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Abstract

This paper considers the definition and identification of treatment
effects on conditional transition probabilities. We show that even
under sequential random assignment only the instantaneous average
treatment effect is point identified. Because treated and control units
drop out at different rates, randomization only ensures the compara-
bility of treatment and controls at the time of randomization, so that
long run average treatment effects are not point identified. Instead
we derive informative bounds on these average treatment effects. Our
bounds do not impose (semi)parametric restrictions, as e.g. propor-
tional hazards, that would narrow the bounds or even allow for point
identification. We also explore various assumptions such as mono-
tone treatment response, common shocks and positively correlated
outcomes.

Keywords: Partial identification, duration model, randomized experi-
ment, treatment effect
JEL classification: C14, C41

∗We are grateful for helpful suggestions from John Ham, Per Johansson, Michael Svarer,
Gerard van den Berg, and seminar participants at IFAU-Uppsala, Uppsala University,
University of Aarhus and University of Mannheim. Financial support of the Tom Hedelius
Foundation and the NSF grants SES 0819612 and 0819638 is acknowledged.

†University of Southern California, ridder@usc.edu.
‡IFAU-Uppsala and UCLS, johan.vikstrom@ifau.uu.se.

1



1 Introduction

We consider the effect of an intervention where the outcome is a transition
from an initial to a destination state. The population of interest is a co-
hort of units that are in the initial state at the time origin. Treatment is
assigned to a subset of the population either at the time origin or at some
later time. Initially we assume that the treatment assignment is random.
One main point of this paper is that even if the treatment assignment is
random, only certain average effects of the treatment are point identified.
This is because the random assignment of treatment only ensures compa-
rability of the treatment and control groups at the time of randomization.
At later points in time treated units with characteristics that interact with
the treatment to increase/decrease the transition probability relative to sim-
ilar control units leave the initial state sooner/later than comparable control
units, so that these characteristics are under/over represented among the
remaining treated relative to the remaining controls and this confounds the
effect of the treatment.

The confounding of the treatment effect by selective dropout is usually
referred to as dynamic selection. Existing strategies that deal with dynamic
selection rely heavily on parametric and semi-parametric models. An ex-
ample is the approach of Abbring and den Berg (2003) who use the Mixed
Proportional Hazard (MPH) model (their analysis is generalized to a multi-
state model in Abbring, 2008). In this model the instantaneous transition
or hazard rate is written as the product of a time effect, the effect of the
intervention and an unobservable individual effect. As shown by Elbers and
Ridder (1982) the MPH model is nonparametrically identified, so that if the
multiplicative structure is maintained, identification does not rely on arbi-
trary functional form or distributional assumptions. A second example is the
approach of Heckman and Navarro (2007) who start from a threshold cross-
ing model for transition probabilities. Again they establish semi-parametric
identification, although their model requires the presence of additional co-
variates besides the treatment indicator that are independent of unobservable
errors and have large support.

In this paper we ask what can be identified if the identifying assumptions
of the semi-parametric models do not hold. We show that, because of dy-
namic selection, even under (sequential) random assignment we cannot point
identify most average treatment effects of interest. However, we derive sharp
bounds on various non-identified treatment effects, and show under what
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conditions they are informative. Our bounds are general, since beyond ran-
dom assignment, we make no assumptions on functional form and additional
covariates, and we allow for arbitrary heterogenous treatment effects as well
as arbitrary unobserved heterogeneity. The bounds can also be applied if the
treatment assignment is unconfounded by creating bounds conditional on the
covariates (or the propensity score) that are averaged over the distribution
of these covariates (or propensity score). Besides these general bounds we
show that additional (weak) assumptions like monotone treatment response
and positively correlated outcomes tighten the bounds considerably.

There are many applications in which we are interested in the effect of
an intervention on transition probabilities/rates. The Cox (1972) partial
likelihood estimator is routinely used to estimate the effect of an intervention
on the survival rate of subjects. Transition models are used in several fields.
Van den Berg (2001) surveys the models used and their applications. These
models also have been used to study the effect of interventions on transitions.
Examples are Ridder (1986), Card and Sullivan (1988), Bonnal, Fougere, and
Serandon (1997), Gritz (1993), Ham and LaLonde (1996), Abbring and den
Berg (2003), and Heckman and Navarro (2007). A survey of models for
dynamic treatment effects can be found in Abbring and Heckman (2007).

An alternative to the effect of a treatment on the transition rate is its
effect on the cdf of the time to transition or its inverse, the quantile function.
This avoids the problem of dynamic selection. Fredriksson and Johansson
(2008) have shown how the effect on the cdf, that is the unconditional sur-
vival probability, can be identified even if the treatment can start at any
point in time. From the effect on the cdf we can recover the effect on the av-
erage duration, but we cannot obtain the effect on the conditional transition
probabilities, so that the effect on the cdf is not informative on the evolution
of the treatment effect over time.

There are good reasons why we should be interested in the effect of an in-
tervention on the conditional transition probability or the transition/hazard
rate. First, there is the close link between the hazard rate and economic
theory (Van den Berg (2001)). Economic theory often predicts how the haz-
ard rate changes over time. For example, in the application to a job bonus
experiment considered in this paper labor supply and search models predict
that being eligible for a bonus if a job is found, increases the hazard rate from
unemployment to employment. According to these models there is a positive
effect only during the eligibility period, and the effect increases shortly before
the end of the eligibility period. The timing of this increase depends on the
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arrival rate of job offers and is an indication of the control that the unem-
ployed has over his/her reemployment time. Any such control has important
policy implications. This can only be analyzed by considering how the effect
on the hazard rate changes over time.

The evolution of the treatment effect over time is of key interest in differ-
ent fields. For instance, consider two medical treatments that have the same
effect on the average survival time. However, for one treatment the effect
does not change over time while for the other the survival rate is initially
low, e.g. due to side effects of the treatment, while after that initial period
the survival rate is much higher. Research on the effects of active labor mar-
ket policies (ALMP), often documents a large negative lock-in effect and a
later positive effect once the program has been completed, see e.g. the sur-
vey by Kluve, Card, Fertig, Gra, Jacobi, Jensen, Leetmaa, Nima, Patacchini,
Schmidt, Klaauw, and Weber (2007). In other cases a treatment consist of
a sequence of sub-treatments assigned at pre-specified points in time to the
survivors in the state. If one is interested in disentangling the sub-treatment
effects, the treatment effect over the spell has to be investigated.

In section 2 we define the treatment effects that are relevant if the outcome
is a transition. Section 3 discusses their point or set identification in the case
that the treatment is randomly assigned. This requires us to be precise on
what we mean by random assignment in this setting. In section 4 we explore
additional assumptions that tighten the bounds. Section 5 illustrates the
bounds for a job bonus experiment. Section 6 concludes.

2 Treatment effects if the outcome is a tran-

sition

2.1 Parametric outcome models

To set the stage for the definition of a treatment effect on a transition, we
consider the effect of an intervention in the Mixed Proportional Hazards
(MPH) model. The MPH model specifies the individual hazard or transition
rate θ(t, d(t), V )

θ(t, d(t), V ) = λ(t)γ(t− τ, τ)d(t)V

with t the time spent in the origin state, λ(t), the baseline hazard, d(t), the
treatment indicator function at time t, and V , a scalar nonnegative unob-
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servable that captures population heterogeneity in the hazard/transition rate
and has a population distribution with mean 1. If treatment starts at time
τ then d(t) = I(t > τ), i.e. we assume that treatment is an absorbing state.
The nonnegative function γ(t− τ, τ) captures the effect of the intervention,
an effect that depends on the time until the treatment starts τ and the time
treated t − τ . Finally, although γ is common to all units, the effect of the
intervention differs between the units, because it is proportional to the in-
dividual V . The ratio of the treated and non-treated transition rates for a
unit with unobservable V is γ(t− τ, τ) for t > τ , so that in the MPH model
γ(t − τ, τ) is the proportional effect of the intervention on the individual
transition rate.

Let d(t) = {d(s), 0 ≤ s ≤ t} be the treatment status up to time t. The
MPH model implies that the population distribution of the time to transition
T d(T ) where the superscript is the relevant treatment history1, has density

f(t|d(t)) = EV

[
V λ(t)γ(t− τ, τ)d(t)e−

∫ t
0 λ(s)γ(s−τ,τ)d(s)V ds

]
and distribution function

F (t|d(t)) = 1− EV

[
e−

∫ t
0 λ(s)γ(s−τ,τ)d(s)V ds

]
.

The hazard/transition rate given the treatment history is

θ(t|d(t)) = λ(t)γ(t− τ, τ)d(t)EV

[
V |T d(T ) ≥ t

]
.

To define treatment effects in the MPH model we compare groups with
different treatment histories d(t). Let d0(t) and d1(t) be two such histories.
We can compare either the average time-to-transition distribution functions
in t, i.e. F (t|d0(t)) and F (t|d1(t)), or the average transition rates in t, i.e.
θ(t|d0(t)) and θ(t|d1(t)). The comparison of the average transition rates is
conditional on survival in the initial state up to time t and the comparison of
the average distribution functions is not conditional on survival. As a conse-
quence if we compare distribution functions we average over the population
distribution of V , but if we compare transition rates we average over the
distribution of V for the subpopulation of survivors up to time t.

1In this case the treatment history is fully characterized by τ , but we use the more
general notation to accommodate other dynamic treatments.
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Let us take d0(t) = 0, i.e. the unit is in the control group during [0, t],
and d1(t) such that treatment starts at time τ . Then F (t|d1(t)) > F (t|d0(t))
if and only if

1∫ t

τ
λ(s)ds

∫ t

τ

λ(s)γ(s− τ, τ)ds > 1 (1)

i.e. if a λ weighted average of the effect on the individual transition rate is
greater than 1. This time average hides the change in the treatment effect
over the spell. Note that the comparison of the distribution functions is not
confounded by differences in the distribution of the unobservable V between
the treatment and control groups. However, if we compare the transition
rates in t > τ

θ(t|d0(t)) = λ(t)EV

[
V |T d0(T ) ≥ t

]
and

θ(t|d1(t)) = λ(t)γ(t− τ, τ)EV

[
V |T d1(T ) ≥ t

]
then because

EV

[
V |T d0(T ) ≥ t

]
> EV

[
V |T d1(T ) ≥ t

]
if and only if (1) holds, we have that under that condition

θ(t|d1(t))
θ(t|d0(t))

< γ(t− τ, τ).

Therefore if the intervention increases the transition rate on average (as in
(1), then the ratio of the average treated and control transition rates is
strictly smaller than that of the individual treated and control transition
rates. If the intervention decreases the transition rate on average, then the
ratio of the average treated and control transition rates is strictly larger than
that of the individual rates. Hence, the effect of the intervention on the
transition rate is confounded by its differential effect on the distribution of
the unobservable among the treated and controls. The intuition behind this
result is that the difference between the treated and control transition rates
is proportional in V and this difference determines the survival probability.
Therefore if (1) holds, for all values of V the survival probability is smaller
for the treated than for the controls and the difference is largest for large
values of V . Therefore the average V among the survivors will be smaller
for the treated than for the controls and this makes that the comparison
of the average transition rates of the treated and controls is confounded by
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the dynamic selection. This dynamic selection or survivor bias is not just
a feature of the MPH model. It is present in any population where the
treatment and the individual characteristics interact to increase or decrease
the transition probability.

Parametric and semi-parametric models for the transition can be used
to correct for the survivor bias in the average treatment effect. In a fully
specified MPH model we specify a distribution for V , so that we can esti-

mate EV

[
V |T d0(T ) ≥ t

]
and EV

[
V |T d1(T ) ≥ t

]
to obtain the correction fac-

tor. The MPH model is nonparametrically identified so that the parametric
assumptions can be relaxed. However, that requires that we maintain the
multiplicative specification with a proportional unobservable. As argued by
e.g. Van den Berg (2001) economic models for the hazard rate usually are
not multiplicative. In general, such models have multiple unobservables that
enter in a nonseparable way. Other (semi)parametric models for dynamic se-
lection as that of Heckman and Navarro (2007) also require strong maintained
assumptions, i.e. the inclusion of additional covariates that are assumed to
be independent of the unobservables (and this assumption cannot be justi-
fied by a reference to randomization) and that have large support. Given
the strong assumptions that are needed to correct for dynamic selection us-
ing parametric or semi-parametric models, it is important to know whether
the causal effect of a treatment can be identified without these maintained
assumptions.

