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Abstract

Often, the moment of a treatment and the moment at which the out-

come of interest occurs are realizations of stochastic processes with depen-

dent unobserved determinants. Notably, both treatment and outcome are

characterized by the moment they occur. We compare di�erent methods of

inference of the treatment e�ect, and we argue that the timing of the treat-

ment relative to the outcome conveys useful information on the treatment

e�ect, which is discarded in binary treatment frameworks.
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1 Introduction

In virtually every real-life treatment situation, both the treatment and the out-

come of interest are realized at speci�c points in time. Typical examples include

the e�ect of training programs or punitive bene�ts reductions on unemployment

durations, the e�ect of the hiring of replacement workers on strike durations, and

the e�ect of promotions on tenure. An extensive literature on the evaluation of

social programs and treatment e�ects exists, but in general this literature does

not address nor exploit the speci�c information on the timing of events (see, for

instance, Heckman, LaLonde and Smith, 1999, for an overview of this literature).

Abbring and Van den Berg (2002) (henceforth AVdB) advance on this litera-

ture by explicitly considering the evaluation of treatment e�ects in a \duration

variables" context. Consider a subject in a certain state. After a certain stochastic

amount of time, the subject leaves this state. The subject may receive a treat-

ment at some stochastic moment before it leaves the state. The parameter of

interest is the e�ect of the treatment on the exit rate out of the state. AVdB

adopt an explicit general model framework for the distribution of the durations

until treatment and outcome. (In fact, they present the model in terms of coun-

terfactual variables, but in the present paper we suppress this for expositional

convenience.) It allows the duration variables to be dependent by way of depen-

dent unobserved determinants, with each single duration having its own Mixed

Proportional Hazard (MPH) model speci�cation. In addition to this, a causal

e�ect of the realized treatment works on the exit rate out of the current state

from the moment the treatment is realized onwards. The MPH model is by far

the most popular duration model (see Van den Berg, 2001, for a survey). Models

�tting into the AVdB model framework have been estimated by, for example,

Card and Sullivan (1988), Gritz (1993), Lillard (1993), Lillard and Panis (1996),

Bonnal, Foug�ere and S�erandon (1997), Abbring, Van den Berg and Van Ours

(1997), and Van den Berg, Van der Klaauw and Van Ours (2004).

AVdB demonstrate that their baseline model, including the causal treatment

e�ect, is non-parametrically identi�ed from single-spell duration data, that is,

from a random sample of subjects 
owing into the state of interest and having

subsequently been followed over time. This result has a number of notable as-

pects. First, it does not require exclusion restrictions on observed covariates, so

the data need not contain a variable that a�ects the treatment assignment but

does not a�ect the outcome of interest other than by way of the treatment. Ex-

clusion restrictions are often diÆcult to justify. If a variable is observed by the

analyst then it is often also observable to the individuals under consideration. If
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the variable a�ects the probability of treatment, and the individual knows that he

may be subject to treatment, then he takes his value of the variable into account

to determine his optimal strategy, and this strategy a�ects the rate at which the

individual leaves the state of interest. Indeed, if the individual knows that the

variable is an important determinant of the treatment assignment process then

he may have a strong incentive to inquire the actual value of the variable. Sec-

ondly, the result does not require parametric functional form assumptions on the

bivariate probability distribution of the unobserved heterogeneity terms or on the

duration dependence, the covariate e�ects, and the treatment e�ect. Obviously,

this is a desirable property. Thirdly, as mentioned above, the AVdB model allows

for selection e�ects by way of unobserved determinants a�ecting both the treat-

ment assignment and the outcome. In other words, it is not necessary to make

a conditional independence assumption stating that the data are able to capture

all systematic determinants of the process of treatment assignment so that the

remaining observed variation in the treatment assignment is independent of the

determinants of the outcome of interest. In applications, such an assumption may

be diÆcult to justify, for example if the treatment assignment is carried out by

case workers who use discretionary power, taking individual characteristics of the

subject into account that are unobserved to the analyst.

