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Summary

In observational studies the overall aim when fitting a model for the propensity score is
to reduce bias for an estimator of the causal effect. For this purpose guidelines for covariate
selection for propensity score models have been proposed in the causal inference litera-
ture. To make the assumption of an unconfounded treatment plausible researchers might be
tempted to include many, possibly correlated, covariates in the propensity score model. In
this paper we study how the efficiency of matching and inverse probability weighting esti-
mators for average causal effects change when the covariates are correlated. We investigate
the case with multivariate normal covariates and linear models for the propensity score and
potential outcomes and show results under different model assumptions. We show that the
correlation can both increase and decrease the large sample variances of the estimators, and
that the correlation affects the efficiency of the estimators differently, both with regard to
direction and magnitude. Moreover, the strength of the confounding towards the outcome
and the treatment plays an important role.

Keywords: Efficiency bound, observational study, propensity score, variable selection
JEL-codes: C13; C40; C52

*We thank conference participants at the 26th International Biometric Conference in Kobe and seminar
participants at the joint IFAU and Department of Statistics seminar. We would also like to thank Marcus
Frolich and Per Johansson for valuable comments.

IFAU – Effects of correlated covariates on matching and IPW estimators 1



Contents

1 Introduction 3

2 Model and theory 5

2.1 Inverse probability weighting estimators . . . . . . . . . . . . . . . . . . . . . 6

2.2 The matching estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Correlated covariates and efficiency 8

3.1 The data generating process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Correlation and the behavior of the estimators . . . . . . . . . . . . . . . . . . 9

3.3 The relative efficiency of the estimators . . . . . . . . . . . . . . . . . . . . . 17

4 Discussion 18

A Appendix 20

A.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A.2 Excluding combinations in Example 2 and Example 3 . . . . . . . . . . . . . . 25

2 IFAU – Effects of correlated covariates on matching and IPW estimators



1 Introduction

Drawing inference about the causal effect of a treatment with observational data is a common

goal in empirical research. An assumption of unconfoundedness is fulfilled if the treatment

assignment is independent of the potential outcomes resulting from assignment to treatment

or no treatment when conditioning on a set of observed pre-treatment variables. Estimators

adjusting for confounding variables are used to disentangle the treatment effect from the effect

of other variables, in the following referred to as covariates, that systematically differ between

treated and controls. Instead of controlling for the covariates directly it is sufficient to control for

the propensity score, the conditional probability of treatment given the covariates (Rosenbaum

and Rubin 1983). Propensity score methods have gained wide applicability in both the social and

medical sciences, see e.g., Thoemmes and Kim (2011) and Luo, Gardiner, and Bradly (2010)

for recent reviews.

For the data analyst a central component in the estimation process is to specify the propensity

score model. The topic has been addressed in the literature with focus on both variable selection

(Heckman, Ichimura, and Todd 1998; Lunceford and Davidian 2004; Brookhart, Schneeweiss,

Rothman, Glynn, Avorn, and Stürmer 2006) and functional form specification (Dehejia and

Wahba 1999; Millimet and Tchernis 2009; Waernbaum 2010; Waernbaum 2012). Through

simulations Millimet and Tchernis (2009) study the case of overfitting in terms of including

both irrelevant variables and higher order terms as well as underfitting in terms of excluding

relevant covariates and higher order terms. Their conclusions were in general positive towards

overfitting and they found that the cost in terms of efficiency was small in the simulations under

study.

In this paper we address the setting where the researcher has a rich set of data available

with many covariates describing similar characteristics of the individual, e.g., there may be

several variables describing health or socio-economic conditions of the individiual. In order to

justify the unconfoundedness assumption it could be considered appealing to include as many

covariates as possible. In practice, the analyst could choose one or several variables describing

for instance the individuals’ education. In such cases the covariates will most likely be strongly

correlated. For matching estimators it has been suggested that collinearity in a propensity score

model is not of concern since inference regarding the individual parameters in the model is
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not of primary interest and the collinearity does not per se reduce the predicitive power of the

propensity score (Stuart 2010).

The results in this paper contribute to the discussion of overfitting by studying how the

efficiency is affected by using a propensity score model with variables that are correlated. For

this purpose we study two different approaches of estimation of causal effects with propensity

scores. Estimators such as matching or stratification estimators use the property of the propensity

score as a balancing score, i.e., within the matched sets or strata the covariates of the treated and

controls follow the same distribution (see Imbens and Wooldridge 2009 for a review of matching

and stratification estimators). A different approach is to use the propensity scores to generate

the missing potential outcomes as in inverse probability weighting (IPW) (Wooldridge 2007).

Here, we study and compare the large sample variances of the matching estimator as described

in Abadie and Imbens (2006) and an IPW estimator described in Hirano, Imbens, and Ridder

(2003) and Lunceford and Davidian (2004). To investigate the impact of the correlation as

such on the asymptotic variance of the estimators we assume parametric models for the data

generating process (DGP), also we assume that the covariates are normally distributed.

In our setting we find that the variance of the matching estimator and the IPW estimator

can be either larger or smaller when the covariates are correlated depending on the regression

coefficients in the outcome and propensity score models. Also, we see that the impact of the

correlation can be in different directions, i.e., for the same values of the parameters in the models

a change in the correlation can have the opposite effect on the IPW estimator compared to

the matching estimator. For instance, if the regression coefficients are either all positive or all

negative the variance of the IPW estimator increases if the correlation increases which is not

necessarily the case for the matching estimator under study. We study the relative efficiency

for the estimators and show results on the maximum and minimum values of the ratio of the

large sample variances together with results of the rate of change of the ratio with respect to the

correlation. Under the conditions studied our results indicate that the asymptotic variance of the

matching estimator is less affected by an increase in the correlation than the IPW estimator.

