.008 and γt = 0.010. This 

is only a small over-rejection of the null-hypothesis. However if the difference between 

γr and γt becomes large, there are as expected substantial size distortions. 

To summarize, the Monte Carlo simulations have confirmed that the derived proper­

ties of the sensitivity analysis method are correct for both large and small sample sizes. 

They further show that existent inference methods run into problem when the number 

of groups is very small. Finally, the results show that the sensitivity analysis method is 

applicable, even if the number of groups is very small, as long as the size of the within 

group correlation can be reasonably assessed. The two applications provided in the next 

section show that this can often can be done. 

6 Applications16 

6.1 Application 1: Disability benefits 

Meyer et al. (1995)17 (MVD) study the effects of an increase in disability benefits (work­

ers compensation) in the state of Kentucky. Workers compensation programs in the USA 

are run by the individual states. Here we describe some of the main features of the system 

in Kentucky. A detailed description is found in MVD. The key components are payments 

for medical care and cash benefits for work related injuries. MVD focus on temporary 

benefits, the most common cash benefit. Workers are covered as soon as they start a job. 

The insurance is provided by private insurers and self-insurers. The insurance fees that 

16This section presents two different applications. In order to focus on the application of the sensitivity 
analysis approach we re-examine some basic results from the two studies. I should however point out that 
a more elaborated analysis is performed in both studies is. It includes estimating for different sample, 
different outcomes and including additional control variables. However the basic regressions re-examined 
here constitute an important part of both studies. 

17This data has also been reanalyzed by Athey & Imbens (2006). They consider non-parametric estimation, 
and inference under the assumption of no cluster effects. Meyer et al. (1995) also consider a similar reform 
in Michigan. 
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employers pay are experience rated. If eligible the workers can collect benefits after a 

seven day waiting period, but benefits for these days can be collected retroactively if the 

duration of the claim exceeds two weeks. The claim duration is decided mainly by the 

employee and his or her doctor, and there is no maximum claim duration. 

The replacement rate in Kentucky before 1980 was 662
3% and the benefits could be 

collected up to a maximum of $131 per week. The reform as of July 15, 1980, analyzed 

by MVD increased the maximum level to $217 per week: a 66% increase or 52% over 

one year in real terms.18 The replacement rate was left unchanged. Thus workers with 

previous high earnings (over the new maximum level) experience a 66% increase in their 

benefits, while the benefits for workers with previous low earnings (below the old ceiling) 

were unchanged. This creates a natural treatment group (high earners) and a natural con­

trol group (low earners). MVD analyze the effect of the increase using a DID estimator, 

which contrasts the difference in injury duration between before and after the reform for 

the treatment group and the control group. 

The upper panel of Table 3 restates MVD’s results for the outcome mean log injury 

duration, taken from their Table 4.19 Column 1-4 present the pre-period and post-period 

averages for the treatment and control group, Column 5 and 6 the difference between 

the pre- and post-period for the two groups, and Column 7 present the DID estimate. 

The DID estimate of the treatment effect is statistically significant and suggests that the 

increased benefits increased the injury duration by about 19%. MVD ignores the cluster­

sample issue and use regular OLS standard errors. Thus their standard errors are biased 

downwards if there are any cluster effects. It is also not possible to perform Donald & 

Lang (2007) inference, since the model is just-identified.20 It is also clear that MVD 

study an interesting question, and we ultimately want to learn something from the reform 

in Kentucky. The study by MVD is therefore a good example where sensitivity analysis 

should be applied. 

18For calculations see Meyer et al. (1995) p 325.
 
19The terminology ”mean” is not totally accurate. The outcome used by MVD is censored after 42 months.
 

However, at this duration only about 0.5% of the cases are still open. MVD therefore sets all ongoing spells 
to 42 months. Meyer et al. (1995) also consider other outcome variables and note that their results are quite 
sensitive to the choice of specification. Here, the focus is on their preferred outcome. 