2.2 Average treatment effect on transitions

In any definition of the causal effect of a treatment on the transition prob-
ability/rate we must account for dynamic selection. If we do not specify
a model for the transition probability/rate we need to find another way to
maintain the comparability of the treatment and control groups over the
spell. The approach that we take in this paper is to consider average transi-
tion probabilities/rates where the average is taken in the same population for
both treated and controls (or in general for different treatment arms). The
(semi)parametric models implicitly do this as well. For instance, in the MPH
model the average treatment effect is γ(t − τ, τ) = γ(t − τ, τ)E(V ). This is
the average treatment effect if the composition of the population would not
change over time due to drop out. Because the population composition does
not change, in this hypothetical population the initial balance between the

7



treated and controls is maintained as well. When defining a causal effect
we are only concerned with the comparability of the treatment and control
groups over the spell, i.e. with the different levels of dynamic selection in the
two groups. If we keep the treatment and control groups comparable over
time, there is still the question how to interpret the time path of the average
treatment effect over the spell. In this paper we do not try to decompose
this path into the average treatment effect for a population of unchanging
composition and a selection effect relative to this population.

If we do not maintain comparability of the treatment and control groups
by hypothetically shutting down any dynamic selection, i.e. by averaging
over the population at time 0, we have to define a subpopulation of the
treated and controls that has the same composition. To define the average
treatment effect on the transition probability/rate at t we propose to average
over the subpopulation of individuals who would have survived until time t
under both treatment arms. The individuals in this population have the same
survival experience and any difference between the transition rates must be
due to the effect of the treatment.2

We discuss the definition and identification of treatment effects on tran-
sition rates in discrete time. The definition of causal effects in continuous
time adds technical problems (see e.g. Gill and Robins (2001)) that would
distract from the conceptual issues. From now on we assume that transitions
occur at times t = 1, 2, . . ..

We denote the treatment indicator in period t by dt and the treatment

history up to and including period t by dt. Let the potential outcome Y dt
t

be an indicator of a transition in period t if the treatment history up to
and including t is dt. If treatment is an absorbing state, dt is a sequence of
0-s until treatment starts in period τ and the remaining values are 1. It is
possible that τ = ∞, the unit is never treated, or τ = 1, the unit is always
in the treated state.

As emphasized we are interested in conditional treatment effects, i.e.
treatment effects defined for the survivors in t. Let d0t and d1t be two spe-
cific treatment histories. To make the survival experience the same for all
survivors we average over the hypothetical subpopulation of individuals who

2We could have restored comparability by averaging the transition probability of the
controls at t over the subpopulation of the treated survivors to t. This is problematic
because the transition probability is only defined for survivors up to t in the control
group. For this reason we average over the subpopulation that would have survived under
treatment and under no treatment.
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would have survived until t under both d0t and d1t. This leads to the following
definition

Definition 1 The causal effect of d1t relative to d0t on the transition prob-
ability in t is the Average Treatment Effect on Survivors (ATES) defined
by

ATESd1t,d0t
t = (2)

E
(
Y d1t
t |Y d1,t−1

t−1 = 0, . . . , Y d11
1 = 0, Y

d0,t−1

t−1 = 0, . . . , Y d01
1 = 0

)
−

E
(
Y d0t
t |Y d1,t−1

t−1 = 0, . . . , Y d11
1 = 0, Y

d0,t−1

t−1 = 0, . . . , Y d01
1 = 0

)
.

Obvious choices for d1t and d0t are d1t = (0, . . . , 0, 1, . . . , 1) with the first
1 at position τ , and d0t = (0, . . . , 0). If we make the usual assumption that
there is no effect of the treatment before it starts3, then for these two treat-

ments ATESd1t,d0t
t = 0, t = 1, . . . , τ − 1. The differential selection only starts

after the treatment begins, so that this property of the ATESt is consistent
with that fact. After the treatment starts there is dynamic selection and the

ATESd1t,d0t
t controls for that by comparing the transition rates for individuals

with a common survival experience.

3 Identification of average treatment effects

on transitions under random assignment

We now consider identification of the ATESd1t,d0t
t under random treatment

assignment. We first need to define what we mean by random assignment in
this case. Let Dt be the indicator that treatment is assigned in period t, i.e.
the unit is not treated in periods 1, . . . , t−1, selected for treatment in period
t and, because treatment is assumed to be an absorbing state, remains in
the treated state in the subsequent periods. We assume that the treatment
is assigned at the beginning of the period, so that the treated responses are
observed in periods t, t + 1, . . .. The control treatment d0t is no treatment
up to and including t. We distinguish between three types of randomized
assignment

3Abbring and den Berg (2003) call this the no-anticipation assumption.
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Assumption 1 (Random assignment of the time of treatment) For all
t and ds, s = 1, 2, . . .

Dt⊥Y ds
s s = 1, 2, . . .

Assumption 2 (Sequential randomization) For all t and ds, s ≥ t with
the first t− 1 components equal to 0

Dt⊥Y ds
s s = t, t+ 1, . . . |Dt−1 = 0

Assumption 3 (Sequential randomization among survivors) For all
t and ds, s ≥ t with the first t− 1 components equal to 0

Dt⊥Y ds
s s = t, t+ 1, . . . |Dt−1 = 0, Y 0

t−1 = · · · = Y 0
1 = 0.

Under Assumption 1, the period in which the unit enters the treated
state is randomly assigned. This can be implemented at time 0 and a con-
sequence is that some units may have left the initial state by the time their
treatment starts. Under Assumption 2 treatment is assigned randomly in
period t to units that have not been treated before. Again this will select
units for treatment that have left the initial state. Under Assumption 3 the
randomization is among the non-treated survivors. Note for t = 1 this as-
sumption implies that D1 ⊥ Y ds

s , s ≥ 1. Random assignment of the time
of treatment implies sequential randomization, which implies sequential ran-
domization among survivors. In this paper, we focus on identification of
average treatment effects under Assumption 3.

Initially we consider the two period case where the transition occurs in
period 1, period 2 or after period 2. The main points of this paper can be
illustrated in this setting. We discuss the extension to an arbitrary number
of periods in section 3.2.2. For every member of the population we have a
vector of potential outcomes Y 1

1 , Y
0
1 , Y

11
2 , Y 01

2 , Y 00
2 , and a vector of treatment

indicators D1, D2. Let Yt be the observed indicator of a transition in period
t. These observed outcomes Y1, Y2 are related to the potential outcomes by
the observation rules

Y1 = D1Y
1
1 + (1−D1)Y

0
1 (3)

and
Y2 = D1Y

11
2 + (1−D1)D2Y

01
2 + (1−D1)(1−D2)Y

00
2 . (4)

Because treatment is an absorbing state

D1 = 1 ⇒ D2 = 1.
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Assumption 3 is in this case

D1⊥Y 1
1 , Y

0
1 , Y

11
2 , Y 01

2 , Y 00
2 (5)

and
D2⊥Y 01

2 , Y 00
2 |D1 = 0, Y 0

1 = 0. (6)

Hence, under this assumption we can relate the observed and potential tran-
sition probabilities.

Lemma 1 If Assumption 3 holds, then

E(Y1|D1 = 1) = E(Y 1
1 ) (7)

E(Y1|D1 = 0) = E(Y 0
1 ) (8)

E(Y2|Y1 = 0, D1 = 1) = E(Y 11
2 |Y 1

1 = 0) (9)

E(Y2|Y1 = 0, D1 = 0, D2 = 0) = E(Y 00
2 |Y 0

1 = 0) (10)

E(Y2|Y1 = 0, D1 = 0, D2 = 1) = E(Y 01
2 |Y 0

1 = 0). (11)

Proof See Appendix. 2

3.1 Identification of instantaneous treatment effects

The interpretation of the ATESd1t,d0t
t depends on the treatments d0t, d1t. We

distinguish between instantaneous or short-run effects and dynamic or long-
run effects. Throughout d0t means no treatment up to and including t. The
instantaneous effect is the ATE in the first period of treatment. With two
periods in which the treatment can start the two instantaneous treatment
effects are

ATES1,0
1 = E(Y 1

1 )− E(Y 0
1 )

and
ATES01,00

2 = E(Y 01
2 |Y 0

1 = 0)− E(Y 00
2 |Y 0

1 = 0).

Note that for ATES01,00
2 the treatment in the first period is the same (no

treatment) in both treatment arms, so that survival in period 1 in both
treatment arms is equivalent to surviving the first period under no treatment.
Therefore the definition in (2) applies.
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From equations (7) and (8) it follow that under Assumption 3 we can
point identify the first period instantaneous treatment effect

ATES1,0
1 = ATE1,0

1 = E(Y 1
1 )− E(Y 0

1 ) = E(Y1|D1 = 1)− E(Y1|D1 = 0), (12)

and from equations (10) and (11) that we can also point identify the second
period instantaneous treatment effect

ATES01,00
2 = E(Y 01

2 |Y 0
1 = 0)− E(Y 00

2 |Y 0
1 = 0) = (13)

E(Y2|Y1 = 0, D1 = 0, D2 = 1)− E(Y2|Y1 = 0, D1 = 0, D2 = 0).

3.2 Bounds on dynamic treatment effects on transi-
tions

3.2.1 Two periods

With two periods the dynamic treatment effect is the effect in period 2 of a
treatment started in period 1 relative to no treatment in both periods. The
relevant ATES is therefore

ATES11,00
2 = E(Y 11

2 |Y 1
1 = 0, Y 0

1 = 0)− E(Y 00
2 |Y 1

1 = 0, Y 0
1 = 0),

that is the average treatment effect in the second period from treatment
started in the first period for those who survive under both treatment and no
treatment in the first period. Because all that can be deduced from the data is
in equations (7)-(11), which hold under Assumption 3, ATES11,00

2 is in general
not point identified. However, the observed transition probabilities place
restrictions on the potential ones. We use these restrictions to derive sharp
bounds on ATES11,00

2 . The bounds are sharp in the sense that there exist
feasible joint distributions of the potential outcomes which are consistent
with the upper bound and the lower bound.

The first step is to characterize the joint distribution of the potential
outcomes Y 0

1 , Y
1
1 , Y

00
2 , Y 01

2 , Y 11
2 . Note that because treatment is an absorbing

state, Y 10
2 is not defined. In addition if Y 1

1 = 1, then Y 11
2 is not defined,

and if Y 0
1 = 1, then neither Y 01

2 nor Y 00
2 is defined. This means that the

joint distribution of Y 0
1 , Y

1
1 , Y

00
2 , Y 01

2 , Y 11
2 can be fully characterized by the
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probabilities

p(y11, y
0
1) ≡ Pr(Y 1

1 = y11, Y
0
1 = y01), y11, y

0
1 = 0, 1

p(y012 , y002 |1, 0) ≡ Pr(Y 01
2 = y012 , Y 00

2 = y002 |Y 1
1 = 1, Y 0

1 = 0),
y012 , y002 = 0, 1

p(y112 |0, 1) ≡ Pr(Y 11
2 = y112 |Y 1

1 = 0, Y 0
1 = 1), y112 = 0, 1

p(y112 , y012 , y002 |0, 0) ≡ Pr(Y 11
2 = y112 , Y 01

2 = y012 , Y 00
2 = y002 |Y 1

1 = 0, Y 0
1 = 0),

y112 , y012 , y002 = 0, 1

The dynamic treatment effect can be expressed as a function of these
probabilities

ATES11,00
2 =

1∑
y002 =0

1∑
y012 =0

p(1, y012 , y002 |0, 0)−
1∑

y112 =0

1∑
y012 =0

p(y112 , y012 , 1|0, 0) (14)

because

E(Y 11
2 |Y 1

1 = 0, Y 0
1 = 0) =

1∑
y002 =0

1∑
y012 =0

p(1, y012 , y002 |0, 0) (15)

and

E(Y 00
2 |Y 1

1 = 0, Y 0
1 = 0) =

1∑
y112 =0

1∑
y012 =0

p(y112 , y012 , 1|0, 0). (16)

By Assumption 3 the observed first period transition probabilities impose
the restrictions

Pr(Y1 = y1|D1 = 1) =
1∑

y01=0

p(y1, y
0
1) (17)

and

Pr(Y1 = y1|D1 = 0) =
1∑

y11=0

p(y11, y1). (18)

By Assumption 3 the observed second period transition probabilities impose
the restrictions

Pr(Y2 = y2|D1 = 1, Y1 = 0) = (19)∑1
y012 =0

∑1
y002 =0 p(y2, y

01
2 , y002 |0, 0)p(0, 0) + p(y2|0, 1)p(0, 1)∑1

y01=0 p(0, y
0
1)
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and
Pr(Y2 = y2|D1 = 0, D2 = 0, Y1 = 0) = (20)∑1

y112 =0

∑1
y012 =0 p(y

11
2 , y012 , y2|0, 0)p(0, 0) +

∑1
y012 =0 p(y

01
2 , y2|1, 0)p(1, 0)∑1

y11=0 p(y
1
1, 0)

and
Pr(Y2 = y2|D1 = 0, D2 = 1, Y1 = 0) = (21)∑1

y112 =0

∑1
y002 =0 p(y

11
2 , y2, y

00
2 |0, 0)p(0, 0) +

∑1
y002 =0 p(y2, y

00
2 |1, 0)p(1, 0)∑1

y11=0 p(y
1
1, 0)

.