We proceed as follows: In Section 2, we present the theoretical framework, notation and the

matching and IPW estimators. Section 3 presents the results of the paper concerning correlation

and efficiency of the previously described estimators and Section 4 concludes with a discussion.
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2 Model and theory

In this section, we describe the Neyman-Rubin framework of causal inference (Neyman 1923;

Rubin 1974) through potential outcomes. For a given population we assume that we have a

random sample of N individuals i = 1, . . . , N . We consider a binary treatment, W = 1 if the

individual is treated and W = 0 if the individual is a control. The definition of a causal effect

of the treatment on a response variable of interest is the difference of the potential outcomes

Y1 � Y0, where Y1 is the potential outcome under treatment and Y0 is the potential outcome

under the control treatment. In this paper interest lies in estimation of the average causal effect,

⌧ = E(Y1 � Y0), under an assumption of unconfoundedness. We denote by X a vector of pre-

treatment variables referred to as covariates in the following. To summarize, for each individual

we observe the variables (X,W, Y ) where Y is the observed response variable Y = WY1 +

(1 � W )Y0. When the treatment is not randomized the average causal effect can be identified

under an assumption of strong ignorability (Rosenbaum and Rubin 1983),

Assumption 1 (Strong ignorability)

(i) (unconfoundedness) (Y1, Y0) ?? W | X

(ii) (overlap) 0 < P (W = 1|X) < 1.

Throughout the paper we assume that Assumption 1 holds although milder versions are suffi-

cient for the identification of an average causal effect, see e.g., Wooldridge (2002, Chapter 18)

for alternative versions of identifying assumptions. Under Assumption 1 the population aver-

age causal effect can be identified with the observed data by comparing treated and controls

conditional on X and then take the average of the conditional differences.

⌧ = E(Y1 � Y0) = E(E(Y1 | X,W = 1)� E(Y0 | X,W = 0)). (1)

Instead of comparing treated and controls with the same values on all covariates it suffices

to condition on the propensity score, p(X) ⌘ P (W = 1 | X) (Rosenbaum and Rubin 1983),

a scalar function of the covariates, hence overcoming the curse of dimensionality present in

all nonparametric estimators. As an alternative the propensity score can be used as weights to

generate the missing potential outcomes

⌧ = E(Y1 � Y0) = E

✓
WY

p(X)

◆
� E

✓
(1�W )Y

1� p(X)

◆
. (2)
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Here, the propensity score weights the observed data to correct for the disproportionality of

the observed responses with respect to the potential outcomes in the population similar to sample

weighting proposed by Horvitz and Thompson (1952). The two representations displayed in (1)

and (2) differ with respect to how the propensity score is used. When conditioning as in Equation

1 the propensity score or any other balancing score, b(X) such that X ?? W | b(X), can be

used instead of the full covariate vector X whereas in Equation 2 the propensity score is used to

generate the 1/p(X) � 1 missing potential outcomes with similar characteristics. Throughout

this paper we assume that the propensity score is a known function although in practice it is

often estimated.

Irrespective of whether the propensity score is known or estimated, Hahn (1998) shows that

the semi-parametric asymptotic efficiency bound for the average treatment effect is

�2
EFF = E


(E(Y1 � Y0|X)� ⌧)2 +

V (Y1|X)

p(X)

+

V (Y0|X)

1� p(X)

�
. (3)

Efficient estimators, i.e., semi-parametric estimators reaching (3) have been proposed, see e.g.,

Hahn (1998), Hirano, Imbens, and Ridder (2003), Imbens, Newey, and Ridder (2005).

2.1 Inverse probability weighting estimators

The estimation approach illustrated by Equation 2 has formed the basis for IPW estimators.

The IPW estimators belong to a class of efficient semiparametric estimators in the missing data

framework, see e.g., Tsiatis (2006). A straightforward estimator would be to consider

1

N

NX

i=1

WiYi
p(Xi)

� 1

N

NX

i=1

(1�Wi)Yi
1� p(Xi)

.

However, since the weights do not always add up to one this estimator is not particularly appeal-

ing, see e.g., Hirano, Imbens, and Ridder (2003) for further discussion. Instead we study the

following estimator using normalized weights proposed by Hirano, Imbens, and Ridder (2003)

and also described in Lunceford and Davidian (2004):

⌧̂IPW =

 
NX

i=1

Wi

p(Xi)

!�1 NX

i=1

WiYi
p(Xi)

�
 

NX

i=1

1�Wi

1� p(Xi)

!�1 NX

i=1

(1�Wi)Yi
1� p(Xi)

. (4)

Its large sample distribution is

p
N (⌧̂IPW � ⌧)

d�! N
�
0,�2

IPW

�
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with variance

�2
IPW = E

"
(Y1 � µ1)

2

p(X)

+

(Y0 � µ0)
2

1� p(X)

#
, (5)

where µw = E(Yw), w = 0, 1.

IPW estimators are easily implemented in practice, but a concern is the risk of unstable

estimates when p(X) is close to zero or one, see e.g. the discussion in Kang and Schafer (2007).

It should be noted that neither the unnormalized estimator nor the normalized version in (4)

achieve the semi-parametric efficiency bound when using the true propensity score.