20The model includes four variables: a constant, a group dummy, a time dummy and a group time interaction. 
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Table 3: Sensitivity analysis estimates for application 1 on disability benefits 

Treated Non-Treated Differences DID 
(High earnings) (Low earnings) 
Pre Post Pre Post [2-1] [4-3] [5-6] 

period Period period Period 
[1] [2] 3] [4] [5] [6] [7] 

Log duration 1.38 1.58 1.13 1.13 0.20 0.01 0.19 
(0.04) (0.04) (0.03) (0.03) (0.05) (0.04) (0.07) 

Sample Size 1,233 1,161 1,705 1,527 

Sensitivity Analysis: 
γc - 5 % [10%] 0.0026 - 0.00067 

√
γc ∗ σε : - 5 % [10%] 

[0.0041] 
0.0629 -

[0.00127] 
0.0335 

[0.0787] [0.0461] 

Notes: The results in the upper panel are taken from Meyer et al. (1995), their standard errors in parentheses. The 
outcome is mean log duration, censored after 42 months. The sensitivity analysis results in the lower panel is own 
calculations. γc is calculated by numerically solving for γ in equation (16), for the specified significance level. 

Let us start with the basic sensitivity analysis, applicable under the most restrictive 

assumptions, namely that the cluster-effects (group-time specific shocks) are uncorrelated 

between the groups as well as uncorrelated over time. The sensitivity analysis presented 

in Section 3 is then applicable. The γc values for 5% level (10-% in brackets) under these 

assumptions are reported in the lower panel of Table 3. We report cut-off values for both 

the difference estimates as well as the DID estimate.21 The 5% level cut-off value for the 

DID estimate is 0.00067. The meaning of this estimate is that the variance of the group­

time shocks is allowed to be 0.00067 times the variance of the unobserved individual 

heterogeneity before the treatment effect is rendered insignificant. At first glance it may 

seem difficult to assess whether this is a unreasonably large value. Table 3 therefore also 

reports these values recalculated into cut-off standard deviations for the group-time shocks 

(
√

γcσε ). These cut-off values show that the standard deviation of the group-shocks is 

allowed to be 0.034 on 5% level (0.046 10% level). Column 1 and Column 3 show that 

the mean of the outcome log injury duration are 1.38 and 1.13 for the treatment group 

and the control group before the reform. Compared to these means the allowed standard 

deviation of the shocks is quite large. Furthermore, Column 6 show that the change in 

injury duration in the control group between the two time periods is 0.01. Even if if does 

21Notice that no cut-off values are reported for the control group since the difference for this group is already 
insignificant using the regular standard errors. 
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not offer conclusive evidence, it suggests that the variance of the group-time shocks is 

small. Taken together it is therefore fair to say that there is a statistically significant effect 

on the injury duration. 

Next consider an extended sensitivity analysis, which allows for correlation over time 

in the group-time shocks. In order to take this into account, replace the assumption of no 

autocorrelation in the cluster effects with an assumption of first order autocorrelation in 

these shocks. This gives two sensitivity parameters, γ and κ , measuring the size of the 

cluster effects and the correlation over time in these cluster effects. Since MVD work 

with repeated cross-section data we can directly apply the results in subsection 4.1. The 

results from this exercise are presented in Figure 1, displaying cut-off values at 10% level 

for standard deviation of the group-specific time for a range of κ values. In this case 

with two time periods, a positive autocorrelation in the group-time shocks increases the 

cut-off values for γ . This extended sensitivity analysis therefore ultimately strengthening 

the conclusion that there is a statistical significant effect on the injury duration from an 

increase in disability benefits. 

Figure 1: Two parameter sensitivity analysis for the DID estimates in Meyer et al. (1995). Autocorre­
lation in group-time shocks and allowed standard deviation of the group-time shocks. 

6.2 Application 2: Earned income tax credit 

Eissa & Liebman (1996)(EL) study the impact of an expansion of the Earned income tax 

credit (EITC) in the USA on the labor force participation of single women with children. 