Theorem 1 (Bounds on ATES) Suppose that Assumption 3 holds. If Pr(Y1 =
0|D1 = 1) + Pr(Y1 = 0|D1 = 0) − 1 ≤ 0, then E[Y 11

2 |Y 1
1 = 0, Y 0

1 =
0],E[Y 00

2 |Y 1
1 = 0, Y 0

1 = 0], and ATES11,00
2 are not defined. If Pr(Y1 = 0|D1 =

1) + Pr(Y1 = 0|D1 = 0)− 1 > 0, then we have the following sharp bounds

max

{
[Pr(Y2 = 1|D1 = 1, Y1 = 0)− 1] Pr(Y1 = 0|D1 = 1)

Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0)− 1
+ 1, 0

}
(22)

≤ E[Y 11
2 |Y 1

1 = 0, Y 0
1 = 0] ≤

min

{
Pr(Y2 = 1|D1 = 1, Y1 = 0)Pr(Y1 = 0|D1 = 1)

Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0)− 1
, 1

}
and

max

{
[Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)− 1] Pr(Y1 = 0|D1 = 0)

Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0)− 1
+ 1, 0

}
(23)

≤ E[Y 00
2 |Y 1

1 = 0, Y 0
1 = 0] ≤

min

{
Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)Pr(Y1 = 0|D1 = 0)

Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0)− 1
, 1

}
and

max

{
[Pr(Y2 = 1|D1 = 1, Y1 = 0)− 1] Pr(Y1 = 0|D1 = 1)

Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0)− 1
+ 1, 0

}
− (24)

min

{
Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)Pr(Y1 = 0|D1 = 0)

Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0)− 1
, 1

}

14



≤ ATES11,00
2 ≤

min

{
Pr(Y2 = 1|D1 = 1, Y1 = 0)Pr(Y1 = 0|D1 = 1)

Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0)− 1
, 1

}
−

max

{
[Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)− 1] Pr(Y1 = 0|D1 = 0)

Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0)− 1
+ 1, 0

}
Proof see Appendix. �

Theorem 1 provides closed form expressions for the sharp bounds on
ATES11,00

2 . These bounds require no assumptions beyond sequential ran-
dom assignment among survivors. They allow for arbitrary heterogeneity in
treatment response. The bounds only exist if Pr(Y1 = 0|D1 = 1) + Pr(Y1 =
0|D1 = 0) − 1 > 0, because if this holds we are sure that some members of
the population survive the initial period irrespective of whether they were
treated in that period or not. This follows because by the Bonferroni in-
equality the fraction of the population the survives the first period in both
treatment arms is bounded by

Pr(Y 1
1 = 0, Y 0

1 = 0) ≥ max{Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0)− 1, 0}.

Since the ATES11,00
2 is defined for this subpopulation it cannot be defined if

the subpopulation has no members. The condition puts an upper bound on
the degree of dynamic selection. It can always be satisfied by choosing the
initial period sufficiently short.

Inspection of the bounds shows that the upper and lower bound are equal
if either all treated or controls or both survive the first period.

Corollary 1 (Point identification) The lower and upper bounds on E(Y 00
2 |Y 1

1 =
0, Y 0

1 = 0) are both equal Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0) if and only if
Pr(Y1 = 0|D1 = 1) = 1 and analogously the lower and upper bounds on
E(Y 11

2 |Y 1
1 = 0, Y 0

1 = 0) are both equal to Pr(Y2 = 1|D1 = 1, Y1 = 0) if
Pr(Y1 = 0|D1 = 0) = 1. Therefore ATES11,00

2 is point identified if and only
if both Pr(Y1 = 0|D1 = 0) = 1 and Pr(Y1 = 0|D1 = 1) = 1.

Corollary 1 shows that if there is no dynamic selection, i.e. if Pr(Y1 =
0|D1 = 1) = 1 and Pr(Y1 = 0|D1 = 1) = 1, the dynamic treatment effect
ATES11,00

2 is point identified. If everyone survives the first period we have
under random treatment assignment two directly comparable groups even
in the second period. Note that E(Y 11

2 |Y 1
1 = 0, Y 0

1 = 0) is point identified

15



if Pr(Y1 = 0|D1 = 0) = 1, and E(Y 00
2 |Y 1

1 = 0, Y 0
1 = 0) is point identified

if Pr(Y1 = 0|D1 = 1) = 1. For instance, the average transition probability
in period 2 under no treatment for those who survive period 1 under both
treatment and without treatment is point identified if no one exits in the
treatment group, but there is no restriction of the probability of a transition
in the control group. The information in the bound depends on its width.
The best case is that none of the 0 or 1 restrictions is binding and in that
case the width is

2− Pr(Y1 = 0|D1 = 1)− Pr(Y1 = 0|D1 = 0)

Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0)− 1
.

3.2.2 Arbitrary number of periods

In the case of an arbitrary number of periods we only need to to consider the
effect in period t of a treatment that starts in period 1 relative to a treatment
that starts in a later period before period t or after period t. Here we only
consider the effect in period t of a treatment that started in period 1 relative
to a treatment that starts after period t (if ever). Therefore the relevant
Average Treatment Effect on Survivors is ATES1,0

t where 1 and 0 stand for
t vectors of 1 and 0, i.e. treatment in all periods and control in all periods,
and is defined by

ATES1,0
t = E

[
Y 1
t |St−1

]
− E

[
Y 0
t |St−1

]
with St = {Y 1

t = 0, . . . , Y 1
1 = 0, Y 0

t = 0, . . . , Y 0
1 = 0}, the event of survival

up to and including t. Note again that the superscripts 1 and 0 stand for
vectors of 1 and 0 of appropriate length. In the sequel we use the notation
Y t = (Yt, . . . , Y1)

′ that also applies to other variables. The bounds are given
in the next theorem.

Theorem 2 (Bounds on ATES) Suppose that Assumption 3 holds. If
∏t−1

s=1 Pr(Ys =
0|Y s−1 = 0, Ds = 1) +

∏t−1
s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 0) − 1 ≤ 0,

then E[Y 0
t |St−1],E[Y 1

t |St−1], and ATES1,0
t are not defined. If

∏t−1
s=1 Pr(Ys =

0|Y s−1 = 0, Ds = 1) +
∏t−1

s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 0) − 1 > 0, then we
have the following sharp bounds

max

{
(Pr(Yt = 1|Y t−1 = 0, Dt = 1)− 1) Pr

(
Y t−1 = 0|Dt−1 = 1

)∏t−1
s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 1) +

∏t−1
s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1

+ 1, 0

}
≤

(25)
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E[Y 1
t |St−1] ≤

min

{
Pr(Yt = 1|Y t−1 = 0, Dt = 1)Pr

(
Y t−1 = 0|Dt−1 = 1

)∏t−1
s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 1) +

∏t−1
s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1

, 1

}
and

max

{
(Pr(Yt = 1|Y t−1 = 0, Dt = 0)− 1) Pr

(
Y t−1 = 0|Dt−1 = 0

)∏t−1
s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 1) +

∏t−1
s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1

+ 1, 0

}
≤

(26)
E[Y 0

t |St−1] ≤

min

{
Pr(Yt = 1|Y t−1 = 0, Dt = 0)Pr

(
Y t−1 = 0|Dt−1 = 0

)∏t−1
s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 1) +

∏t−1
s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1

, 1

}
and

max

{
(Pr(Yt = 1|Y t−1 = 0, Dt = 1)− 1) Pr

(
Y t−1 = 0|Dt−1 = 1

)∏t−1
s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 1) +

∏t−1
s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1

+ 1, 0

}
−

(27)

min

{
Pr(Yt = 1|Y t−1 = 0, Dt = 0)Pr

(
Y t−1 = 0|Dt−1 = 0

)∏t−1
s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 1) +

∏t−1
s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1

, 1

}
≤

ATES1,0
t ≤

min

{
Pr(Yt = 1|Y t−1 = 0, Dt = 1)Pr

(
Y t−1 = 0|Dt−1 = 1

)∏t−1
s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 1) +

∏t−1
s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1

, 1

}
−

max

{
(Pr(Yt = 1|Y t−1 = 0, Dt = 0)− 1) Pr

(
Y t−1 = 0|Dt−1 = 0

)∏t−1
s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 1) +

∏t−1
s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1

+ 1, 0

}
Proof see Appendix. �

4 Bounds on treatment effects on transitions

under additional assumptions

4.1 Monotone Treatment Response, Common Shocks,
and Positively Correlated Outcomes

The sharp bounds in the previous section did not impose any assumptions
beyond random assignment. In this section, we explore the identifying power

17



of additional assumptions. The assumptions that we make are implicit in
parametric models as the MPH model, but also in the discrete duration
models and structural models that we consider in this section. A general
discrete duration model for the control and treated outcomes is

Y 0
it = I(αt + Vi − εit ≥ 0)

Y 1
it = I(αt + γit + Vi − εit ≥ 0). (28)

This discrete duration model has a composite error that is the sum of un-
observed heterogeneity Vi and a random shock εit. The model restricts the
joint distribution of the potential outcomes. A less restrictive model has dif-
ferent random shocks ε0it, ε1it that are independent, but even in this case the
potential outcomes are positively correlated through their dependence onVi.
In the sequel we consider assumptions on the joint distribution of potential
outcomes in different treatment arms, that are in line with the assumptions
implicit in this model, but do not assume that the potential outcomes are
exactly as in this model. These assumptions will be used in combination with
a weaker version of the constant treatment effect assumption. In the above
model the treatment has a positive effect on the survival time if γit ≤ 0 for all
i, t. This is essentially the Monotone Treatment Response (MTR) assump-
tion introduced by Manski (1997) and Manski and Pepper (2000). Since the
assumptions introduced in this section do not rely on a particular discrete
duration model they are consistent with nonproportional structural hazard
models suggested by Van den Berg (2001).

The Monotone Treatment Response (MTR) is a weaker assumption than
homogeneous treatment effect. As before we denote the event of survival
under both d0(t) and d1(t) by St.

Assumption 4 (Monotone Treatment Response (MTR)) For treatment
paths d0t, d1t we have that for all i either

Pr
(
Y d1t
it = 1

∣∣∣Si,t−1

)
≥ Pr

(
Y d0t
it = 1

∣∣∣Si,t−1

)
for all t, or

Pr
(
Y d1t
it = 1

∣∣∣Si,t−1

)
≤ Pr

(
Y d0t
it = 1

∣∣∣Si,t−1

)
for all t.
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For t = 1 Assumption 4 implies that for all i

Pr(Y 1
i1 = 1) ≥ Pr(Y 0

i1 = 1)

or
Pr(Y 1

i1 = 1) ≤ Pr(Y 0
i1 = 1).

Note that it is assumed that the effect is either positive or negative for all t.
This assumption can be relaxed at the expense of more complicated bounds.

Assumption 4 refers to the individual transition probability and not to the
transition indicators. These individual transition probabilities are defined
with respect to the distribution of individual idiosyncratic shocks, e.g. ε
in the MPH model. The population transition probabilities that appear
in the definition of the ATES and in Theorem 1 are individual transition
probabilities averaged over the distribution of the individual heterogeneity
among the survivors in both treatment arms.

The next assumption restricts the joint distribution of potential outcomes
in the treatment arms. The assumption essentially assumes that the out-
comes in all treatment arms involve the same random shocks. Consider the
discrete duration model in (28). If γit ≤ 0 then the treated have a larger sur-
vival probability in t. Therefore the event that i survives in t if not treated,
i.e. Y 0

it = 0, is equivalent to εit ≥ αt + Vi, so that this event implies that
εit ≥ αt + γit + Vi ≥ 0, i.e. Y 1

it = 0. Note that we assume that the random
shock εit is invariant under a change in treatment status. This is stronger
than the assumption that the distribution of the random shocks is the same
whether i is treated or not. The latter assumption can have random shocks
εit, ε̃it in the model above, if we assume that they have the same distribution.
In a structural model the random shocks are often invariant, as is illustrated
in a simple job search model below.