2.2 The matching estimator

A matching estimator imputes the missing potential outcome from one or several nearest neigh-

bours from the opposite treatment group. Below, we study a matching estimator that compares

outcomes between treated and controls, with each observation matched to a fixed number of

units with the opposite treatment. The matching is done with replacement, allowing each unit to

be used as a match multiple times. The sample consists of N1 treated and N0 control units with

N1 +N0 = N . Assuming that at least one covariate and the function p(·) being continuous, the

propensity score is also continuous with no ties present. For individuals i and i0 from opposite

treatments we denote the distance dii0 ,

dii0 =| p(Xi)� p(Xi0) | . (6)

where for each i we denote by Ji a set Ji = {1, 2, . . . , i0, . . . ,M} of indices of the M individuals

with the smallest order statistics di(i0), i0  M . The matching estimator, ⌧̂M, matching treated

and controls to a fixed number of M matches is defined

⌧̂M =

1

N

NX

i=1

Wi(Yi � ˆY0i) + (1�Wi)(
ˆY1i � Yi), (7)

where ˆY0i =
1
M

P
i02Ji Yi0 and ˆY1i =

1
M

P
i02Ji Yi0 are the observed response means for the M

individuals with the smallest absolute difference in the propensity score (6).

Abadie and Imbens (2006) show that the large sample distribution of the matching estimator

based on the true propensity score is1

p
N (⌧̂M � ⌧)

d�! N
�
0,�2

M

�

1Besides Assumption 1 further assumptions regarding differentiability and support of the propensity score are
needed. See Abadie and Imbens (2006) for details.
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with variance

�2
M = E

h
(E [Y |W = 1, p(X)]� E [Y |W = 0, p(X)]� ⌧)2

i

+ E


V [Y |W = 1, p(X)]

✓
1

p(X)

+

1

2M

✓
1

p(X)

� p(X)

◆◆�

+ E


V [Y |W = 0, p(X)]

✓
1

1� p(X)

+

1

2M

✓
1

1� p(X)

� (1� p(X))

◆◆�
. (8)

Matching estimators are intuitive to use for practitioners with a smoothing parameter, i.e.,

the number of matches, that is easy to interpret. Although matching estimators are biased in

general, where using a single match gives the least bias, the bias is of sufficiently low enough

order to be ignored when matching on a scalar, such as the propensity score. The large sample

variance of the matching estimator and the asymptotic variance bound when matching on the

propensity score are then related as follows

�2
M � �2

EFF

�2
EFF

<
1

2M
.

Obviously, �2
M does not achieve the variance bound, but increasing the number of matches im-

proves the efficiency of the estimator.

3 Correlated covariates and efficiency

In this section we investigate the behaviour of the estimators defined in (4) and (7) when the

covariates are correlated. The estimators are also compared to the efficiency bound in (3). For

this purpose we assume parametric models for the data generating process. The analysis of

the estimators that follows is then divided into two parts. The first part focuses on correlation

and the behaviour of the large sample variances �2
IPW and �2

M, while the second part studies how

correlation affects the relative efficiency of the estimators, R = �2
M/�

2
IPW.

3.1 The data generating process

To investigate the large sample variances of the matching and IPW estimator we assume linear

models generating the potential outcomes and a logistic model generating the propensity score.

Assumption 2 (Outcome model) Each potential outcome, w, is generated by a linear model

Yw = ↵w + �0
wX + "w, w = 0, 1, (9)
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with an error term, "w, a k-dimensional parameter vector �w with elements �wj for j =

1, . . . , k, and a k-dimensional random variable, X .

Assumption 3 (Treatment assignment) The propensity score is generated by a logistic model

p(�0X) =

e�
0X

1 + e�0X
, (10)

where � = (�1, . . . , �j , . . . , �k) is a coefficent vector.

Further, we also make an assumption on the distribution of the covariates.

Assumption 4 (Distribution of the covariates) The covariate vector, X , has a k-variate nor-

mal distribution with mean vector ✓ and covariance matrix ⌃ of full rank. Furthermore, the

error term "w is uncorrelated with X and follows a normal distribution with mean zero and

variance �2
"w .

By the assumption of multivariate normality, �0X = Z has a normal distribution with mean

�0✓ = µZ and variance �0⌃� = �2
Z . Similarly, Yw has a normal distribution with mean µYw =

↵w + �0
w✓ and variance �2

Yw
= �0

w⌃�w + �2
"w . The covariance between Yw and Z is �Yw,Z =

�0
⌃�. In this setting, W is a Bernoulli random variable with success probability p(Z). Finally,

note that the average treatment effect is given by

⌧ = ↵1 � ↵0 + ✓0(�1 � �0). (11)

3.2 Correlation and the behavior of the estimators

We now turn to the analysis of how correlation among the covariates affects the variances of the

estimators defined in (4) and (7). We begin by establishing the following proposition regarding

the large sample variance of the inverse probability weighting estimator in (5).

Proposition 1 Under Assumptions 1� 4 the large sample variance of ⌧̂
IPW

is

�2
IPW

= �2
Y1

+ e�µZ+�2
Z/2

�
�2
Y1

+ �2
Y1,Z

�
+ �2

Y0
+ eµZ+�2

Z/2
�
�2
Y0

+ �2
Y0,Z

�
. (12)

The proofs to this and all of the following propositions and corollaries are provided in the Ap-

pendix. The parts in (12) involving ⌃ are �2
Yw

, �2
Z and �2

Yw,Z . Recalling the data generating

process, we conclude by inspection that as the correlation in a set of variables increases and if

IFAU – Effects of correlated covariates on matching and IPW estimators 9



all elements in � and � share the same sign, then �2
IPW also increases. For the case when some el-

ements in � and � are strictly positive and some elements are strictly negative, �2
IPW may increase

or decrease as the correlation among the variables increases.

Next, we state a proposition regarding the variance of the matching estimator.

Proposition 2 Under Assumptions 1� 4 the large sample variance of ⌧̂
M

is

�2
M

=

�2
Y1,Z

+ �2
Y0,Z

� 2�Y1,Z�Y0,Z

�2
Z

+

 
�2
Y1

�
�2
Y1,Z

�2
Z

!
E


1 +

e�Z
(1 + 2M)

2M
+

1

2M(1 + eZ)

�

+

 
�2
Y0

�
�2
Y0,Z

�2
Z

!
E


2M + 1

2M
+

eZ(1 + 2M)

2M
� 1

2M(1 + eZ)

�
. (13)

There is no closed form available for the expectations in (13), therefore some simplifying as-

sumptions are introduced to facilitate further analysis.