Standard methods of treatment evaluation often rely on exclusion restric-

tions, parametric functional form assumptions on the joint distribution of the

\error terms" in the model, or conditional independence assumptions, to identify

the treatment e�ect. In this sense, treatment evaluation with the AVdB model

compares favorably to those methods. The aim of the present paper is to provide

a better understanding of this. More precisely, we examine which information or

variation in the data enables identi�cation of the treatment e�ect in the AVdB

model framework, by comparing the model speci�cation and the data to those

used in standard methods of treatment evaluation in the presence of selection ef-

fects. Speci�cally, we make a comparison to latent variable methods with binary

treatment indicators and to panel data methods (see e.g. Wooldridge, 2002, for

a textbook overview).

The paper is organized as follows. In Section 2 we present the AVdB model

framework. Section 3 makes the comparison to latent variable methods. Section

4 makes the comparison to panel data methods. Section 5 concludes.
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2 A duration model framework with dynami-

cally assigned treatments

Consider a subject in a certain state. After a certain amount of time, the subject

leaves this state. The subject may receive a treatment at some moment before

it leaves the state. We are interested in the determinants of the event of leaving

the state, so the latter event is the event of interest, and the duration until this

event is the variable of interest. To �x thoughts, consider an individual who is

unemployed and who moves to employment at a certain point of time, and who

may receive a training at some point during his spell of unemployment. For the

sake of convenience, we use the term \individual" in general to denote the subject.

We normalize the point of time at which the individual enters the state to

zero. The durations Tm and Tp measure the duration until the event of interest

and the duration until treatment, respectively. The population that we consider

concerns the in
ow into the state, and the unconditional probability distributions

that are de�ned below are distributions in the in
ow into the state. Whether this

is the in
ow at a �xed point of calendar time or the total in
ow over time (or

the in
ow at another range of in
ow dates) depends on the application at hand.

The two durations are random variables. We use tm and tp to denote their

realizations. We assume that, for a given individual in the population, the du-

ration variables are absolutely continuous random variables. We assume that all

individual di�erences in the joint distribution of Tm; Tp can be characterized by

explanatory variables X; V , where X is observed and V is unobserved to the ana-

lyst. Of course, the joint distribution of Tm; TpjX; V can be expressed in terms of

the distributions of TpjX = x; V and TmjTp = tp; X = x; V . The latter distribu-

tions are in turn characterized by their hazard rates �p(tjx; V ) and �m(tjtp; x; V ),

respectively.1

As noted in the introduction, we are interested in the causal e�ect of treatment

on the exit out of the current state. The treatment and the exit are character-

ized by the moments at which they occur, and we are interested in the e�ect

of the realization of Tp on the distribution of Tm. To proceed, we assume that,

1For a nonnegative random (duration) variable T , the hazard rate is de�ned as �(t) =

limdt#0 Pr(T 2 [t; t + dt)jT � t)=dt. Somewhat loosely, this is the rate at which the spell is

completed at t given that it has not been completed before, as a function of t. It provides a full

characterization of the distribution of T (see Lancaster, 1990, and Van den Berg, 2001). Consider

the distribution of a duration variable conditional on some other variables. It is customary to

use a vertical \conditioning line" within the argument of a hazard rate in order to distinguish

between (on the left-hand side) the value of the duration variable at which the hazard rate is

evaluated, and (on the right-hand side) the variables that are conditioned upon.
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conditional on X; V , the relation between Tm and Tp is characterized as follows:

the realization of Tp a�ects the shape of the hazard of Tm from tp onwards, in

a deterministic way. This implies that the causal e�ect is captured by the e�ect

of tp on �m(tjtp; x; V ) for t > tp. It is ruled out that tp a�ects �m(tjtp; x; V ) on

t 2 [0; tp]. The latter could be called a \no anticipation" assumption, because it

basically means that the individual's behavior before the moment of treatment

does not depend on the future realization of the moment of treatment. AVdB

show that such an assumption is crucial for identi�cation.2

Let V := (Vm; Vp)
0 be a (2�1)-vector of unobserved covariates. Let Tp??Vmjx; Vp,

implying that �p(tjx; V ) = �p(tjx; Vp). Furthermore, let Tm??Vpjtp; x; Vm, so that

�m(tjtp; x; V ) = �m(tjtp; x; Vm). Somewhat loosely, one may say that Vp (Vm)

captures the unobserved determinants of Tp (Tm). Now let us turn to the speci�-

cations of the hazard rates �m(tjtp; x; Vm) and �p(tjx; Vp). We adopt the following

model framework,

Model 1.