Assumption 5 (Common Shocks (CS)) For all i, t and treatment paths
d0(t) and d1(t)

Pr(Y d1t
it = 0|Si,t−1) ≥ Pr(Y d0t

it = 0|Si,t−1) ⇒ Pr(Y d1t
it = 0|Si,t−1, Y

d0t
it = 0) = 1

(29)
and

Pr(Y d1t
it = 0|Si,t−1) ≤ Pr(Y d0t

it = 0|Si,t−1) ⇒ Pr(Y d0t
it = 0|Si,t−1, Y

d1t
it = 0) = 1

(30)
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Because the right-hand side of (29) is equivalent to Pr(Y d1t
it = 1|Si,t−1, Y

d0t
it =

0) = 0, it is also equivalent to Pr(Y d1t
it = 1, Y d0t

it = 0|Si,t−1) = 0, which in

turn is equivalent to Pr(Y d1t
it ≥ Y d0t

it |Si,t−1) = 0.
The assumption is satisfied in structural models. Consider for instance a

non-stationary job search model for an unemployed individual as in Van den
Berg (1990) or Meyer (1996). The treatment is a re-employment bonus as
discussed in Section 5 below. In each period a job offer is obtained with
probability p(t, Vi). Let Yof,it be the indicator of an offer in period t and
Yof,it = I(εof,it ∈ A(t, Vi)) with A(t, Vi) a set. If the job offer is not under
control of i, the arrival process is the same under treatment and control. The
reservation wage is denoted by ξ1it for the treated and ξ0it for the controls. In
general (see Meyer (1996)) ξ1(t, Vi) ≤ ξ0(t, Vi), so that if H is the wage
offer c.d.f. we have the acceptance probabilities 1 − H(ξ1(t, Vi)) ≥ 1 −
H(ξ0(t, Vi)). The acceptance indicators are Y 0

ac,it = I(εw,it ≥ ξ0(t, Vi)) and
Y 1
ac,it = I(εw,it ≥ ξ1(t, Vi)) with εw,it the wage offer. Because Y 0

it = Yof,itY
0
ac,it

and Y 1
it = Yof,itY

1
ac,it, we see that

Y 1
it = 0 ⇒ Y 0

it = 0.

Note that the dimension of Vi is arbitrary and that we have two random
shocks that have a structural interpretation and are invariant under a change
in treatment status.

If we compare the transition probability Pr(Y 00
2 = 1|Y 1

1 = 0, Y 0
1 = 0) to

Pr(Y 00
2 = 1|Y 1

1 = 1, Y 0
1 = 0), i.e. the probability of a transition in period

2 if no treatment was received in periods 1 and 2 given survival with or
without treatment in period 1 to the same probability given survival without
but not with treatment in period 1, then it is reasonable to assume that
that the former probability is not larger than the latter. Individuals with
Y 1
1 = 0, Y 0

1 = 0 have characteristics that make them not leave the initial state
as opposed to individuals with Y 1

1 = 1, Y 0
1 = 0 that have characteristics that

make them leave the initial state if treated in period 1. If the variables that
affect the transition out of the initial state are positively correlated between
periods, then

Pr(Y 00
2 = 1|Y 1

1 = 0, Y 0
1 = 0) ≤ Pr(Y 00

2 = 1|Y 1
1 = 1, Y 0

1 = 0). (31)

To motivate this consider the discrete duration model for those not treated
in periods 1, . . . , t

Y 0
it = I(αt + Vi − εit ≥ 0)
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and for those who are treated in these periods

Y 1
it = I(αt + γit + Vi − ε̃it ≥ 0).

Note that the Common Shocks assumption is not made. Now Y 0
it = 1 if and

only if
Vi − εit ≥ −αt.

The conditioning events are Y 0
is = 0, s = 1, . . . , t−1 and Y 1

is = 0, s = 1, . . . , t−
1, i.e.

Vi − εis < −αs s = 1, . . . , t− 1

Vi − ε̃is < −αs − γis s = 1, . . . , t− 1

and Y 0
is = 0, s = 1, . . . , t − 1 and Y 1

is = 0, s = 1, . . . , k − 1, Y 1
ik = 1, (for

k = 1, . . . , t− 1) i.e.

Vi − εis < −αs s = 1, . . . , t− 1

Vi − ε̃is < −αs − γis s = 1, . . . , k − 1 Vi − ε̃ik ≥ −αk − γik.

For t = 2, k = 1 the conditioning events are

Vi − εi1 < −α1

Vi − ε̃i1 < −α1 − γi1

and
Vi − εi1 < −α1

Vi − ε̃i1 ≥ −α1 − γi1.

Hence if Vi−εi1 and Vi− ε̃i1 are positively related with Vi−εi2 then (31) will
in general hold. Individuals with Y 1

1 = 1, Y 0
1 = 0 are assumed to be more

susceptible to a transition in period 2 than individuals with Y 1
1 = 0, Y 0

1 = 0.
In the general case we have by the same reasoning

Pr(Y 0
t = 1|Y 1

k = 1, Y 1
k−1 = 0, . . . , Y 1

1 = 0, Y 0
t−1 = 0, . . . , Y 0

1 = 0) ≥

Pr(Y 0
t = 1|Y 1

k = 0, Y 1
k−1 = 0, . . . , Y 1

1 = 0, Y 0
t−1 = 0, . . . , Y 0

1 = 0) ≥
Pr(Y 0

t = 1|Y 1
t−1 = 0, . . . , Y 1

1 = 0, Y 0
t−1 = 0, . . . , Y 0

1 = 0).

Because an analogous argument can be made for Pr(Y 1
t = 1|Y 1

t−1 =
0, . . . , Y 1

1 = 0, Y 0
k = 1, Y 0

k−1 = 0, . . . , Y 1
0 = 0), these arguments lead to the

following assumption
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Assumption 6 (Positively Correlated Outcomes (PCO)) For all k =
1, . . . , t− 1 we have

Pr(Y 0
t = 1|Y 1

k = 1, Y 1
k−1 = 0, . . . , Y 1

1 = 0, Y 0
t−1 = 0, . . . , Y 0

1 = 0) ≥ (32)

Pr(Y 0
t = 1|Y 1

t−1 = 0, . . . , Y 1
1 = 0, Y 0

t−1 = 0, . . . , Y 0
1 = 0)

and

Pr(Y 1
t = 1|Y 1

t−1 = 0, . . . , Y 1
1 = 0, Y 0

k = 1, Y 0
k−1 = 0, . . . , Y 1

0 = 0) ≥ (33)

Pr(Y 1
t = 1|Y 1

t−1 = 0, . . . , Y 1
1 = 0, Y 0

t−1 = 0, . . . , Y 0
1 = 0).

The motivating example shows that PCO does not imply nor is implied
by MTR or CS. The CS assumption is on the contemporaneous correlation
of random shocks while PCO relates to a (positive) relation of the combined
random error over time. Since the latter in general contains an important
individual effect, positive correlation is not a strong assumption.

4.2 Bounds under the additional assumptions

We now obtain bounds on ATES11,00
2 in the two-period case under the ad-

ditional assumptions.

Theorem 3 (Bounds under MTR and CS for 2 periods) Suppose As-
sumptions 3, 4, and 5 hold. Then if Pr(Y1 = 0|D1 = 1) ≥ Pr(Y1 = 0|D1 = 0)
and Pr(Y1 = 0|D1 = 0) > 0

max

{
1− (1− Pr(Y2 = 1|D1 = 1, Y1 = 0))Pr(Y1 = 0|D1 = 1)

Pr(Y1 = 0|D1 = 0)
, 0

}
− (34)

Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0) ≤ ATES11,00
2 ≤

min

{
Pr(Y2 = 1|D1 = 1, Y1 = 0)Pr(Y1 = 0|D1 = 1)

Pr(Y1 = 0|D1 = 0)
, 1

}
−

Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)

and if Pr(Y1 = 0|D1 = 1) < Pr(Y1 = 0|D1 = 0) and Pr(Y1 = 0|D1 = 1) > 0

Pr(Y2 = 1|D1 = 1, Y1 = 0)− (35)
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−min

{
Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)Pr(Y1 = 0|D1 = 0)

Pr(Y1 = 0|D1 = 1)
, 1

}
≤ ATES11,00

2 ≤

Pr(Y2 = 1|D1 = 1, Y1 = 0)−

max

{
1− (1− Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)) Pr(Y1 = 0|D1 = 0)

Pr(Y1 = 0|D1 = 1)
, 0

}
Proof See Appendix. �

The same result for arbitrary t when we compare a treatment started in
period 1 to no treatment in all periods is

Theorem 4 (Bounds under MTR and CS for t periods) Suppose As-
sumptions 3, 4, and 5 hold. Then if

min

{
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 1),
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 0)

}
> 0

max

{ [
Pr(Yt = 1|Y t−1 = 0, Dt = 1)− 1

]
Pr(Y t−1 = 0|Dt−1 = 1)

min
{∏t−1

s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 1),
∏t−1

s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 0)
} + 1, 0

}
−

(36)

min

{
Pr(Yt = 1|Y t−1 = 0, Dt = 0)Pr(Y t−1 = 0|Dt−1 = 0)

min
{∏t−1

s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 1),
∏t−1

s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 0)
} , 1}

≤ ATES1,0
t ≤

min

{
Pr(Yt = 1|Y t−1 = 0, Dt = 1)Pr(Y t−1 = 0|Dt−1 = 1)

min
{∏t−1

s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 1),
∏t−1

s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 0)
} , 1}−

max

{ [
Pr(Yt = 1|Y t−1 = 0, Dt = 0)− 1

]
Pr(Y t−1 = 0|Dt−1 = 0)

min
{∏t−1

s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 1),
∏t−1

s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 0)
} + 1, 0

}
Proof See Appendix. �

For PCO we also give separate results for t = 2 and t ≥ 3
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Theorem 5 (Bounds under PCO for 2 periods) If Assumptions 3 and
6 hold, then if Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0)− 1 > 0

max

{
[Pr(Y2 = 1|D1 = 1, Y1 = 0)− 1] Pr(Y1 = 0|D1 = 1)

Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0)− 1
+ 1, 0

}
− (37)

Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0) ≤ ATES11,00
2 ≤

Pr(Y2 = 1|D1 = 1, Y1 = 0)−

max

{
[Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)− 1] Pr(Y1 = 0|D1 = 0)

Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0)− 1
+ 1, 0

}
Proof See Appendix. �

Theorem 6 (Bounds under PCO for t periods) If Assumptions 3 and
6 hold, then if Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds =
0)− 1 > 0 for all s = 1, . . . , t− 1

max

{
(Pr(Yt = 1|Y t−1 = 0, Dt = 1)− 1) Pr

(
Y t−1 = 0|Dt−1 = 1

)∏t−1
s=1

[
Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1

] + 1, 0

}
−

(38)
Pr(Yt = 1|Dt = 0, Y t−1 = 0) ≤ ATES1,0

t ≤

Pr(Yt = 1|Dt = 1, Y t−1 = 0)−

max

{
(Pr(Yt = 1|Y t−1 = 0, Dt = 0)− 1) Pr

(
Y t−1 = 0|Dt−1 = 0

)∏t−1
s=1

[
Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1

] + 1, 0

}

Proof See Appendix. �

The bounds can be improved if MTR, CS and PCO hold simultaneously.

Theorem 7 (Bounds under MTR, CS and PCO for t periods) Suppose
Assumptions 3, 4, 5 and 6 hold. If for all t we have

min

{
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 1),
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 0)

}
> 0
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then

max

{ [
Pr(Yt = 1|Y t−1 = 0, Dt = 1)− 1

]
Pr(Y t−1 = 0|Dt−1 = 1)

min
{∏t−1

s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 1),
∏t−1

s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 0)
} + 1, 0

}
−

(39)
Pr(Yt = 1|Y t−1 = 0, Dt = 0)

≤ ATES1,0
t

Pr(Yt = 1|Y t−1 = 0, Dt = 1)−

max

{ [
Pr(Yt = 1|Y t−1 = 0, Dt = 0)− 1

]
Pr(Y t−1 = 0|Dt−1 = 0)

min
{∏t−1

s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 1),
∏t−1

s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 0)
} + 1, 0

}

Proof See Appendix. �

5 Application to the Illinois bonus experi-

ment

5.1 The re-employment bonus experiment

Between mid-1984 and mid-1985, the Illinois Department of Employment
Security conducted a randomized social experiment.4 The goal of the experi-
ment was to explore, whether re-employment bonuses paid to Unemployment
Insurance (UI) beneficiaries (treatment 1) or their employers (treatment 2)
reduced the length of unemployment spells.