EITC was introduced in 1975. Currently a taxpayer needs to meet three requirements in 
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order to be eligible for the tax credit. The taxpayer need to have positive earned income, 

the gross income must be below a specified amount, and finally the taxpayer needs to 

have a qualifying child.22 The amount of the credit is decided by the taxpayers earned 

income. The credit is phased in at a certain rate for low incomes, then stays constant 

within a certain income bracket, and is phased out at a certain rate for higher earnings. 

High earners are therefore not entitled to any EITC tax credit. 

EL study the effects of the 1987 expansion of EITC in USA on labor supply. The re­

form changed EITC in several ways. The main changes were increases in the subsidy rate 

for the phase-in of the credit, an increase in the maximum income to which the subsidy 

rate is applied, and a reduction in the phaseout rate. This resulted in an increase in the 

maximum credit from $550 to $851, and made taxpayers with income between $11,000 

and $15,432 eligible for the tax credit. All these changes made EITC more generous and 

the treatment consist of the whole change in the budget constraint. Obviously the reform 

only changes the incentives for those eligible for the tax credit. One key requirement is 

the presence of a qualifying child in the family. A natural treatment group is then sin­

gle women with children, and a natural control group is single women without children. 

However, some single women with children are high income earners and thus are most 

likely to be unaffected by the EITC reform. EL therefore further divides the sample by 

education level. Here we report the results for all single women and single women with 

less than high-school education, from now on referred to as low educated. 

EL use CPS data to estimate the treatment effect. Their outcome variable is an indica­

tor variable taking the value one if the annual hours worked is positive. Similarly to MVD 

they use a DID approach, which contrast the differences between the post- and pre-reform 

period labor supply for the treatment and the control group. The main results from their 

analysis are presented in the upper panel of Table 4, taken from Table 2 in EL. The results 

from the DID analysis, presented in Column 7, suggest a positive and statistically signifi­

cant effect of the EITC expansion in both specifications. If all single women are used, EL 

estimates that the expansion increased the labor force participation with 2.4 percentage 

points (4.1 percentage points for low educated single women). 

22A qualifying child is defined as a child, grandchild, stepchild, or foster child of the taxpayer. 
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Table 4: Sensitivity analysis estimates for application 2 on earned income tax credit 

Treated Non-Treated Differences DID 
(with children) (without children) 
Pre Post Pre Post [2-1] [4-3] [5-6] 

period Period period Period 
Sample [1] [2] 3] [4] [5] [6] [7] 

All 0.729 0.753 0.952 0.952 0.024 0.000 0.024 
(0.004) (0.004) (0.001) (0.001) (0.006) (0.002) (0.006) 

Low education 0.479 0.497 0.784 0.761 0.018 -0.023 0.041 
(0.010) (0.010) (0.010) (0.009) (0.014) (0.013) (0.019) 

Sample Size 
All 20,810 46,287 
Low education 5396 3958 

Sensitivity Analysis: 
γc - 5 % [10%] 
All 0.00030 - 0.00022 

[0.00048] [0.00034] 
Low education - - 0.00005 

√
γc ∗ σε : - 5 % [10%] 

[0.00031] 

All 0.0075 - 0.0053 
[0.0094] [0.0066] 

Low education - - 0.0043 
[0.0080] 

Notes: The results in the upper panel are taken from Eissa & Liebman (1996), their standard errors in parentheses. 
The outcome is an indicator variable taking the value one is hours worked is positive, and zero otherwise. Two different 
samples, all single women and single women with less than high school. The sensitivity analysis results in the lower 
panel is own calculations. γc is calculated by numerically solving for γ in equation (16), for the specified significance 
level. The calculations are made under the assumption that the sample size is the same before and after the reform in 
the two groups. 

The inference issues are very similar to those of the MVD study. In the presence of any 

group-time effects the standard errors presented by EL are biased downwards. We have 

two DID models, which both are just-identified, making sensitivity analysis an attractive 

alternative. I first consider sensitivity analysis under assumption of no autocorrelation in 

the group-time shocks, and then we allow for first order autocorrelation in these shocks. 