�p(tjx; Vp) = �p(t) � �p(x) � Vp (1)

�m(tjtp; x; Vm) = �m(t) � �m(x) � Æ(tjtp; x)
I(t>tp) � Vm (2)

2In reality, there is often no information available on the degree to which an actual treatment

is anticipated. Even if some anticipation cannot be ruled out, there is virtually never any

information on the moment at which the individual receives information on the moment of

treatment unless the moment of treatment is fully predictable at an individual level. The fact

that a realization of the event of interest could be due to the anticipation of a future treatment

has haunted the empirical literature on treatment e�ects. Many standard treatment evaluation

studies su�er from a potential bias due to anticipatory e�ects. This includes studies using

\di�erence-in-di�erences" methods where one \di�erence" concerns a comparison between pre-

and post-treatment circumstances (see Heckman, LaLonde and Smith, 1999, for an overview).

Now suppose that the determinants of the stochastic process of treatment assignment a�ect

the individual's exit rate out of the state of interest before the actual realization of the treat-

ment. Then the treatment program is said to have an ex ante e�ect on exit out of the state

of interest. Such an e�ect is to be expected in well-established programs. The ex ante e�ect

should not be confused with anticipation of the realization of the process of treatment assign-

ment, because in the latter case the individual knows the stochastic outcome rather than the

determinants of the process. The ex ante e�ect can be contrasted to the ex post e�ect of treat-

ment, which is the e�ect of a realized treatment on the individual exit rate { this is of course the

e�ect we focus on in this paper. We do not deal with ex ante e�ects of treatment. Identi�cation

would require additional information, such as strong functional-form assumptions, instruments

for a comparison of a world with a treatment program to a world without the program, or the

imposition of an economic-theoretic structure on the model.
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where I(.) denotes the indicator function, which is 1 if its argument is true and 0

otherwise.

Apart from the term involving Æ(tjtp; x), the above hazard rates have Mixed

Proportional Hazard (MPH) speci�cations. The function �i(t) is called the \base-

line hazard" since it gives the shape of the hazard rate �i for any given individual.

The hazard rate is said to be duration dependent if its value changes over t. Pos-

itive (negative) duration dependence means that �i(t) increases (decreases). The

term �i(x) is called the \systematic part" of the hazard. In applied duration

analysis, it is common to specify �i(x) = exp(x0�i), so that the hazard function

is multiplicative in all separate elements of x. In biostatistics, � is often called

the treatment e�ect if x captures whether the subject has received a treatment

at the beginning of the spell, but we avoid such confusing terminology. Finally,

the term Vi is called the \unobserved heterogeneity term". (AVdB also analyze

alternative model speci�cations, notably with Æ depending on t; x; and on a third

unobserved heterogeneity term, say VÆ.)

The term Æ(tjtp; x)
I(t>tp) captures the treatment e�ect. The notation used here

requires some discussion. First, note that there are alternative but observationally

equivalent ways of capturing this e�ect. For example, one may suppress I(t > tp)

and rede�ne Æ(:) such that it is zero if t � tp. This is however less attractive

from an expositional point of view. For example, in our setup a constant treat-

ment e�ect is relatively easy to capture. The function Æ(tjtp; x) is not identi�ed

on t 2 [0; tp], so by not restricting its values on this interval we create an un-

interesting identi�cation problem. In the sequel, it is silently understood that

all statements concerning Æ(tjtp; x), including identi�cation statements, concern

Æ(tjtp; x) on f(t; tp; x) 2 [0;1)2 � X : t > tpg. It is useful to separate t from the

other arguments of Æ(:) by way of a vertical \conditioning line", because we will

occasionally integrate over t.

Clearly, treatment is ine�ective if and only if Æ(tjtp; x) � 1. Now suppose

Æ(tjtp; x) is equal to a constant larger than one. If Tp is realized then the level

of the individual exit rate out of the current state increases by a �xed amount.