Both treatments consisted of a $ 500 re-employment bonus, which was
about four times the average weekly unemployment insurance benefit. In
the experiment, newly unemployed UI claimants were randomly divided into
three groups:
1. The Claimant Bonus Group. The members of this group were instructed
that they would qualify for a cash bonus of $500 if they found a job (of
at least 30 hours) within 11 weeks and, if they held that job for at least 4
months. A total of 4186 individuals were selected for this group, and 3527
(84%) agreed to participate.

4A complete description of the experiment and a summary of its results can be found
in Woodbury and Spiegelman (1987).
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2. The Employer Bonus Group. The members of this group were told that
their next employer would qualify for a cash bonus of $500 if they, the
claimants, found a job (of at least 30 hours) within 11 weeks and, if they
held that job for at least four months. A total of 3963 were selected for this
group and 2586 (65%) agreed to participate.
3. The Control Group, i.e. all claimants not assigned to one of the treatment
groups. This group consisted of 3952 individuals. The individuals assigned
to the control group were excluded from participation in the experiment. In
fact, they did not know that the experiment took place.

The descriptive statistics in Table 2 in Woodbury and Spiegelman (1987)
confirm that the randomization resulted in three similar groups.

5.2 Results of previous studies

Woodbury and Spiegelman (1987) concluded from a direct comparison of the
control group and the two treatment groups that the claimant bonus group
had a significantly shorter average unemployment duration. The average un-
employment duration was also shorter for the employer bonus group, but the
difference was not significantly different from zero. In the USA UI benefits
end after 26 weeks and since administrative data were used, all unemploy-
ment durations are censored at 26 weeks. Woodbury and Spiegelman ignore
the censoring and take as outcome variable the number of weeks of insured
unemployment.

Meyer (1996) analyzed the same data but focused on the treatment effects
on conditional transition probabilities which allows him to properly account
for censoring. Meyer focuses on the conditional transitions rates because both
labor supply and search theory imply specific dynamic treatment effects. The
bonus is only given to an unemployed individual if (s)he finds a job within
11 weeks and retains it for four months. The cash bonus is the same for all
unemployed. Theory predicts that (i) the transition rate during the eligibility
period (first 11 weeks) will be higher in the two treatment groups compared
with the control group, and (ii) that the transition rate in the treatment
groups will rise just before the end of the eligibility period, as the unemployed
run out of time to collect the bonus.

To test these predictions, Meyer (1996) estimates a proportional hazard
(PH) model with a flexible specification of the baseline hazard. He uses
the treatment indicator as an explanatory variable. Since there was partial
compliance with treatment his estimator can be interpreted as a intention to
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treat (ITT) estimator.5 In his analysis Meyer controls for age, the logarithm
of base period earnings, ethnicity , gender and the logarithm of the size of
the UI benefits. He finds a significantly positive effect of the claimant bonus
and a positive but insignificant effect of the employer bonus. A more detailed
analysis of the effects for the claimant group reveals a positive effect on the
transition rate during the first 11 weeks in unemployment, an increased effect
during week 9 and 10, and no significant effect on the transition rate after
week 11 as predicted by labor supply and search theory.

5.3 Estimates of bounds

In his study Meyer (1996) relies on the proportionality of the hazard rate to
investigate his hypotheses. We now ask what can be said if the assumptions
of the MPH model do not hold, that is what can be identified if we rely
solely on random assignment and the additional assumptions. As Meyer we
consider the ITT effect, i.e. we do not correct for partial compliance. We
divide the 24 month observation period into 12 subperiods: week 1-2, week 3-
4, ... , week 23-24. The reason for this is that there is a pronounced even-odd
week effect in the data, with higher transition rate during odd weeks. With
these subperiods the predictions we wish to test are: (i) a positive treatment
effect during periods 1-5, i.e.

ATES1,0
t > 0 , t = 1, . . . , 5

(ii) no effect after the bonus offer has expired in periods 6-12, i.e.

ATES1,0
t = 0 , t = 6, . . . , 12

and (iii) a larger effect of the bonus offer at the end of the eligibility period
in period 5, i.e.

ATES1,0
5 > ATES1,0

4 .

Note that in this experiment the treatment assignment is in period 1, so that
in ATES1,0

t the superscripts 1 and 0 are t vectors with components equal to
1 and 0.

5The partial compliance is addressed in detail by Bijwaard and Ridder (2005). They
introduce a new method to handle the selective compliance in the treatment group. If
there is full compliance in the control group, their two-stage linear rank estimator is able
to handle the selective compliance in the treatment group even for censored durations. In
order to achieve this they assume a MPH structure for the transition rate. Their estimates
indicate that the ITT estimates by Meyer (1996) underestimate the true treatment effect.
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Table 1: Bounds on conditional transition probabilities for the Illinois job
bonus experiment (claimant bonus)

NO [1] MTR+CS [2]
LB UB LB UB

Week
1-2 0.023 0.023 0.023 0.023
3-4 -0.097 0.111 0.011 0.038
5-6 -0.094 0.100 0.004 0.046
7-8 -0.101 0.121 0.013 0.063
9-10 -0.112 0.126 0.008 0.069
11-12 -0.121 0.139 0.008 0.062
13-14 -0.163 0.159 -0.002 0.056
15-16 -0.188 0.200 0.003 0.051
17-18 -0.301 0.302 0.000 0.049
19-20 -0.775 0.718 -0.004 0.049
21-22 -0.021 0.047
23-24 -0.002 0.056

PCO [3] MTR+CS+PCO [4]
LB UB LB UB

1-2 0.023 0.023 0.023 0.023
3-4 -0.081 0.094 0.014 0.038
5-6 -0.067 0.074 0.007 0.046
7-8 -0.062 0.078 0.016 0.063
9-10 -0.057 0.069 0.012 0.069
11-12 -0.050 0.062 0.012 0.062
13-14 -0.053 0.056 0.003 0.056
15-16 -0.043 0.051 0.007 0.051
17-18 -0.045 0.049 0.005 0.049
19-20 -0.048 0.049 0.001 0.049
21-22 -0.061 0.047 -0.014 0.047
23-24 -0.053 0.056 0.003 0.056

Notes: NO are the bounds under random assignment, MTR those under for Monotone
Treatment Response, CS under Common Shocks and PCO under Positively Correlated
Outcomes.
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Table 1 presents the upper and the lower bound on ATES1,0
t for the

claimant group under just random assignment and under the additional as-
sumptions in Section 4. Figure 1 displays the same bounds6. The general
bounds, which impose no assumptions beyond random assignment are labeled
NO. The instantaneous treatment effect on the transition probability (week
1-2) is point identified and indicates a positive effect of the re-employment
bonus. The transition probability is about 2 percentage points higher in the
treatment group compared to the control group. From week 3-4 and onwards
the bounds are quite wide. In fact, without further assumptions we cannot
rule out that the bonus actually has a negative impact on the conditional
transition probability after week 3. However, note that until week 20 the
bounds are nevertheless informative on the average treatment effect.

As expected, if we impose additional assumptions the bounds are consid-
erably narrower. Under MTR and CS we can rule out very large negative
and very large positive dynamic treatment effects. PCO has the same effect.
Imposing MTR, CS as well as PCO further tightens the bounds. If these
assumptions hold simultaneously we can for the weeks up until week 20 rule
out that the bonus offer has a negative effect on the transition rate out of
unemployment.

Let us return to the three hypotheses suggested by labor supply and
search theory, and consider our most restrictive bounds under MTR, CS
and PCO. We find that there is a positive effect of the bonus offer on the
conditional transition rate up to week 11. This confirms the first hypothesis.
The upper bound increases in time period 5 (weeks 9-10), but the lower
bound does not increase enough, so that both an increase and no change (end
even a small decrease) in the transition probability out of unemployment are
consistent with the data. Now consider the third hypothesis that there is no
effect on the transition rate after week 11. Again the bounds do not rule out
that there is a positive effect on the conditional transition probability after
week 11. These results illustrate that the evidence for the second and third
hypotheses presented by a number of authors rely on the imposed structure,
e.g. proportionality of the hazard or the restrictions implied by a particular
discrete duration model.

6We do not report confidence intervals. In principle these can be constructed using the
approach in Hahn and Ridder (2010), but we leave the details to future work.
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Figure 1: Bounds on conditional transition probabilities for the Illinois job
bonus experiment (claimant bonus)

6 Conclusions

In this paper, we have derived bounds on treatment effects on conditional
transitions probabilities under sequential randomization. The partial identi-
fication problem arises since random assignment only ensures comparability
of the treatment and control groups at the time of randomization. In the
literature this problem is often refereed to as the dynamic selection problem.
For that reason only instantaneous or short-run effects are point-identified,
whereas dynamic or long-run effects in general are not point identified. Our
weakest bounds impose no assumptions beyond sequential random assign-
ment, so that they are not sensitive to arbitrary functional form assumptions,
require no additional covariates and allow arbitrary heterogenous treatment
effects as well as arbitrary unobserved heterogeneity. These non-parametric
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bounds offer an alternative to semi-parametric methods. They tend to be
wide and therefore we have also derived bounds under additional assumptions
that often hold in semi-parametric reduced form and structural models.

An analysis of data from the Illinois re-employment bonus experiment
shows that our bounds are informative about average treatment effects. It
also demonstrates that previous results on the evolution of the average treat-
ment effect require that assumptions as the proportionality of the hazard
rate or those embodied in a particular (semi-)parametric discrete-time haz-
ard model hold.
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Appendix: Proofs

Proof of Lemma 1

Because Assumption 3 implies random assignment in period 1 we have

E(Y1|D1 = 1) = E(Y 1
1 |D1 = 1) = E(Y 1

1 )

and
E(Y1|D1 = 0) = E(Y 0

1 |D1 = 0) = E(Y 0
1 ).

By the observation rule and by (5)

E(Y2|Y1 = 0, D1 = 1) = E(Y 11
2 |Y 1

1 = 0, D1 = 1) = E(Y 11
2 |Y 1

1 = 0)

For (10)

E(Y2|Y1 = 0, D1 = 0, D2 = 0) = E(Y 00
2 |Y 0

1 = 0, D1 = 0, D2 = 0) =

E(Y 00
2 |Y 0

1 = 0, D1 = 0) = E(Y 00
2 |Y 0

1 = 0)

where the first equality follows from the observation rules, the second from
(6), and the third from (5). Analogously for (11)

E(Y2|Y1 = 0, D1 = 0, D2 = 1) = E(Y 01
2 |Y 0

1 = 0, D1 = 0, D2 = 1) =

E(Y 01
2 |Y 0

1 = 0, D1 = 0) = E(Y 01
2 |Y 0

1 = 0).

2.

In the remainder of the Appendix we use the following notation

p1(y11) ≡ Pr(Y 1
1 = y11)

p0(y01) ≡ Pr(Y 0
1 = y01)

p11(y112 |y11, y01) ≡ Pr(Y 11
2 = y112 |Y 1

1 = y11, Y
0
1 = y01) , y11 ̸= 1

p00(y002 |y11, y01) ≡ Pr(Y 00
2 = y002 |Y 1

1 = y11, Y
0
1 = y01) , y01 ̸= 1.

Proof of Theorem 1

Using the notation above (20) is equivalent to

Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0) =
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E(Y 00
2 |Y 1

1 = 0, Y 0
1 = 0)p(0, 0) + p00(1|1, 0)p(1, 0)

Pr(Y1 = 0|D1 = 0)

Observing that E(Y 00
2 |Y 1

1 = 0, Y 0
1 = 0) = p00(1|0, 0) we find

p00(1|0, 0) =

Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)Pr(Y1 = 0|D1 = 0)− p00(1|1, 0)p(1, 0)
p(0, 0)

.

From (18) p(1, 0) = Pr(Y1 = 0|D1 = 0)− p(0, 0) and upon substitution

p00(1|0, 0) = Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)Pr(Y1 = 0|D1 = 0)

p(0, 0)
− (A.1)

p00(1|1, 0) [Pr(Y1 = 0|D1 = 0)− p(0, 0)]

p(0, 0)
.

The probability p00(1|0, 0) depends on the unknown probabilities p00(1|1, 0)
and p(0, 0). Now note that, because p(0, 0) = Pr(Y 0

1 = 0, Y 1
1 = 0) ≤ Pr(Y 0

1 =
0) = Pr(Y1 = 0|D1 = 0), the function on the right hand side is decreasing in
p00(1|1, 0) for all p(0, 0) > 0. Therefore for all p(0, 0) > 0

[Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)− 1] Pr(Y1 = 0|D1 = 0)

p(0, 0)
+ 1 (A.2)

≤ E(Y 00
2 |Y 1

1 = 0, Y 0
1 = 0) ≤

Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)Pr(Y1 = 0|D1 = 0)

p(0, 0)

where the lower bound applies if p00(1|1, 0) = 1 and the upper bound if
p00(1|1, 0) = 0. The lower bound is increasing and the upper bound decreas-
ing in p(0, 0). By the Bonferroni inequality

p(0, 0) ≥ max{Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0)− 1, 0}.