Assumption 5

(i) Constant treatment effect, i.e. �1 = �0, and identically distributed error terms, implying that

�2
Y1

= �2
Y0

and �Y1,Z = �Y0,Z .

(ii) Z has mean zero, i.e. µZ = 0.

(iii) ⌃ is an equicorrelation matrix with ⇢ � 0.

Before using the above assumptions to establish further results regarding the behaviour �2
M, note

that under Assumptions 1� 5(i) the efficiency bound in (3) is

�2
EFF = �2

"w

⇣
2 + e�µZ+ 1

2�
2
Z
+ eµZ+ 1

2�
2
Z

⌘
. (14)

The behaviour of the efficiency bound is only affected by the treatment assignment and if all

elements in � share the same sign, then �2
EFF also increases as the correlation increases.

We now establish the following corollary regarding �2
M and the derivative of �2

M with respect

to ⇢.

Corollary 1 Suppose that Assumptions 1� 4 hold.

(i) Adding Assumption 5(i� ii), the large sample variance of ⌧̂
M

is

�2
M

=

 
�2
Yw

�
�2
Yw,Z

�2
Z

! 
1 + 4M + (2 + 4M)e

1
2�

2
Z

2M

!
, w = 0, 1. (15)
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(ii) Adding Assumption 5(i� iii), the derivative of �2
M

with respect to ⇢ is

@�2
M

@⇢
=

⇣
1 + 4M + (2 + 4M)e

1
2�

2
Z

⌘✓
�0
wA�w +

�2
Yw,Z�0A�

(�2
Z)2

� 2�0
wA��Yw,Z

�2
Z

◆

2M

+

 
�2
Yw

�
�2
Yw,Z

�2
Z

!
(2 + 4M)�0A�e

1
2�

2
Z

4M
(16)

where A is a k⇥k hollow matrix with all diagonal elements equal to zero and all other elements

equal to one.

Observe that due to Assumption 5(i) it is not necessary to specify which potential outcome we

are referring to. Even though further assumptions have been made, it is still difficult to generalize

how a change in the correlation between the covariates will affect �2
M. Therefore, we proceed

with studying some examples under Assumptions 1� 5(i� iii).

Example 1 Let all elements in � be equal. Then (16) can be written as the linear function

@�2
M

@⇢
= f(M,k, �j , ⇢) + g(M,k, �j , ⇢)

k�1X

j=1

kX

j0=j+1

(�wj � �wj0)
2 (17)

where f(·) has the same sign as �j and g(·) can be positive or negative. If f(·) and g(·) have

opposite signs the magnitude of the differences between elements in �w will determine the sign

of the derivative. Three numerical examples provides an illustration:

f(1, 4,
p
1/3, 0) = 11.69, g(1, 4,

p
1/3, 0) = 0.84,

f(1, 4,
p
1/3, 0.9) = 70.70, g(1, 4,

p
1/3, 0.9) = �7.70,

f(1, 4,
p
1/20, 0) = 0.99, g(1, 4,

p
1/20, 0) = �1.21.

In the case of all elements in �w being equal, then

Pk�1
j=1

Pk
j0=j+1(�wj � �wj0)

2
= 0. An

increase in the correlation will then always lead to an increase in �2
M

if �j is positive. The effect

is the opposite if �j is negative.

Example 1 highlights two features of the behavior of the matching estimator. To begin with,

it demonstrates that the variance may actually decrease as the correlation in a set of variables

increases even if all elements in �w and � are strictly positive. This contrasts the behavior of

IFAU – Effects of correlated covariates on matching and IPW estimators 11



the inverse probability weighting estimator. Furthermore, it shows the importance of different

parameter values in �w when all elements in � are equal.

Figure 1: The relationship between �Yw , �Z and �Yw/�Z and @�2
M/@⇢ evaluated at ⇢ = 0 and

⇢ = 0.9. Histograms of the evaluated derivatives are displayed to the farthest right.

In the following example we study �2
M for a wider range of parameter values.

Example 2 Let ⌧ = 3 and �2
"w = 1. Also, let M = 1 and k = 2. Thus the components

�w1,�w2, �1, �2 and ⇢ influence the derivative in (16). Next, let �w1 and �w2 take the 50 values,

{0.05, 0.15, ..., 4.95}, �1 and �2 take the 15 values, {0.05, 0.15, ..., 1.45}, and ⇢ take the values,

{0, 0.9}. Select all the unique combinations and then, to avoid extreme distributions of the

propensity score (see the Appendix), delete observations with �2
Z < 0.1 and �2

Z > 2.5. Use the

remaining 122,400 data points for ⇢ = 0 and 84,150 data points for ⇢ = 0.9 and analyse how

�Yw , �Z and �Yw/�Z are associated with (16). Due to scale issues the standard deviations are

used instead of the variances.

The left panels in Figure 1 show that it seems more likely for the derivative to be negative if

�Yw is large. The results in the middle panels are ambiguous. The association between �Z and

the derivative is unclear and appears to depend on the level of ⇢, where for ⇢ = 0.9 most values

12 IFAU – Effects of correlated covariates on matching and IPW estimators



are negative. The right panels display that it is more likely for the derivative to be negative if

�Yw/�Z is large. Furthermore, the vertical histograms to the right show that larger ⇢ makes

it more likely for the derivative to be negative. This means that the variance of the matching

estimator will decrease if the correlation increases.

One way to interpret the results in Example 2 is to view �Yw and �Z as proxies for the

size of the parameters, i.e., how strongly related the covariates are to treatment assignment and

outcome. Given that the parameters are positive, the example points out three important things.