This stochastically reduces the remaining duration in that state, in comparison

to the case where the treatment is given at a later point of time. More in general,

we allow the treatment e�ect to vary with the moment of treatment tp, with x,

and with the elapsed time t in the current state. As a result, the individual e�ect

may also vary with the time t� tp since (the onset of) treatment.

For convenience, we make a number of normalizations and regularity assump-

tions on the determinants of the model (see AVdB). Notably, the individual val-

ues of x are taken to be time-invariant. For our results it is useful to point out
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that \binary treatment" analyses often de�ne the issue of time-varying covari-

ates away, by assuming that there is only a single point of time at which possible

treatment and outcome may occur. Time-varying covariates are potentially very

useful for the identi�cation of duration models (see Honor�e, 1991, and Heckman

and Taber, 1994).

A more substantive assumption is that X is independent from Vm; Vp. We also

assume that E(Vi) <1. This is a common assumption in the analysis of single-

spell duration data with MPH-type models (see Heckman and Taber, 1994, and

Van den Berg, 2001, for surveys).

It is useful to phrase the problem of the identi�cation of the treatment e�ect

in the presence of \selectivity", in the context of our Model 1. First, note that the

data typically provide observations on realizations of Tm and x. In addition, if Tp

is completed before the realization tm then we also observe the realization tp, oth-

erwise we merely observe that Tp exceeds tm. Now consider the (sub)population

of individuals with a given value of x. The individuals who are observed to re-

ceive a treatment at a date tp are a non-random subset from this population.

The most important reason for this is that the distribution of Vp among them

does not equal the corresponding population distribution, because most individ-

uals with high values of Vp have already had the treatment before. If Vp and Vm

are dependent, then by implication the distribution of Vm among them does not

equal the corresponding population distribution either. A second reason for why

the individuals who are observed to receive a treatment at a date tp are a non-

random subset is that, in order to observe the fact that treatment occurs at tp,

the individual should not have left the state of interest before tp. Because of all

this, the treatment e�ect cannot be inferred from a direct comparison of realized

durations tm of these individuals to the realized durations of other individuals.

If the individuals with a treatment at tp have relatively short durations then

this can be for two reasons: (1) the individual treatment e�ect is positive, or (2)

these individuals have relatively high values of Vm and would have found a job

relatively fast anyway. The second relation is called a spurious relation as it is

merely due to the limited observability of the set of explanatory variables. This

relation is referred to as \selectivity". If Vm and Vp are independent then I(t > tp)

is an \ordinary" exogenous time-varying covariate for Tm, and one may infer the

treatment e�ect from a univariate duration analysis based on the distribution of

Tmjtp; x; Vm mixed over the distribution of Vm. However, in general there is no

reason to assume independence of Vm and Vp, and if this possible dependence is

ignored then the estimate of the treatment e�ect may be inconsistent.

The model speci�cation does not impose parametric functional form restric-
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tions on the way in which the distributions of Tpjx; Vp and Tmjtp; x; Vm (or their

properties) depend on their determinants. More speci�cally, the model speci�-

cation is nonparametric in the sense that we do not make parametric functional

form assumptions on the probability distribution of the unobserved heterogeneity

terms, the baseline hazards, the systematic hazards, and the treatment e�ect.

We do not impose that there are observed explanatory variables that do a�ect

Tp but do not a�ect Tm other than by way of tp. In other words, we do not exclude

elements of x from �m(x) that are included in �p(x).

We now examine Model 1 from a number of di�erent angles. First, the prob-

ability Pr(Tm > tm; Tp > tpjx) can be expressed as

Pr(Tm > t; Tp > tpjx) =Z
1

0

Z
1

0

exp (��m(x)vm [�m(minft; tpg) + I(t > tp)�(tjtp; x)]

��p(x)vp�p(tp)) dG(vm; vp)

with

�i(t) :=

Z t

0

�i(�)d�

�(tjtp; x) :=

Z t

tp

�m(�)Æ(� jtp; x)d�

The joint density of Tm; Tpjx follows from di�erentiation with respect to tm and

tp. Note that Model 1 and the above include a speci�cation of the distribution of

Tp for Tp > Tm, but this speci�cation is immaterial, as it does not play any role

in the paper or indeed in any empirical analysis.