We consider the cases that Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0)− 1 > 0
and that Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0) − 1 ≤ 0 separately. If
Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0) − 1 > 0 then the probability
of survival for the treated and controls is relatively large. In that case the
degree of dynamic selection is relatively small. The opposite is true is true
if Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0)) − 1 ≤ 0. Because in the latter
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case the lower bound on p(0, 0) is 0, E(Y 00
2 |Y 1

1 = 0, Y 0
1 = 0) is not defined at

this lower bound, because it is an average for a non-existent subpopulation.
Therefore we only need to consider the case that Pr(Y1 = 0|D1 = 1)+Pr(Y1 =
0|D1 = 0)− 1 > 0. Upon substitution of the lower bound on p(0, 0) in (A.2)
we find

max

{
[Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)− 1] Pr(Y1 = 0|D1 = 0)

Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0))− 1
+ 1, 0

}
≤

(A.3)
E(Y 00

2 |Y 1
1 = 0, Y 0

1 = 0) ≤

min

{
Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)Pr(Y1 = 0|D1 = 0)

Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0))− 1
, 1

}
.

Next we derive bounds on E(Y 11
2 |Y 1

1 = 0, Y 0
1 = 0) = p11(1|0, 0). Equation

(19) is equivalent to

Pr(Y2 = 1|D1 = 1, Y1 = 0) =
E[Y 11

2 |Y 1
1 = 0, Y 0

1 = 0]p(0, 0) + p11(1|0, 1)p(0, 1)
Pr(Y1 = 0|D1 = 1)

so that

p11(1|0, 0) = Pr(Y2 = 1|D1 = 1, Y1 = 0)Pr(Y1 = 0|D1 = 1)− p11(1|0, 1)p(0, 1)
p(0, 0)

.

By (17) p(0, 1) = Pr(Y1 = 0|D1 = 1)− p(0, 0) and upon substitution

p11(1|0, 0) = Pr(Y2 = 1|D1 = 1, Y1 = 0)Pr(Y1 = 0|D1 = 1)

p(0, 0)
− (A.4)

p11(1|0, 1) [Pr(Y1 = 0|D1 = 1)− p(0, 0)]

p(0, 0)
.

Because p(0, 0) = Pr(Y 0
1 = 0, Y 1

1 = 0) ≤ Pr(Y 1
1 = 0) = Pr(Y1 = 0|D1 = 1),

the right hand side is decreasing in p11(1|0, 1) for all p(0, 0) > 0, so that we
have the bounds

[Pr(Y2 = 1|D1 = 1, Y1 = 0)− 1] Pr(Y1 = 0|D1 = 1)

p(0, 0)
+ 1 ≤ (A.5)

E(Y 11
2 |Y 1

1 = 0, Y 0
1 = 0) ≤

Pr(Y2 = 1|D1 = 1, Y1 = 0)Pr(Y1 = 0|D1 = 1)

p(0, 0)
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with the lower bound decreasing and the upper bound increasing in p(0, 0).
We have the same lower bound on p(0, 0) and as before if this bound is strictly
positive then E[Y 11

2 |Y 1
1 = 0, Y 0

1 = 0] exists and is bounded by

max

{
[Pr(Y2 = 1|D1 = 1, Y1 = 0)− 1] Pr(Y1 = 0|D1 = 1)

Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0))− 1
+ 1, 0

}
≤ (A.6)

E[Y 11
2 |Y 1

1 = 0, Y 0
1 = 0] ≤

min

{
Pr(Y2 = 1|D1 = 1, Y1 = 0)Pr(Y1 = 0|D1 = 1)

Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0))− 1
, 1

}
.

Finally, we combine the previous bounds to obtain bounds on ATES11,00
2 .

From (A.1) and (A.4) we obtain a lower and upper bound on ATES11,00
2

that depend on p11(1|0, 1), p00(1|1, 0), p(0, 0). The lower bound is decreas-
ing in p11(1|0, 1) and increasing in p00(1|1, 0) for all p(0, 0) > 0 and the
upper bound is increasing in p11(1|0, 1) and decreasing in p00(1|1, 0) for all
p(0, 0) > 0. Setting p11(1|0, 1) = 1 and p00(1|1, 0) = 0 for the lower bound
and p11(1|0, 1) = 0 and p00(1|1, 0) = 1 for the upper bound we obtain a lower
bound that decreases in p(0, 0) and an upper bound that increases in p(0, 0).
Hence, we can set p(0, 0) at is lower bound if that is positive and otherwise
ATES11,00

2 does not exist.
We now prove that the bounds are best possible, i.e. for each (lower or

upper) bound we find the 14 parameters of the joint distribution of the po-
tential outcomes p(y11, y

0
1), p(y

01
2 , y002 |1, 0), p(y112 |0, 1), p(y112 , y012 , y002 |0, 0) such

that the bound is binding and satisfy (17)-(21) (5 restrictions). First, con-
sider the upper bound on ATES11,00

2 . This upper bound is 1 if and only if
Pr(Y 11

2 = 1|Y 1
1 = 0, Y 0

1 = 0) = 1 and Pr(Y 00
2 = 1|Y 1

1 = 0, Y 0
1 = 0) = 0. This

is equivalent to the following restrictions on the parameters

0 = Pr(Y 00
2 = 1|Y 1

1 = 0, Y 0
1 = 0) =

1∑
y112 =0

1∑
y012 =0

p(y112 , y012 , 1|0, 0) ⇔ (A.7)

p(y112 , y012 , 1|0, 0) = 0 , y112 = 0, 1, y012 = 0, 1

1 = Pr(Y 11
2 = 1|Y 1

1 = 0, Y 0
1 = 0) =

1∑
y002 =0

1∑
y012 =0

p(1, y012 , y002 |0, 0) ⇔ (A.8)

1∑
y012 =0

p(1, y012 , 0|0, 0) = 1, p(0, 0, 0|0, 0) = p(0, 1, 0|0, 0) = 0
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The restrictions on the remaining parameters are

Pr(Y2 = 1|D1 = 1, Y1 = 0) = (A.9)

p(0, 0) + p(1|0, 1)p(0, 1)
Pr(Y1 = 0|D1 = 1)

and
Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0) = (A.10)∑1

y012 =0 p(y
01
2 , 1|1, 0)p(1, 0)

Pr(Y1 = 0|D1 = 0)

and
Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0) = (A.11)

p(1, 1, 0|0, 0)p(0, 0) +
∑1

y002 =0 p(1, y
00
2 |1, 0)p(1, 0)

Pr(Y1 = 0|D1 = 0)
.

and

Pr(Y1 = 0|D1 = 1) =
1∑

y01=0

p(0, y01) (A.12)

and

Pr(Y1 = 0|D1 = 0) =
1∑

y11=0

p(y11, 0). (A.13)

We substitute (A.12) and (A.13) into (A.9)-(A.11) to obtain

Pr(Y2 = 1|D1 = 1, Y1 = 0) = (A.14)

p(0, 0) + (Pr(Y1 = 0|D1 = 1)− p(0, 0))p(1|0, 1)
Pr(Y1 = 0|D1 = 1)

Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0) = (A.15)

(Pr(Y1 = 0|D1 = 0)− p(0, 0))(p(0, 1|1, 0) + p(1, 1|1, 0))
Pr(Y1 = 0|D1 = 0)

Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0) = (A.16)

p(0, 0)p(1, 1, 0|0, 0) + (Pr(Y1 = 0|D1 = 0)− p(0, 0))(p(1, 0|1, 0) + p(1, 1|1, 0))
Pr(Y1 = 0|D1 = 0)
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We now find a solution if p(0, 0) = Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 =
0)− 1, i.e. p(0, 0) is at its lower bound. This implies that

p(0, 1) = 1− Pr(Y1 = 0|D1 = 0) p(1, 0) = 1− Pr(Y1 = 0|D1 = 1)

Because p(0, 0)+p(1, 0)+p(0, 1) = 1 this implies that p(1, 1) = 0. Because in
all cases p(0, 0) will be at the lower bound, these values for p(0, 0), p(1, 0), p(0, 1)
and p(1, 1) apply throughout.

By (A.15) the choice of p(0, 0) implies

p(0, 1|1, 0)+p(1, 1|1, 0) = Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)Pr(Y1 = 0|D1 = 0)

1− Pr(Y1 = 0|D1 = 1)
(A.17)

with the right hand side less than or equal to 1 if and only if the lower bound
in (A.3) is 0. Next, by (A.14)

p(1|0, 1) = (A.18)

1− Pr(Y1 = 0|D1 = 0)− (1− Pr(Y2 = 1|D1 = 1, Y1 = 0))Pr(Y1 = 0|D1 = 1)

1− Pr(Y1 = 0|D1 = 1)

with the right hand side greater than or equal to 0 if and only if the upper
bound in (A.6) is 1. Finally, (A.16) holds if

p(1, 1, 0|0, 0) = p(1, 0|1, 0) + p(1, 1|1, 0) = Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0)
(A.19)

If we set
p(1, 1|1, 0) = (A.20)

min

{
Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)Pr(Y1 = 0|D1 = 0)

1− Pr(Y1 = 0|D1 = 1)
,

,Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0)

}
we have obtained a set of parameters that satisfies all the restrictions and
gives an ATES11,00

2 equal to 1 with for the remaining parameters

p(1, 0, 0|0, 0) = 1− Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0)

and if e.g.

p(1, 1|1, 0) = Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0)
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then p(1, 0|1, 0) = 0 and

p(0, 1|1, 0) = Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)Pr(Y1 = 0|D1 = 0)

1− Pr(Y1 = 0|D1 = 1)
−

Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0)

and

p(0, 0|1, 0) = 1− Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)Pr(Y1 = 0|D1 = 0)

1− Pr(Y1 = 0|D1 = 1)

The case that

p(1, 1|1, 0) = Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)Pr(Y1 = 0|D1 = 0)

1− Pr(Y1 = 0|D1 = 1)

is dealt with analogously.
The next step is to consider the case that the upper bound on Pr(Y 11

2 =
1|Y 1

1 = 0, Y 0
1 = 0) is less than 1 and the lower bound on Pr(Y 00

2 = 1|Y 1
1 =

0, Y 0
1 = 0) is greater than 0. After substitution we have the restrictions

Pr(Y2 = 1|D1 = 1, Y1 = 0) = (A.21)

Pr(Y 11
2 = 1|Y 1

1 = 0, Y 0
1 = 0)p(0, 0) + p(1|0, 1) (Pr(Y1 = 1|D1 = 1)− p(0, 0))

Pr(Y1 = 0|D1 = 1)

and
Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0) = (A.22)

Pr(Y 00
2 = 1|Y 1

1 = 0, Y 0
1 = 0)p(0, 0)

Pr(Y1 = 0|D1 = 0)
+∑1

y012 =0 p(y
01
2 , 1|1, 0)(Pr(Y1 = 0|D1 = 0)− p(0, 0))

Pr(Y1 = 0|D1 = 0)

and
Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0) = (A.23)∑1
y112 =0

∑1
y002 =0 p(y

11
2 , 1, y002 |0, 0)p(0, 0)

Pr(Y1 = 0|D1 = 0)
+∑1

y002 =0 p(1, y
00
2 |1, 0) (Pr(Y1 = 0|D1 = 0)− p(0, 0))

Pr(Y1 = 0|D1 = 0)
.
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After substitution of the upper bound on Pr(Y 11
2 = 1|Y 1

1 = 0, Y 0
1 = 0)

and the lower bound on Pr(Y 00
2 = 1|Y 1

1 = 0, Y 0
1 = 0) and rearranging we

have the system

Pr(Y2 = 1|D1 = 1, Y1 = 0)Pr(Y1 = 0|D1 = 1) = (A.24)

Pr(Y2 = 1|D1 = 1, Y1 = 0)Pr(Y1 = 0|D1 = 1)

Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0)− 1
p(0, 0)+

p(1|0, 1) (Pr(Y1 = 0|D1 = 1)− p(0, 0))

Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)Pr(Y1 = 0|D1 = 0) = (A.25)(
[Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)− 1] Pr(Y1 = 0|D1 = 0)

Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0)− 1
+ 1

)
p(0, 0)+

1∑
y012 =0

p(y012 , 1|1, 0) (Pr(Y1 = 0|D1 = 0)− p(0, 0))

Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0)Pr(Y1 = 0|D1 = 0) = (A.26)

1∑
y112 =0

1∑
y002 =0

p(y112 , 1, y002 |0, 0)p(0, 0)+

1∑
y002 =0

p(1, y002 |1, 0) (Pr(Y1 = 0|D1 = 0)− p(0, 0)) .