First, the two left panels suggest that an increase in the correlation between the covariates is more

likely to decrease the variance of the matching estimator if the covariates are strongly related

to the outcome. Second, by looking at the panels to the right it seems that if the covariates

are strongly related to the outcome relative to how strongly related the covariates are to the

treatment assignment, then increasing the correlation is likely to decrease the variance of the

matching estimator. Third, by simply comparing the two vertical histograms it looks like an

increase in the correlation will make the covariates more strongly related to both the treatment

assignment and the outcome. Hence, a stronger initial level of correlation then makes it more

likely to decrease the variance of the matching estimator when the correlation increases.

Next we consider an example that provides a more detailed view of how correlation between

covariates affects the variance of the estimators. Here we separate the components in the corre-

lation ⇢, the components in the outcome �w and the components in the treatment assignment �.

The variances are also compared to the efficiency bound in (3).

Example 3 Assume that Assumptions 1 � 5(i � iii) hold and let ⌧ = 3, �2
"w = 1, M = 1 and

k = 2. Evaluate (12), (15) and (3) for different values of ⇢, �w1, �w2, �1 and �2 and plot the

association between ⇢ and the variances and the efficiency bound.

In Figure 2, we once again observe that the matching estimator and the IPW estimator may

display opposite behaviour with respect to the effect of correlation. Also seen, and consistent

with previous results, is that in the case when all elements in � are equal and all elements in

�w are equal, the derivative of �2
M

with respect to ⇢ is positive. In addition, Figure 2 provides

new findings. The figure suggests that the matching estimator is less sensitive to a change in the

correlation compared to the IPW estimator. Furthermore, the largest decrease in the variance

of the matching estimator occurs when �1 is small and �w1 is large, while at the same time �2 is
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large and �w2 is small. Interestingly, the variance of the matching estimators seems for many of

these cases actually approach the efficiency bound when ⇢ approaches one. Moreover, Figure 2

shows that even though the IPW estimator and the efficiency bound exhibit similar behaviour, the

IPW estimator is always more sensitive to a change in the correlation and the efficiency bound

is only affected by ⇢ and �.
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Figure 2: The relationship between ⇢ and �2
IPW and �2

M. Note that the subscript w is dropped for
clarity.
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Interpreting Example 3 in terms of covariates, we see that a decrease in the variance of the

matching estimator seems likely when one of the covariates is strongly related to the treatment

assignment and weakly related to the outcome, while the other one is weakly related to the

treatment assignment but strongly related to the outcome. This, however, does not imply that

the variance of the matching estimator is smaller than the variance of the IPW estimator. In fact,

it could be exactly the opposite. For instance, looking at the case when �1 = 0.01, �2 = 1.2,

�w1 = 2 and �w2 = 0.01 it is apparent that when ⇢ = 0 the IPW estimator is more efficient than

the matching estimator, and is actually close to the efficiency bound. Despite the negative slope

of the variance, the matching estimator remains less efficient than the IPW estimator until the

correlation between the covariates approaches 0.5.

Moreover, what also is apparent in Example 3 is that the IPW estimator in many cases is

more sensitive to a change in the correlation, particularly when the overall relation between the

covariates and the treatment assignment initially is strong.

3.3 The relative efficiency of the estimators

In the following we will examine the relative efficiency of the estimators by studying

R =

�2
M

�2
IPW

. (18)

We begin with establishing a proposition regarding (18) that emphasizes some properties con-

cerning the relationship between �2
M and �2

IPW.

Proposition 3 Under Assumptions 1�5(ii) the maximum value of R in (18) is 1+1/2M which

occurs when �Yw,Z = 0. The minimum value of R is 0, which occurs at �2
Yw,Z � �2

Y �
2
Z = 0.

To begin with, Proposition 3 shows that the maximum loss with respect to efficiency is smaller

when selecting ⌧̂M instead of ⌧̂IPW. Under Assumptions 1 � 5(ii), and when using one match

only, the variance of the matching estimator is at most fifty percent greater than the variance

of the IPW estimator. In the case of zero correlation between the covariates, this occurs when

the parameter vector for the treatment assignment and the parameter vector for the outcome are

orthogonal, i.e. �w� = 0. For R to be maximized when correlation is introduced orthogonality

must still be maintained in the sense that �w⌃� = 0.

We now turn to how correlation affects the relative efficiency of the estimators.
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Proposition 4 Suppose that Assumptions 1� 5(i� iii) hold. Then

@R

@⇢
=

�
2�Yw,Z (1 + 4M)

�
�Yw,Z�

0A��2
Yw

+ �0
wA�w�Yw,Z�

2
Z � 2�0

wA��
2
Yw

�2
Z

�

+ 4�Yw,Ze
�2
Z
(1 + 2M)

�
�3
Yw,Z�

0A� � 2�0
wA��

2
Yw

�2
Z(1 + �2

Z)

+ �Yw,Z(�
0A��2

Yw
+ �0

wA�w�
2
Z(1 + �2

Z)
�

+ e
1
2�

2
Z
�
�0A��4

Yw
�4
Z + �4

Yw,Z�
0A�(1 + 4M)(2 + �2

Z)

� 4�0
wA��Yw,Z�

2
Yw

�2
Z(3 + �2

Z + 4M(2 + �2
Z))

��2
Yw,Z(�

0A��2
Yw

(�2
Z � 2)� 2�0

wA��
2
Z)(3 + �2

Z + 4M(2 + �2
Z)
� 

/
⇣
8M(�2

Yw
+ e

1
2�

2
Z
(�2

Yw,Z + �2
Yw

))

2�4
Z

⌘
, (19)

where A is a k⇥k hollow matrix with all diagonal elements equal to zero and all other elements

equal to one.