The results from the basic sensitivity analysis is presented in the lower panel of Table 

4. The 5 percent, γc, cut-off value for the two DID estimates is 0.00022 for the full 

sample and 0.00005 for the sample of low educated mothers. It implies that the variance 

of the group-time shocks is allowed to be 0.0002 and 0.00005 times the variance of the 

unobserved individual heterogeneity. It further means that the standard deviation of the 

group-time shocks is allowed to be about 0.005 for the full sample and about 0.004 for 

the smaller sample of low educated mothers. In other words even very small shocks 
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render the treatment effect insignificant. It can be compared with the mean labor force 

participation before the reform, which was 0.73 for all single women with children and 

0.48 for low educated single mothers. Single women with children are after all a quite 

different group compared to single women without children. We can therefore expect 

quite large group-time specific shocks. Furthermore, there is a large drop of 0.023 in 

the labor force participation for the control group of low educated single women without 

children. It therefore seems unreasonable to believe that the variance of shocks is smaller 

than the variance implied by the cut-off values. 

Figure 2: Two parameter sensitivity analysis for the DID estimates in Eissa & Liebman (1996). Left 
panel: the full sample of single women and right panel: the sample of low educated single women. 
Autocorrelation in group-time shocks and allowed standard deviation of the group-time shocks. 

Next consider allowing for first order autocorrelation in the group-time effects. As 

in the previous application we use the results in subsection 4.1 for repeated cross-section 

data. The cut-off standard deviation of the group shocks at 10% level is displayed for a 

range of κ values in Figure 2. The left graph display the cut-off values for the full sample 

and the right graph displays the cut-off values for the smaller sample of low educated 

mothers. Introducing autocorrelation in the two group two time period case increases the 

allowed variance of the group specific shocks. However, the variance is still only allowed 

to be very small before the estimates are rendered insignificant. We therefore conclude 

based on the estimates presented, that there is no conclusive evidence of any important 

labor supply effects from the EITC expansion in 1987. 
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7 Conclusions 
Many policy analyses rely on variation at the group level to estimate the effect of a policy 

at the individual level. A key example used throughout this paper is the difference-in­

differences estimator. The grouped structure of the data introduces correlation between 

the individual outcomes. This clustering problem has been addressed in a number of 

different studies. In this paper I have introduced a new method of perform inference when 

faced with data from only a small number of groups. The proposed sensitivity analysis 

approach is even able to handle just-identified models, including the often used two group 

two time period difference-in-differences setting. Consider for example having data for 

men and women, for two cities or for a couple of villages. 

The key feature of the proposed sensitivity analysis approach is that all focus is placed 

on the size of the cluster effects, or simply the size of the within group correlation. Pre­

viously in the applied literature a lot of discussion concerned no within group correlation 

against non-zero correlation, since these two alternatives imply completely different ways 

to perform inference. This is a less fruitful discussion. In the end it is the size of the clus­

ter effects which matters. In some cases it is simply not likely to believe that an estimated 

treatment effect is solely driven by random shocks, since it would require these shocks to 

have a very large variance. The sensitivity analysis formalizes this discussion by assessing 

how sensitive the standard errors are to within-group correlation. 

In order to demonstrate that our method really can distinguish a causal effect from 

random shocks the paper offered two different applications. In both applications key re­

gressions are based on just-identified models. The sensitivity analysis results indicate that 

the conclusion from the first study that the treatment effect is significant is not sensitive 

to departure from the independence (no-cluster) assumption, whereas the results of the 

second study are sensitive to the same departure and its conclusion cannot therefore be 

trusted. More precisely in one of the applications it is not likely that the group effects 

are so large in comparison with the individual variation that it would render the estimated 

treatment effect insignificant. In the second application even small within group correla­

tion renders the treatment effect insignificant. 
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Besides offering a new method of performing inference, this paper contributes by 

introducing a new type of sensitivity analysis. Previously in the sensitivity analysis liter­

ature, the sensitivity of the point estimate has been investigated. This paper shows that 

sensitivity analysis with respect to bias in the standard errors may be equally important. 