We find a solution with

p(0, 0) = Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0)− 1

Substitution in (A.24) gives p(1|0, 1) = 0 and in (A.25) gives p(0, 1|1, 0) +
p(1, 1|1, 0) = 1 so that p(1, 0|1, 0) = p(0, 0|1, 0) = 0. In the final equation
(A.26) this gives the solution

p(1, 1|1, 0) =
1∑

y112 =0

1∑
y002 =0

p(y112 , 1, y002 |0, 0) = Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0)

(A.27)
so that

p(0, 1|1, 0) = 1− Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0).
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This is a solution if also

p(0, 0, 1|0, 0) + p(0, 1, 1|0, 0) + p(1, 0, 1|0, 0) + p(1, 1, 1|0, 0) = (A.28)

[Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)− 1] Pr(Y1 = 0|D1 = 0)

Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0)− 1
+ 1 ≥ 0

and

p(1, 0, 0|0, 0) + p(1, 1, 0|0, 0) + p(1, 0, 1|0, 0) + p(1, 1, 1|0, 0) = (A.29)

Pr(Y2 = 1|D1 = 1, Y1 = 0)Pr(Y1 = 0|D1 = 1)

Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0))1
≤ 1

A solution to (A.27)-(A.29) is

p(1, 1, 1|0, 0) = min

{
Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0),

[Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)− 1] Pr(Y1 = 0|D1 = 0)

Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0)− 1
+ 1,

Pr(Y2 = 1|D1 = 1, Y1 = 0)Pr(Y1 = 0|D1 = 1)

Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0)− 1

}
≡ C

p(0, 1, 1|0, 0) =

min

{
[Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)− 1] Pr(Y1 = 0|D1 = 0)

Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0)− 1
+ 1,

Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0)

}
− C

p(1, 1, 0|0, 0) = min

{
Pr(Y2 = 1|D1 = 1, Y1 = 0)Pr(Y1 = 0|D1 = 1)

Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0)− 1
,

Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0)

}
− C.

For values of the remaining parameters consider e.g. the case that

p(1, 1, 1|0, 0) = Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0)

so that
p(0, 1, 0|0, 0) = p(1, 1, 0|0, 0) = p(0, 1, 1|0, 0) = 0
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The remaining parameters satisfy the equations

p(0, 0, 1|0, 0) + p(1, 0, 1|0, 0) =

[Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)− 1] Pr(Y1 = 0|D1 = 0)

Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0)− 1
+

1− Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0) ≥ 0

p(1, 0, 0|0, 0) + p(1, 0, 1|0, 0) =
Pr(Y2 = 1|D1 = 1, Y1 = 0)Pr(Y1 = 0|D1 = 1)

Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0)− 1
−

Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0) ≥ 0

so that
p(1, 0, 1|0, 0) =

min

{
[Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)− 1] Pr(Y1 = 0|D1 = 0)

Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0)− 1
+ 1,

Pr(Y2 = 1|D1 = 1, Y1 = 0)Pr(Y1 = 0|D1 = 1)

Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0))− 1

}
−

Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0).

If e.g.

p(1, 0, 1|0, 0) = [Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)− 1] Pr(Y1 = 0|D1 = 0)

Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0))− 1
+

1− Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0)

then p(0, 0, 1|0, 0) = 0 and

p(1, 0, 0|0, 0) = Pr(Y2 = 1|D1 = 1, Y1 = 0)Pr(Y1 = 0|D1 = 1)

Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0))− 1
−

[Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)− 1] Pr(Y1 = 0|D1 = 0)

Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0))− 1
− 1.

Finally,

p(0, 0, 0|0, 0) = 1− Pr(Y2 = 1|D1 = 1, Y1 = 0)Pr(Y1 = 0|D1 = 1)

Pr(Y1 = 0|D1 = 1)− Pr(Y1 = 0|D1 = 0))− 1
+
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Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0).

Besides these two cases we have to find the joint distributions of the po-
tential outcomes for the cases that E(Y 11

2 |Y 1
1 = 0, Y 0

1 = 0) < 1,E(Y 00
2 |Y 1

1 =
0, Y 0

1 = 0) = 0 and E(Y 11
2 |Y 1

1 = 0, Y 0
1 = 0) = 1,E(Y 00

2 |Y 1
1 = 0, Y 0

1 = 0) > 0.
The derivation is analogous to the one above. We also have to find the joint
distributions consistent with the lower bound. Again the derivation is anal-
ogous.

Proof of Theorem 2

We first consider bounds on Pr(Y 1
t = 1|St−1. We observe

Pr(Yt = 1|Yt−1 = 0, . . . , Y1 = 0, Dt = 1, . . . , D1 = 1) =

Pr(Yt = 1|Y t−1 = 0, Dt = 1).

Note that because treatment is absorbing it would suffice to condition on
D1 = 1. We keep the whole t vector Dt in the notation, but observe that
Dt = 1 ⇔ D1 = 1. The 0 in the condition is a t−1 vector. Under Assumption
3 on random assignment

Pr(Yt = 1, Y t−1 = 0|Dt = 1) = Pr(Y 1
t = 1, Y

1

t−1 = 0|Dt = 1) =

Pr(Y 1
t = 1, Y

1

t−1 = 0).

Now by the law of total probability

Pr(Y 1
t = 1, Y

1

t−1 = 0) = Pr(Y 1
t = 1, Y

1

t−1 = 0, Y
0

t−1 = 0)+

t−1∑
k=1

Pr(Y 1
t = 1, Y

1

t−1 = 0, Y 0
k = 1, . . . , Y 0

1 = 0) =

p1t (1|0, 0)pt−1(0, 0) +
t−1∑
k=1

p1t (1|0, k)pt−1(0, k)

p1t (1|0, 0) = Pr(Y 1
t = 1|Y 1

t−1 = 0, . . . , Y 1
1 = 0, Y 0

t−1 = 0, . . . , Y 0
1 = 0)

p1t (1|0, k) = Pr(Y 1
t = 1|Y 1

t−1 = 0, . . . , Y 1
1 = 0, Y 0

k = 1, . . . , Y 0
1 = 0)

k = 1, . . . , t− 1

pt(0, 0) = Pr(Y 1
t = 0, . . . , Y 1

1 = 0, Y 0
t = 0, . . . , Y 0

1 = 0)

pt(0, k) = Pr(Y 1
t = 0, . . . , Y 1

1 = 0, Y 0
k = 1, . . . , Y 0

1 = 0) , k = 1, . . . , t.
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Therefore (and using again that the treated state is absorbing)

Pr(Yt = 1|Y t−1 = 0, Dt = 1) =
p1t (1|0, 0)pt−1(0, 0)

Pr
(
Y t−1 = 0|Dt−1 = 1

)+
∑t−1

k=1 p
1
t (1|0, k)pt−1(0, k)

Pr
(
Y t−1 = 0|Dt−1 = 1

)
Solving for p1t (1|0, 0) gives

p1t (1|0, 0) =
Pr(Yt = 1|Y t−1 = 0, Dt = 1)Pr

(
Y t−1 = 0|Dt−1 = 1

)
pt−1(0, 0)

− (A.30)

∑t−1
k=1 p

1
t (1|0, k)pt−1(0, k)

pt−1(0, 0)
.

The expression on the right-hand side is decreasing in p1t (1|0, k) for all k.
The lower bound is obtained by setting p1t (1|0, k) at 1 and the upper bound
by setting p1t (1|0, k) at 0.

Pr(Yt = 1|Y t−1 = 0, Dt = 1)Pr
(
Y t−1 = 0|Dt−1 = 1

)
−
∑t−1

k=1 pt−1(0, k)

pt−1(0, 0)
≤

p1t (1|0, 0) ≤
Pr(Yt = 1|Y t−1 = 0, Dt = 1)Pr

(
Y t−1 = 0|Dt−1 = 1

)
pt−1(0, 0)

.

Because

Pr(Y t−1 = 0|Dt−1 = 1) = Pr(Y
1

t−1 = 0) = pt−1(0, 0) +
t−1∑
k=1

pt−1(0, k)

we have

(Pr(Yt = 1|Y t−1 = 0, Dt = 1)− 1) Pr
(
Y t−1 = 0|Dt−1 = 1

)
pt−1(0, 0)

+ 1 ≤

p1t (1|0, 0) ≤
Pr(Yt = 1|Y t−1 = 0, Dt = 1)Pr

(
Y t−1 = 0|Dt−1 = 1

)
pt−1(0, 0)

.

The upper bound is decreasing and the lower bound is increasing in
pt−1(0, 0), which is the probability of survival up to and including t − 1
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in both treatment arms. The final step is therefore to obtain a lower bound
on pt−1(0, 0). We have by the Bonferroni inequality

pt−1(0, 0) ≥

max
{
Pr(Y 1

t−1 = 0, . . . , Y 1
1 = 0) + Pr(Y 0

t−1 = 0, . . . , Y 0
1 = 0)− 1, 0

}
.

Also with Y0 ≡ 0

Pr(Y 1
t−1 = 0, . . . , Y 1

1 = 0) =
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 1)

and

Pr(Y 0
t−1 = 0, . . . , Y 0

1 = 0) =
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 0)

so that
pt−1(0, 0) ≥

max

{
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 1) +
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1, 0

}
If

t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 1) +
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1 > 0

then we are sure that there are survivors in both treatment arms. If this
condition holds then substitution of this lower bound gives the result.

By an analogous argument we obtain the bounds on Pr(Y 0
t = 1|Y 1

t−1, . . . , Y
1
1 =

0, Y 0
t−1 = 0, . . . , Y 0

1 = 0). The bounds on ATES1,0
t follow directly.

Next, we prove that the bounds are sharp. We find the parameters of
the joint distribution of the potential outcomes, such that a (lower or upper)
bound is binding and such that the joint distribution of the potential out-
comes satisfies the restrictions implied by the observed outcomes. The joint
distribution of the potential outcomes up to period t is determined by the
probabilities

ps(y
1
s , y

0
s |0, 0) , ps−1(0, 0), s = 1, . . . , t

p1s(y
1
s |0, k) , ps−1(0, k) , k = 1, . . . , s− 1, s = 1, . . . , t
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p0s(y
0
s |k, 0) , ps−1(k, 0) , k = 1, . . . , s− 1, s = 1, . . . , t

where p0t (1|k, 0) = Pr(Y 0
t = 1|Y 1

k = 1, . . . , Y 1
1 = 0, Y 0

t−1 = 0, . . . , Y 0
1 = 0)

and pt(k, 0) = Pr(Y 1
k = 1, . . . , Y 1

1 = 0, Y 0
t = 0, . . . , Y 0

1 = 0). The restrictions
imposed by the observed outcomes are for s = 1, . . . , t

Pr(Ys = 1|Y s−1 = 0, Ds = 1)Pr(Y s−1 = 0|Ds−1 = 1) = (A.31)

1∑
y0s=0

ps(1, y
0
s |0, 0)ps−1(0, 0) +

s−1∑
k=1

p1s(1|0, k)ps−1(0, k)

Pr(Ys = 1|Y s−1 = 0, Ds = 0)Pr(Y s−1 = 0|Ds−1 = 0) = (A.32)

1∑
y1s=0

ps(y
1
s , 1|0, 0)ps−1(0, 0) +

s−1∑
k=1

p0s(1|k, 0)ps−1(k, 0)

Pr(Y s−1 = 0|Ds−1 = 1) = ps−1(0, 0) +
s−1∑
k=1

ps−1(0, k) (A.33)

Pr(Y s−1 = 0|Ds−1 = 0) = ps−1(0, 0) +
s−1∑
k=1

ps−1(k, 0) (A.34)

Note that we simplify the problem by only considering individuals who
are never treated and individuals who are always treated. The bounds only
depend on the outcomes for these subpopulations and the proof of sharpness
for t = 2 shows that the restrictions derived from the individuals who enter
treatment after period 1 do not bound parameters that enter into the defi-
nition of ATES. The common parameter in the restrictions is p(0, 0) that is
set at its lower Bonferroni bound that only involves outcomes for the always
and never treated.