Example 4 For the setup as described in Example 2 we evaluate the derivative in (19). Figure

3 displays that @R/@⇢ is negative only for a small number of cases when �Yw is very small.

Under the studied conditions, the interpretation of Example 3 is that an increase in the correlation

between covariates is for almost all cases more beneficial for the matching estimator relative to

the IPW estimator. Hence, even if the variance of the IPW estimator is smaller than the variance

of the matching estimator, increasing the correlation will decrease the difference between the

variances.

4 Discussion

The objective of this study was to investigate the impact of correlation on the large sample vari-

ances of a matching estimator and an IPW estimator with all else being equal. This is motivated

by the absence of theoretical results concerning how correlation among the covariates influence

the variance of an estimator of the average causal effect. In this paper we show, under general

model assumptions, how correlation is present in components of the asymptotic variances in a

complex form. Thus, concluding that correlation has no effect on estimators of average treatment

effects is not correct. In this regard, referring to standard consequences of multicollinearity is

not sufficient. A main result of the paper is that the impact of the correlation differs between the

two estimators. For the same conditions the variance of the respective estimators can change in
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Figure 3: The relationship between �Yw and @R/@⇢ evaluated at ⇢ = 0 and ⇢ = 0.9.

opposite directions, and the estimators display different degrees of sensitivity to a change in the

correlation. Moreover, the strength of the confounding towards the outcome and the treatment,

as illustrated in Figure 2, plays an important role which can in turn be seen as similar to the find-

ings in Brookhart, Schneeweiss, Rothman, Glynn, Avorn, and Stürmer (2006). They conclude

that including a variable that is strongly related to the treatment assignment but only weakly

related to the outcome may increase the variance of a propensity score based estimator. Our

results concerning the matching estimator are related, since if a variable is weakly related to the

treatment assignment, introducing correlation with a variable that is strongly related to outcome

will in turn increase the degree of dependence between the first variable and the outcome.

In practice a data analyst will face decisions concerning variable selection and/or transforma-

tions of the covariate vector. The current study motivates further investigations concerning the

impact of correlation on causal effects estimators to assist empirical scientists to use strategies

improving efficiency.

IFAU – Effects of correlated covariates on matching and IPW estimators 19



A Appendix

A.1 Proofs

Before proving the propositions, we introduce some useful results.
Begin with recalling Assumptions 2 � 4 and their definitions. Then standard results tell us that Yw

and Z = �0X have a bivariate normal distribution with mean vector µ and covariance matrix ⇤ where

µ =

✓
µYw

µZ

◆
and ⇤ =

✓
�2
Yw

�Yw,Z

�Yw,Z �2
Z

◆
=

✓
�0
w⌃�w + �2

"w �0
w⌃�
�0
⌃�

◆
. (A.1)

Further, consider a k⇥k equi-correlation matrix ⌃ with correlation ⇢. A description of the properties
of such a matrix can be found in Mardia, Kent, and Bibby (1979). For simplicity we merely note that
⇢ � 0 ensures a positive definite covariance matrix for all k. For a matrix A, vec(A) is the vector
generated by stacking all of the columns of A, the second below the first and so on. Thus, if A 2 <k⇥p,
then vec(A) 2 <kp⇥1. Now defining A 2 <k⇥k to be a hollow matrix with all off-diagonal elements
equal to one, and making use of results found in e.g. Abadir and Magnus (2005) we get that

d�0
w⌃�w =�0

w(d⌃)�w

=(�0
w ⌦ �0

w) dvec⌃
=(�0

w ⌦ �0
w) vecA

=vec (�0
wA�w)

=�0
wA�w (A.2)

where ⌦ denotes the Kronecker product.
Finally, we note that basic matrix calculus (Mardia, Kent, and Bibby 1979) gives that

@�0
w⌃�w

@�w
= 2⌃�w (A.3)

and that
@(�0

w⌃�)
2

@�w
= 2�0

w⌃�
0
⌃�. (A.4)

Proof of Proposition 1. In order to formulate (5) in terms of the model defined in Assumptions 1�3, we
need some expectations. First note that if Z has a normal distribution, then eZ and e�Z are log-normal
random variables with E

�
eZ
�
= eµZ+ 1

2�
2
Z and E

�
e�Z

�
= e�µZ+ 1

2�
2
Z . Next, consider

E(ZeZ) =

Z 1

�1

zezp
2⇡�2

Z

exp

"
� (z � µZ)

2

2�2
Z

#
dz

=

Z 1

�1

zp
2⇡�2

Z

exp


� (z2 � 2(µZ + �2

Z)z + (µZ + �2
Z)

2 � (µZ + �2
Z)

2
+ µ2

Z)

2�2
Z

�
dz

= exp


µZ +

�2
Z

2

� Z 1

�1

zp
2⇡�2

Z

exp


� (z � (µZ + �2

Z))
2

2�2
Z

�
dz.

Since this integral is the expected value of a normal distribution with mean µZ + �2
Z and variance �2

Z it
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follows that the expectations of this product and similar products are

E(ZeZ) = exp


µZ +

�2
Z

2

� �
µZ + �2

Z

�

E(Ze�Z
) = exp


�µZ +

�2
Z

2

� �
µZ � �2

Z

�

E(Z2eZ) = exp


µZ +

�2
Z

2

� �
�2
Z + (µZ + �2

Z)
2
�

E(Z2e�Z
) = exp


�µZ +

�2
Z

2

� �
�2
Z + (�µZ + �2

Z)
2
�
.