This opens a new area for future sensitivity analysis research. 
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Appendix 
Derivation of equation 9. 

Start with equation (8) 

N − K
V =	 (X �X)−1X �CXE(V̂ ).

N − tr[(X �X)−1X �CX ]

First, consider (X �X)−1X �CX . Under assumption of xigt = xgt we have 

⎤⎡⎤⎡ 
lg1x

X =
 

⎢⎢⎢⎢⎢⎢⎣
 

x1 

x2 
.
 .
 .
 

⎥⎥⎥⎥⎥⎥⎦
 

xg = 

⎢⎢⎢⎢⎢⎢⎣
 

g1 ⎥⎥⎥⎥⎥⎥⎦
 

lg2x� g2 
.
 .
 .
 

xG lgT x� gT 

, where lgt is a column vector of ngt ones, G is the number of groups and T is the number 

of time periods. If E(cgt cg�t ) = 0 for all t and all g �= g�, and E(cgt cgt � ) = 0 for all g and 

all t �= t �, we further have ⎤⎡ ⎢⎢⎢⎣ 

⎤⎡ ⎢⎢⎢⎣ 

C1	 Cg10
 0
. . .
 . . .
 ⎥⎥⎥⎦
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. . .
 . . .
C =
 Cg =.
 . .
 .
 . .
.
 .
.
 .
 .
 .
 

0 . . . CG 0 . . . CgT 

with
 ⎤⎡ ⎢⎢⎢⎢⎢⎢⎣
 

1 p . . .	 p 
. .p 1	 . 

. .. .. . p 

p . . . p 1 

⎥⎥⎥⎥⎥⎥⎦
 

= [(1 − p)Igt + plgt lgt 
� ]Cgt = 

cHere Igt is a unit matrix of order ngt , and p ≡ σ2 
. It follows that 

σ2+σ2
c ε 

X �X = ∑∑ngt xgt xgt	 (A.1) 
g t 
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� � 

and 

X �CX = ∑∑ xgt lgt
� Cgt lgt xgt . (A.2) 

g t 

and ⎡ ⎤ 

xgt lgt
� Cgt lgt xgt = xgt lgt 

� 

⎢⎢⎢⎢⎢⎢⎣
 

1 +(ngt − 1)p 

1 +(ngt − 1)p 
. . .
 

1 +(ngt − 1)p
 

⎥⎥⎥⎥⎥⎥⎦
 

x
gt = xgt ngt [1 +(ngt − 1)p]xgt (A.3)
 

Combining equation (A.1), (A.2) and (A.3) gives
 

X �XX �CX = (∑ 
g 

∑
ngt xgt xgt )
−1

∑∑ ngt τgt xgt xgt (A.4) 
t g t 

with 

τgt = 1 +(ngt − 1)p. 

Imposing ngt = n we have equation (A.4) as 

X �XX �CX = τIK (A.5) 

with 

τ = 1 +(n − 1)p. 

Next consider N−K : using the result in equation (A.5) gives N−tr[(X �X)−1X �CX ] 

tr[(X �X)−1X �CX ] = Kτ. (A.6) 

Substituting equation (A.5) and equation (A.6) into equation (8) and imposing ngt = n 

(then N = nGT ) gives 
nGT − K

V = E(V̂ )τ 
nGT − Kτ 

, 

i.e. equation (9). 
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Derivation of equation 18. 

Again start with equation (8) 

N − K
V = (X �X)−1X �CXE(V̂ ).

N − tr[(X �X)−1X �CX ]

First, consider (X �X)−1X �CX . Remember that C is defined as 

E(ee�) = σ2C, 

where e is a vector collecting all eigt = cgt + εigt , and σ2 ≡ 1/Ntr(ee�). In order to ex­

press C in terms of κ and γ use the well know properties of an AR(1) process (under the 

assumption of |κ| < 1), and the definition of σd 
2 ≡ γσε 

2 from section 4.1. This gives 

σd 
2 

γσε 
2 

σ
2 = E(cgt cgt ) = = (A.7)c 1 − κ2 1 − κ2 

and if t �= t �
 

σd 
2 

= κ |t−t �| γσε 
2
 

Cov(cgt cgt � ) = E(cgt cgt � ) = κ |t−t �| (A.8)
1 − κ2 1 − κ2 . 