By definition

ATES1,0
t = Pr(Y 1

t = 1|Y 1

t−1 = 0, Y
0

t−1 = 0)−Pr(Y 0
t = 1|Y 1

t−1 = 0, Y
0

t−1 = 0) =

1∑
y0t=0

pt(1, y
0
t |0, 0)−

1∑
y1t=0

pt(y
1
t , 1|0, 0) = p1t (1|0, 0)− p0t (1|0, 0)

We need to consider the system

Pr(Yt = 1|Y t−1 = 0, Dt = 1)Pr(Y t−1 = 0|Dt−1 = 1) = (A.35)
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p1t (1|0, 0)pt−1(0, 0) +
t−1∑
k=1

p1t (1|0, k)pt−1(0, k)

Pr(Yt = 1|Y t−1 = 0, Dt = 0)Pr(Y t−1 = 0|Dt−1 = 0) = (A.36)

p0t (1|0, 0)pt−1(0, 0) +
t−1∑
k=1

p0t (1|k, 0)pt−1(k, 0)

Pr(Y t−1 = 0|Dt−1 = 1) = pt−1(0, 0) +
t−1∑
k=1

pt−1(0, k) (A.37)

Pr(Y t−1 = 0|Dt−1 = 0) = pt−1(0, 0) +
t−1∑
k=1

pt−1(k, 0) (A.38)

We find the parameters consistent with the upper bound on ATES1,0
t . The

parameters are

p1t (1|0, k) = 0 p0t (1|k, 0) = 1 k = 1, . . . , t− 1

and
pt−1(0, 0) =

t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 1) +
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1 =

Pr(Y t−1 = 0|Dt−1 = 1) + Pr(Y t−1 = 0|Dt−1 = 0)− 1

Substituting these values in (A.35) and (A.36) gives the upper bound on
p1t (1|0, 0) and the lower bound on p0t (1|0, 0). If the upper bound is larger
than 1 it is set at 1 and if the lower bound is less than 0 it is set at 0. The
remaining parameters of the joint distribution of the counterfactuals satisfy

t−1∑
k=1

pt−1(0, k) = 1− Pr(Y t−1 = 0|Dt−1 = 0)

and
t−1∑
k=1

pt−1(k, 0) = 1− Pr(Y t−1 = 0|Dt−1 = 1)
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and

p1t (1|0, 0) =
1∑

y0t=0

pt(1, y
0
t |0, 0) p0t (1|0, 0) =

1∑
y1t=0

pt(y
1
t , 1|0, 0)

and
1∑

y0t=0

pt(1, y
0
t |0, 0) = 1.

These restrictions are easily satisfied for values between 0 and 1.
Parameter values consistent with the lower bound on ATES1,0

t can be
found in the same way. Working back in time we obtain the joint distribu-
tion of the counterfactuals over time consistent with ATES1,0

t being at the
upper or lower bound for all t. 2

Proof of Theorem 3

From equations (A.1) and (A.4) we obtain

ATES11,00
2 =

Pr(Y2 = 1|D1 = 1, Y1 = 0)Pr(Y1 = 0|D1 = 1)

p(0, 0)
−

p11(1|0, 1) [Pr(Y1 = 0|D1 = 1)− p(0, 0)]

p(0, 0)
−

Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)Pr(Y1 = 0|D1 = 0)

p(0, 0)
+

p00(1|1, 0) [Pr(Y1 = 0|D1 = 0)− p(0, 0)]

p(0, 0)
.

The right-hand side is decreasing in p11(1|0, 1) and increasing in p00(1|1, 0),
so that

max

{
Pr(Y2 = 1|D1 = 1, Y1 = 0)Pr(Y1 = 0|D1 = 1)

p(0, 0)
− (A.39)

Pr(Y1 = 0|D1 = 1)− p(0, 0)

p(0, 0)
, 0

}
−min

{
Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)Pr(Y1 = 0|D1 = 0)

p(0, 0)
, 1

}
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≤ ATES11,00
2 ≤

min

{
Pr(Y2 = 1|D1 = 1, Y1 = 0)Pr(Y1 = 0|D1 = 1)

p(0, 0)
, 1

}
−

max

{
Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)Pr(Y1 = 0|D1 = 0)

p(0, 0)
−

Pr(Y1 = 0|D1 = 0)− p(0, 0)

p(0, 0)
, 0

}
.

The lower bound is increasing and the upper bound decreasing in p(0, 0).
If

Pr(Y1 = 0|D1 = 1) = Pr(Y 1
1 = 0) ≥ Pr(Y 0

1 = 0) = Pr(Y1 = 0|D1 = 0)

then by Assumption 4 for all i

Pr(Y 1
i1 = 0) ≥ Pr(Y 0

i1 = 0)

and by Assumption 5
Pr(Y 1

i1 ≤ Y 0
i1) = 1

so that
Pr(Y 1

1 ≤ Y 0
1 ) = 1.

Therefore

p(0, 0) = Pr(Y 0
1 = 0, Y 1

1 = 0) = Pr(Y 0
1 = 0) = Pr(Y1 = 0|D1 = 0).

Substitution gives the bounds. If

Pr(Y1 = 0|D1 = 1) = Pr(Y 1
1 = 0) ≤ Pr(Y 0

1 = 0) = Pr(Y1 = 0|D1 = 0)

then by Assumptions 4 and 5

p(0, 0) = Pr(Y1 = 0|D1 = 1)

and this gives the other bounds.

Proof of Theorem 4
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By the proof of Theorem 2 we have

max

{
(Pr(Yt = 1|Y t−1 = 0, Dt = 1)− 1) Pr

(
Y t−1 = 0|Dt−1 = 1

)
pt−1(0, 0)

+ 1, 0

}
−

min

{
Pr(Yt = 1|Y t−1 = 0, Dt = 0)Pr

(
Y t−1 = 0|Dt−1 = 0

)
pt−1(0, 0)

, 1

}
≤

ATES1,0
t ≤

min

{
Pr(Yt = 1|Y t−1 = 0, Dt = 1)Pr

(
Y t−1 = 0|Dt−1 = 1

)
pt−1(0, 0)

, 1

}
−

max

{
(Pr(Yt = 1|Y t−1 = 0, Dt = 0)− 1) Pr

(
Y t−1 = 0|Dt−1 = 0

)
pt−1(0, 0)

+ 1, 0

}
Because the lower bound is increasing in pt−1(0, 0) and the upper bound
decreasing in pt−1(0, 0) we need the lower bound on this probability.

We have

pt−1(0, 0) = Pr(Y 1
t−1 = 0, . . . , Y 1

1 = 0, Y 0
t−1 = 0, . . . , Y 0

1 = 0) =

Pr(Y 1
t−1 = 0, Y 0

t−1 = 0|St−2) Pr(Y
1
t−2 = 0, . . . , Y 1

1 = 0, Y 0
t−2 = 0, . . . , Y 0

1 = 0).

By Assumption 4 either

Pr
(
Y 1
i,t−1 = 0

∣∣Si,t−2

)
≤ Pr

(
Y 0
i,t−1 = 0

∣∣Si,t−2

)
(A.40)

or
Pr

(
Y 1
i,t−1 = 0

∣∣Si,t−2

)
> Pr

(
Y 0
i,t−1 = 0

∣∣Si,t−2

)
(A.41)

for all i. Assume that (A.40) holds. By Assumption 5 this implies that

Pr(Y 1
i,t−1 = 0, Y 0

i,t−1 = 1|Si,t−2) = 0

so that

Pr(Y 1
i,t−1 = 0|Si,t−2) = Pr(Y 1

i,t−1 = 0, Y 0
i,t−1 = 0|Si,t−2)+Pr(Y 1

i,t−1 = 0, Y 0
i,t−1 = 1|Si,t−2) =

Pr(Y 1
i,t−1 = 0, Y 0

i,t−1 = 0|Si,t−2)
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Because Assumptions 4 and 5 hold for all t we find by recursion that under
that assumption for all i

Pr(Y 1
i,t−1 = 0, . . . , Y 1

i1 = 0, Y 0
i,t−1 = 0, . . . , Y 0

i1 = 0) =
t−1∏
s=1

Pr(Y 1
is = 0|Y 1

i,s−1 = 0)

so that

pt−1(0, 0) =
t−1∏
s=1

Pr(Y 1
s = 0|Y 1

s−1 = 0) =
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 1)

If Assumption 4 holds with (A.41), then

pt−1(0, 0) =
t−1∏
s=1

Pr(Y 0
s = 0|Y 0

s−1 = 0) =
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 0)

We conclude that

pt−1(0, 0) ≥ min

{
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 1),
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 0)

}

and substitution gives the bounds. 2

Proof of Theorem 5

First, (A.1) expresses p00(1|0, 0) as a decreasing function of p00(1|1, 0).
Therefore the lower bound on p00(1|0, 0) is obtained if p00(1|1, 0) = 1 and by
Assumption 6 the upper bound is obtained if p00(1|0, 1) = p00(1|0, 0). For
the upper bound

p00(1|0, 0) ≤ Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)Pr(Y1 = 0|D1 = 0)

p(0, 0)
−

p00(1|0, 0)(Pr(Y1 = 0|D1 = 0)− p(0, 0))

p(0, 0)
,

and this is equivalent to

p00(1|0, 0) ≤ Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0). (A.42)
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An analogous argument gives

p11(1|0, 0) ≤ Pr(Y2 = 1|D1 = 1, Y1 = 0). (A.43)

Combining (A.42) and (A.43) with the lower bounds in Theorem 1 we
obtain the bounds on the ATES 2.

Proof of Theorem 6

By (A.30) and Assumption 6 we obtain the following inequality

p1t (1|0, 0) ≤
Pr(Yt = 1|Y t−1 = 0, Dt = 1)Pr(Y t−1 = 0|Dt−1 = 1)

pt−1(0, 0)
−

p1t (1|0, 0)
∑t−1

k=1 pt−1(0, k)

pt−1(0, 0)

and upon rearranging this is equivalent to

p1t (1|0, 0) ≤ Pr(Yt = 1|Y t−1 = 0, Dt = 1).

An analogous argument gives

p0t (1|0, 0) ≤ Pr(Yt = 1|Y t−1 = 0, Dt = 0).

Assumption 6 also improves on the Bonferroni inequality for pt−1(0, 0).
We have

pt−1(0, 0) =
t−1∏
s=1

Pr(Y 1
s = 0, Y 0

s = 0|Ss−1)

By the Bonferroni inequality and the results above

Pr(Y 1
s = 0, Y 0

s = 0|Ss−1) ≥ max{1−Pr(Y 1
s = 1|Ss−1)−Pr(Y 0

s = 1|Ss−1), 0} ≥

max{1− Pr(Ys = 1|Y s−1 = 0, Ds = 1)− Pr(Ys = 1|Y s−1 = 0, Ds = 0), 0} =

max{Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1, 0}
so that

pt−1(0, 0) ≥
t−1∏
s=1

max{Pr(Ys = 0|Y s−1 = 0, Ds = 1)+Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1, 0}.
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We compare this to the lower bound

max

{
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 1) +
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1, 0

}

that we obtained in the proof of Theorem 2. First, if there is an 1 ≤ s ≤ t−1
so that

Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1 < 0

then

t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 1) +
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1 < 0

so that if the new lower bound is 0, so is the previous one. Finally, if for all
s = 1, . . . , t− 1

Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1 > 0

then

t−1∏
s=1

[
Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1

]
≥

t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 1) +
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1.

Proof of Theorem 7

By the proof of Theorem 6 we have under Assumption 6

max

{
(Pr(Yt = 1|Y t−1 = 0, Dt = 1)− 1) Pr

(
Y t−1 = 0|Dt−1 = 1

)
pt−1(0, 0)

+ 1, 0

}
−

Pr(Yt = 1|Y t−1 = 0, Dt = 0) ≤ ATES1,0
t

Pr(Yt = 1|Y t−1 = 0, Dt = 1)−
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max

{
(Pr(Yt = 1|Y t−1 = 0, Dt = 0)− 1) Pr

(
Y t−1 = 0|Dt−1 = 0

)
pt−1(0, 0)

+ 1, 0

}
Because the lower bound is increasing in pt−1(0, 0) and the upper bound

decreasing in pt−1(0, 0) we need the lower bound on this probability. By the
proof of Theorem 4 we have under Assumptions 4 and 5

pt−1(0, 0) ≥ min

{
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 1),
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 0)

}

Substitution gives the bounds.
Since

Pr(Ys = 0|Y s−1 = 0, Ds = 1)− 1 ≤ 0

we have
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 0) ≥

t−1∏
s=1

max{Pr(Ys = 0|Y s−1 = 0, Ds = 1)+Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1, 0}.

and analogously
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 1) ≥

t−1∏
s=1

max{Pr(Ys = 0|Y s−1 = 0, Ds = 1)+Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1, 0}.

so that the lower bound on pt−1(0, 0) under MTR, CS and PCO is is not
smaller than that under PCO, so that bounds under all three assumptions
are narrower than under just PCO 2.
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