Using the previously defined expectations we find that

E
�
Ywe

Z
�
=E

⇥
eZE(Yw|Z)

⇤

=E


eZ

✓
µYw +

�Yw,Z

�2
Z

(Z � µZ)

◆�

=eµZ+ 1
2�

2
ZµYw +

�Yw,Z

�2
Z

E
⇥
eZZ

⇤
� �Yw,Z

�2
Z

eµZ+ 1
2�

2
ZµZ

=eµZ+ 1
2�

2
Z
(µYw + �Yw,Z)

E
�
Ywe

�Z
�
=e�µZ+ 1

2�
2
Z
(µYw � �Yw,Z) .

In a similar fashion we may calculate the expectations

E
�
Y 2
we

Z
�
=E

⇥
eZE(Y 2

w |Z)

⇤

=E

"
eZ

 
�2
Yw

�
�2
Yw,Z

�2
Z

+


µYw +

�Yw,Z

�2
Z

(Z � µZ)

�2!#

=eµZ+ 1
2�

2
Z
�
µ2
Yw

+ �2
Yw

+ �2
Yw,Z + 2µYw�Yw,Z

�

E
�
Y 2
we

�Z
�
=e�µZ+ 1

2�
2
Z
�
µ2
Yw

+ �2
Yw

+ �2
Yw,Z � 2µYw�Yw,Z

�
.

Using Assumption 3, we rewrite (5)

�2
IPW =E(Y 2

1 + e�ZY 2
1 � 2e�ZµY1Y1 � 2µY1Y1 + µ2

Y1
+ e�Zµ2

Y1

+ Y 2
0 + eZY 2

0 � 2eZµY0Y0 � 2µY0Y0 + eZµ2
Y0

+ µ2
Y0
).

Inserting E
�
YweZ

�
, E

�
Ywe�Z

�
, E

�
Y 2
we

Z
�

and E
�
Y 2
we

�Z
�

into �2
IPW above and simplifying we finally

get that
�2

IPW = �2
Y1

+ e�µZ+ 1
2�

2
Z
�
�2
Y1

+ �2
Y1,Z

�
+ �2

Y0
+ eµZ+ 1

2�
2
Z
�
�2
Y0

+ �2
Y0,Z

�
. (A.5)

Proof of Proposition 2. For simplicity, denote the propensity score P . By Assumption 3, the inverse
transformation of the propensity score is Z = log (P/(1� P )) = logit(P ). Also, let Yw = Yw. The
Jacobian and its determinant are

J =

������

1 0

0

1

p� p2

������
=

1

p� p2
.
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Thus the joint pdf of Yw and P is

g(yw, p) =

����
1

p� p2

����
1

2⇡�Yw�Z

q
1� ⇢2YwZ

⇥ exp

"
(y � µYw)

2

2(1� ⇢2YwZ)�
2
Yw

� (logit(p)� µZ)
2

2(1� ⇢2YwZ)�
2
Z

+

2⇢YwZ (y � µZ) (logit(p)� µZ)

2(1� ⇢2YwZ)�Yw�Z

#
.

Similarily, the pdf of P is using the change-of-variable technique

f(p) =

����
1

p� p2

����
1p
2⇡�2

Z

exp

"
� (logit(p)� µZ)

2

2�2
Z

#
, 0  p  1.

Using these two distributions, we have the conditional distribution of potential outcome w given the
propensity score, g(yw, p)/f(p). The factor (p � p2)�1 cancels out and what remains is the probability
density function of a conditional normal distribution with mean

µYW +

�Yw,Z

�2
Z

[logit(p)� µZ ]

and variance

�2
Yw

� (�Yw,Z)
2

�2
Z

.

By Assumption 1(i) we have the equality E [Yw|p(X)] = E [Y |W = w, p(X)]. Hence, using the mean
of the conditional distribution the first term in (8) becomes

E [(E(Y |W = 1, p(X))� E(Y |W = 0, p(X))� ⌧)] 2

=E [(E(Y1|p(X))� E(Y0|p(X))� ⌧)] 2

=E

(
µY1 +

�Y1,Z

�2
Z

(Z � µZ)

�2
+


µY0 +

�Y0,Z

�2
Z

(Z � µZ)

�2

+ ⌧2 + 2⌧


µY0 +

�Y0,Z

�2
Z

(Z � µZ)

�
� 2⌧


µY1 +

�Y1,Z

�2
Z

(Z � µZ)

�

�2


µY1 +

�Y1,Z

�2
Z

(Z � µZ)

� 
µY0 +

�Y0,Z

�2
Z

(Z � µZ)

��

=

�2
Y1,Z

�2
Z

+

�2
Y0,Z

�2
Z

� 2

�Y1,Z�Y0,Z

�2
Z

The covariance matrix of the conditional distribution provides us with V (Y |W = 1, p(X)) and V (Y |W =

0, p(X)) in (8) and when again making use of the unconfoundedness assumption we get

V [Y |W = w, p(X)] = V [Yw|p(X)] = �2
Yw

�
�2
Yw,Z

�2
Z

.

Using the results above, recalling that eZ is a log-normal random variable, and substituting into (8) we
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have after simplification that

�2
M =

�2
Y1,Z

+ �2
Y0,Z

� 2�Y1,Z�Y0,Z

�2
Z

+

 
�2
Y1

�
�2
Y1,Z

�2
Z

!
E


1 +

e�Z
(1 + 2M)

2M
+

1

2M(1 + eZ)

�

+

 
�2
Y0

�
�2
Y0,Z

�2
Z

!
E


2M + 1

2M
+

eZ(1 + 2M)

2M
� 1

2M(1 + eZ)

�
. (A.6)

Proof of Corollary 1. Observe that E
�
1 + eZ

��1 has no closed form expression, but through As-
sumption 5(ii) the distribution h(Z) =

�
1 + eZ

��1 is symmetric around 0.5. Further, since h(Z) is
bounded for all real numbers, the expectation exists and we can conclude that E(h(Z)) = 0.5. Adding
Assumption 5(i), leaving the choice of w 2 {0, 1} arbitrary then allows us to write