Thus if i = j 

γσε 
2 1 + γ − κ2 

E(eigt e jgt ) = σ2 = σ2 + σ2 = + σ2 = σ2 . (A.9)c ε ε ε1 − κ2 1 − κ2 

Further, using (A.7) and (A.9), if i � j= 

γσε 
2 

= σ2 γ
E(eigt e jgt ) = σ2 = (A.10)c 1 − κ2 1 + γ − κ2 

and using (A.8) and (A.9), if t �= t � 

σ2 
E(eigt e jgt � ) = κ |t−t �| d = σ2

κ
|t−t �| γ 

(A.11)
1 − κ2 1 + γ − κ2 . 
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= g� 

E(eigt e jg�t � ) = 0 (A.12) 

Then under (A.9), (A.10), (A.11) and (A.12) 

and under assumption E(cgt cgt � ) = 0, if g �
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0 . . . CG C1T . . . CT T 

with if t = t � 
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� ] (A.14)
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Using equation (A.1), (A.16) and (A.17) gives 

X �XX �CX = (∑∑ngt xgt xgt )
−1 (A.18) 

g t 
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∑
 (κ |t−t �| � �ngt ngt � xgt xgt � )+ ngt [1 +(ngt − 1)pc]xgt xgt ) 
g t t � �=t 

Imposing ngt = n, substituting for pc = γ and simplifying we have equation 1+γ−κ2 

(A.18) as 
γ γ

X �XX �CX = (1 +(n − 1) )IK + n H (A.19)
1 + γ − κ2 1 + γ − κ2 

with 

H = (
 ∑∑ xgt xgt )
−1

∑
∑
∑
 (κ |t−t �|xgt xgt � ). 
g t g t t � �=t 

Next consider N−K : using the results in (A.19) gives N−tr[(X �X)−1X �CX ] 

K
γ γ 

tr[(X �X)−1X �CX ] = K(1 +(n − 1)
1 + γ − κ2 )+ n


1 + γ − κ2 ∑
Haa. (A.20) 
a=1 

where Haa is the element in the ath column and ath row of H. 

Substituting equation (A.19) and equation (A.20) into equation (8) and noting that 

under ngt = n we have N = nGT gives 

nGT − K
Vaa = E(V̂aa) γ γnGT − K(1 +(n − 1)1+γ−κ2 )+ n1+γ−κ2 ∑a

K 
=1 Haa 

γ γ
(1 +(n − 1) )+ n Haa1 + γ − κ2 1 + γ − κ2 

Both the first and the second part of this expression, the two sources of bias in the stan­

dard errors are greater than one. However, it will be highly dominated by (1 + (n − 
γ γ1)1+γ−κ2 )IK + n1+γ−κ2 Haa. Thus we have 

γ γ
Vaa ≈ E(V̂aa)(1 +(n − 1) )+ n Haa.1 + γ − κ2 1 + γ − κ2 

i.e. equation (18). 

Derivation of equation 22. 

Again start with equation (8) 

N − K
V = (X �X)−1X �CXE(V̂ ).