To make comparisons to other models, it is useful to rewrite Model 1 as a

regression-type model. It is well known that the integrated hazard of a duration

distribution has an exponential distribution with parameter 1 (see e.g. Ridder,

1990, Horowitz, 1999). From this it follows that we can write

log�p(Tp) = � log�p(x)� log Vp+"p (3)

log [�m(minfTm; tpg) + I(Tm > tp)�(Tmjtp; x)] = � log�m(x)�log Vm+"m
(4)

where "p and "m have an Extreme Value { Type I (EV1) probability distribution.

This distribution does not have any unknown parameters; its density equals

f("i) = e"i �e�e
"i

; �1 < "i <1
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Equation (3) states that the random variable Tpjx is distributed as the sum of the

terms on the right-hand side, where Vp and "p are random variables. Equation (4)

states that the random variable Tmjtp; x is distributed as the sum of the terms

on the right-hand side, where Vm and "m are random variables. There holds that

"m ?? "p; and ("m; "p) ?? (X; Vm; Vp)

but Vp and Vm are allowed to be dependent. It is important to stress that the

fact that "p and "m have a fully speci�ed distribution does not mean that we

make a parametric functional form assumption on the distributions of Tpjx; Vp

and Tmjtp; x; Vm. This is because the left-hand sides of the above regression-

type equations specify unknown transformations of the dependent variables: the

integrated baseline hazard �p for Tp, and a generalized integrated baseline hazard

(including treatment e�ects depending on tp) for Tm. A regression equation for,

say, Tpjx; Vp states that Tp equals �
�1
p (exp(� log�p(x)�log Vp+"p)), where �

�1
p (:)

is the inverse of �p(:).

The fact that we specify the assignment of treatment by way of specifying

the hazard rate of a duration distribution (rather than by way of specifying the

individual realization of the duration variable) implies that there is a random

component in the assignment that is by de�nition independent of all other vari-

ables. This random component is represented by the term "p in the \regression"

equation (3) for Tp. One may interpret this random component in terms of the

randomness of the outcome of Tp at tjTp � t that remains if the hazard rate at t

is speci�ed. Consider an individual who has not yet been given a treatment and

who has not yet left the state of interest, at time t. Basically, in a small time

interval [t; t+ dt), the probability of treatment is �p(tjx; Vp)dt, and the probabil-

ity of no treatment is 1� �p(tjx; Vp)dt. This is a Bernoulli trial. Given the value

of �p(tjx; Vp)dt, its outcome is completely random. In practice, such randomness

may re
ect behavior of the institution that supplies or imposes the treatments,

or it may re
ect purely random external shocks.

Recall that the data ideally provide i.i.d. observations on realizations of Tm; I(Tm >

Tp); and Tp � I(Tm > Tp), given x. The latter term indicates that if Tp is completed

before the realization of Tm then we also observe the realization of Tp, whereas

otherwise we merely observe that the realization of Tp exceeds the realization of

Tm. To analyze the identi�cation we assume that the data actually provide exact

knowledge of the whole joint distribution of Tm; I(Tm > Tp); and Tp � I(Tm > Tp),

given x.

Identi�ability is a property of the mapping from the model determinants

�i;�i (i = m; p), Æ and G to the data as summarized in the joint distribution of
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Tm; I(Tm > Tp); and Tp � I(Tm > Tp), given x. The model speci�cation de�nes the

unique mapping from the domain to the data. The model is non-parametrically

identi�ed if this mapping has an inverse, i.e. if for given data there is a unique

set of functions �i;�i (i = m; p), Æ and G in the domain that is able to generate

these data (of course, these data must be in the image of the mapping).

Note that this approach treats the individual-speci�c unobserved heterogene-

ity terms as realizations of random variables. In terms of panel data analysis, this

means that Vm; Vp are treated as \random e�ects" when estimating the model

with, for example, Maximum Likelihood. An alternative approach treats the in-

dividual values of Vm; Vp as unknown individual-speci�c parameters (or, equiva-

lently, as \incidental" parameters or \�xed e�ects").