�2
M =

 
�2
Yw

�
�2
Yw,Z

�2
Z

! 
1 + 4M + (2 + 4M)e

1
2�

2
Z

2M

!
. (A.7)

Adding Assumption 5(iii) enables us to use (A.2) by which we can show that

@�2
M

@⇢
=

⇣
1 + 4M + (2 + 4M)e

1
2�

2
Z

⌘⇣
�0
wA�w +

�2
Yw,Z�0A�

(�2
Z)2

� 2�0
wA��Yw,Z

�2
Z

⌘

2M

+

 
�2
Yw

�
�2
Yw,Z

�2
Z

!
(2 + 4M)�0A�e

1
2�

2
Z

4M
(A.8)

where A is as defined in (A.2).
Remark: Note that if all elements in � are equal then (A.8) becomes

@�2
M

@⇢
= �1

k

0

@
k�1X

j=1

kX

j0=j+1

(�wj � �wj0)
2

1

A
 
1 + 4M + (2 + 4M)e

k
2 (�

2
j+�2

j (k�1)⇢)

2M

!

�
✓
2M + 1

2M

◆
(k � 1)e

k
2 (�

2
j+�2

j (k�1)⇢)�2
j

0

@�k +

k�1X

j=1

kX

j0=j+10

(�wj � �wj0)
2
(⇢� 1)

1

A ,

which can be reformulated as

@�2
M

@⇢
= f(M,k, �j , ⇢) + g(M,k, �j , ⇢)

k�1X

j=1

kX

j0=j+1

(�wj � �wj0)
2 (A.9)

where
f(M,k, �j , ⇢) = k

✓
2M + 1

2M

◆
(k � 1)e

k
2 (�

2
j+�2

j (k�1)⇢)�2
j

and
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Proof of Proposition 3. By Assumptions 5(i�ii), we have that �2
IPW = 2

⇣
�2
Yw

+ e
1
2�

2
Z
�
�2
Yw

+ �2
Yw,Z

�⌘
,

where the choice of w 2 {0, 1} is arbitrary. Together with (A.7), R = �2
M/�

2
IPW2 can be written as

R =

 
�2
Yw

�
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Yw,Z
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⌘⌘ . (A.10)

Recall that �2
Yw

= �0
w⌃�w + �2

"w and �Yw,Z = �0
w⌃�. Then using (A.3) and (A.4) we can easily show

that
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.

Using these derivatives and simplifying we get that
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Thus local extrema occurs at �Yw,Z = 0 and at �Yw,Z⌃�w � �2
Yw

⌃� = 0. Keeping �2
Z fixed and

observing the inequality

R =
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⌘
= R|�Yw,Z=0

it is clear that �Yw,Z = 0 maximizes R since a small change in �w would add a negative term in the
numerator and a positive term in the denominator, leading to a decrease in R. From this follows the
important result

R|�Yw,Z=0 ! 1 +

1

2M
as �2

Z ! 1,

which is the maximum value that R may attain. To evaluate the second extreme point, �Yw,Z⌃�w �
�2
Yw

⌃� = 0, we left multiply with �0 giving �2
Yw,Z � �2

Yw
�2
Z = 0. Of course, R|�2

Yw,Z��2
Yw

�2
Z=0 = 0.
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Proof of Proposition 4. Again, under Assumptions 1� 5(i� ii)

�2
IPW = 2

⇣
�2
Yw

+ e
1
2�

2
Z
�
�2
Yw

+ �2
Yw,Z

�⌘
.

Then, with the results in (A.2) we find that under Assumptions 1� 5(i� iii)

@�2
IPW

@⇢
=2

⇣
�0
wA�w + (�0

wA� + 2�0
wA��Yw,Z)e

1
2�

2
Z

+

1

2

e
1
2�

2
Z�0A�(�2

Yw,Z + �2
Yw

)

◆
.

Thus, in order to find @R/@⇢ we merely use these two results, combine with previous results in (A.8) and
apply the quotient rule. After some simplification we have that

@R

@⇢
=

�
2�Yw,Z (1 + 4M)

�
�Yw,Z�

0A��2
Yw

+ �0
wA�w�Yw,Z�

2
Z � 2�0

wA��2
Yw

�2
Z

�

+ 4�Yw,Ze
�2
Z
(1 + 2M)

�
�3
Yw,Z�

0A� � 2�0
wA��2

Yw
�2
Z(1 + �2

Z)

+ �Yw,Z(�
0A��2

Yw
+ �0

wA�w�
2
Z(1 + �2

Z)
�

+ e
1
2�

2
Z
�
�0A��4

Yw
�4
Z + �4

Yw,Z�
0A�(1 + 4M)(2 + �2

Z)

� 4�0
wA��Yw,Z�

2
Yw

�2
Z(3 + �2

Z + 4M(2 + �2
Z))

��2
Yw,Z(�

0A��2
Yw

(�2
Z � 2)� 2�0

wA��
2
Z)(3 + �2

Z + 4M(2 + �2
Z)
� 

/
⇣
8M(�2

Yw
+ e

1
2�

2
Z
(�2

Yw,Z + �2
Yw

))

2�4
Z

⌘
. (A.13)

A.2 Excluding combinations in Example 2 and Example 3

We illustrate the distribution of the propensity score for the treated and the controls for different values
of ⇢ and �. Here, we see that for small and large values of �2

Z we either have insufficient overlap or
f(p(X) | W = 1) ⇡ f(p(X) | W = 0), thus motivating the exclusion of combinations in Example 2
and Example 3 (see Figure A.2).
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  

  

 





 

  

  

  

  

  

  

Figure 4: The distribution of the propensity score for different values of � and ⇢. The numbers
in the upper left corners are �2

Z .
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