N − tr[(X �X)−1X �CX ]
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Using the definition σ2 ≡ γσε 
2 from section 4.1, if i = j we have c 

E(eigse jgs) = σ2 = σ2 + σ2 = σε 
2(1 + γ). (A.21)c ε 

Using this and under assumption E(cgt cg�t ) = 0 for all t, and the multiway clustering 

assumptions if s � , it gives if = s� then E(cgscg�s� ) = 0 and if s = s� then E(cgscg�s� ) = ξ σ2 
c 

i � j= 

E(eigse jgs) = σc 
2 = γσε 

2 = σ2 γ 
(A.22)

1 + γ 

and if i � j and g = g� holds= 

E(eigse jg�s) = ξ σc 
2 = ξ γσε 

2 = σ2
ξ

γ 
(A.23)

1 + γ 

and if s �= s� 

E(eigse jg�s) = 0. (A.24) 

Thus under (A.21), (A.22), (A.23) and (A.24) ⎤⎡⎤⎡ ⎢⎢⎢⎣ 

C1 

0 . . . CS C1Gs . . . CGsGs 

with if g = g� 

γ γ
Cgg� = [(1 − )Ig + lgls] (A.26)

1 + γ 1 + γ 

and if g �= g� 

Cgg� = ξ
γ 

lglg
� . (A.27)

1 + γ 

Here Gs is the number of groups belonging to group-cluster s. Retain the definition p = 

0
 C11 . . . CGs1. . .
 ⎥⎥⎥⎦
 

⎢⎢⎢⎣
 

⎥⎥⎥⎦

. . .
 . . .
C =
 Cs = (A.25)
.
 . .
 .
 . .
.
 .
.
 .
 .
 .
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� � � 

�

� � � 

� 

� � 

� 

γ 
1+γ , and define lgs as a column vector of ngs ones. Then, using equation (A.26), if g = g� 

⎤⎡ 
1 +(ngs − 1)p 

1 +(ngs − 1)p 
⎢⎢⎢⎢⎢⎢⎣
 

⎥⎥⎥⎥⎥⎥⎦
 

xgsl� Cgglgsx = xgsl� gs gs gs = xgsngs[1 +(1 − ngs)p]xgs (A.28)
x
 gs,. . .
 

1 +(ngs − 1)p
 

= g�and, using equation (A.27), if g
 ⎤
⎡
 ⎢⎢⎢⎢⎢⎢⎣
 

ng�s p 

ng�s p 
. . . 

ng�s p 

⎥⎥⎥⎥⎥⎥⎦
 

xgsl� Cgg� lg�sxg�s = ξ xgsl� gs gs g�s = ξ xgt ngs pcng�sx (A.29)
x
 g�s 

Using equation (A.1), (A.28) and (A.29) gives
 

)−1
∑∑X �XX �CX = ( (A.30)
ngsxgsxgs

s g 

(
 ∑∑∑ (ξ ngsng�sxgsxg�s)+ ngs[1 +(1 − ngs)p]xgsx )
gs
s g g� �=g 

Imposing ngs = n, substituting for p = 1+
γ

γ and simplifying we have equation (A.30) as 

γ γ
X �XX �CX = (1 +(n − 1) )IK + n ξ M, (A.31)

1 + γ 1 + γ 

with 

M = (
 ∑∑ xgsx� )−1
gs ∑∑∑ (xgsxg�s).
 

s g s g g� �=g 

Next consider N−K , using the results in (A.31) gives N−tr[(X �X)−1X �CX ] 

K
γ γ 

tr[(X �X)−1X �CX ] = K(1 +(n − 1) ∑
ξ
)+ n
 Maa. (A.32)
1 + γ
 1 + γ
 a=1 

where Maa is the element in the ath column and ath row of M. 
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Substituting equation (A.31) and equation (A.32) into equation 8 and noting that under 

ngt = n we have N = nGT gives 

nGT − K
Vaa = E(V̂aa) γ γnGT − K(1 +(n − 1)1+γ )+ n1+γ

ξ ∑K
a=1 Maa 

γ γ
(1 +(n − 1) + n ξ Maa).1 + γ 1 + γ 

Both the first and the second part of this expression, the two sources of bias in the standard 

errors, are greater than one. However, it will be highly dominated by (1 +(n − 1)1+
γ

γ + 

n1+
γ

γ
ξ Maa). Thus we have 

γ γ
Vaa ≈ V̂aa(1 +(n − 1) + n ξ Maa)1 + γ 1 + γ 

i.e equation (22). 
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