AVdB demonstrate that Model 1 (as characterized by the functions �m, �p,

�m, �p, Æ, and G) is non-parametrically identi�ed from single-spell data. The

result implies that the treatment e�ect is identi�ed without exclusion restric-

tions or parametric functional form restrictions on the distribution of unobserved

heterogeneity.

We now turn to the case where the data cover multiple spells of an individual

in the state of interest, i.e. if the data are \multiple-spell" data. We assume that

an individual has a �xed value of Vm; Vp. For a given individual, the di�erent spells

provide independent drawings from the joint distribution of the Tm; I(Tm > Tp);

and Tp � I(Tm > Tp), given x; Vm and Vp. The extension to more than two spells

is trivial. Also note that the setup includes cases in which physically di�erent

individuals share the same value of Vm; Vp and we observe one duration for each

of these individuals. Such a group of individuals is usually called a stratum.

Since Vm and Vp are unobserved, the duration variables given x are not inde-

pendent across spells. In fact, any stochastic dependence across spells can only

be due to the presence of heterogeneity. It is ruled out by assumption that real-

izations of Tm or Tp in one spell a�ect the distributions of durations in another

spell. This may be a strong assumption in some applications. For example, par-

ticipation in a training program for the unemployed may have an e�ect on the

durations of future unemployment spells.

Compared to Model 1, the AVdB model for multiple spells is much more


exible. It allows for interaction between t and x in the individual hazard rates,

so that the MPH structure is relaxed substantially. It also allows for dependence

of Vm; Vp in the in
ow on x, and it does not require E(V ) < 1 anymore. It

is allowed that the individual hazard rates in the second spell depend on t; x

in a di�erent way than they do in the �rst spell. The size of the treatment

e�ect may also be di�erent across the two spells. The individual values of x in
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may also di�er across spells, and x may even be completely absent. However, it

still requires that the treatment e�ect and the unobservables a�ect the hazard

rates multiplicatively. AVdB demonstrate that this model is non-parametrically

identi�ed from multiple-spell data.

3 Comparison to latent variable models with bi-

nary treatment assignment

We start this section by considering identi�cation of a treatment e�ect in stan-

dard latent variable models with binary treatment assignment (see Maddala,

1983, and Wooldridge, 2002, for overviews). We restrict attention to the relations

between the mean of the endogenous variables on the one hand and the explana-

tory variables on the other. This is in line with the spirit in which these models

are interpreted (see e.g. Heckman (1990) for identi�cation results based on full

information).

Consider

Y = x0Y �Y + x0Y Æ0 � I(Z > 0) + "Y

Z = x0Z�Z + "Z
(5)

where Y , Z, "Y and "Z are continuous random variables, Z > 0 indicates treat-

ment, I(Z > 0) is a binary treatment indicator, and x0Y Æ0 is the treatment e�ect.

We assume that inference is based on a random sample of subjects with informa-

tion on Y , xY , xZ and I(Z > 0) for each subject. Furthermore, x := (xY ; xZ) is

independent of "Y ; "Z . We take the parameter �Z to be identi�ed from the data

on I(Z > 0) and xZ . It is generally acknowledged that either exclusion restric-

tions (stating that some covariates in xZ with non-zero parameters in �Z are not

included in xY ) or parametric functional-form assumptions on the joint distribu-

tion of ("Y ; "Z) are required for identi�cation of the treatment-e�ect parameter

Æ0. To illustrate this, suppose one aims to identify Æ0 from the di�erence between

the means of [Y jZ > 0; x] and [Y jZ � 0; x], as a function of x := xY ; xZ. We

have that

E(Y jZ > 0; x)� E(Y jZ � 0; x) =

x0Y Æ0 + E("Y j"Z > �x0Z�Z ; xZ)� E("Y j"Z � �x
0

Z�Z; xZ) (6)

If we do not make parametric functional form assumptions on the joint distribu-

tion of "Y ; "Z then the sum of the second and third term on the right-hand side of
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(6) can be linear in x0Z�Z . If in addition we do not make an exclusion restriction

then obviously Æ0 is not identi�ed from this linear expression.

Now suppose that we do not observe Y but only I(Y > 0). This is the \binary

treatment { binary outcome" speci�cation. For example, Z > 0 may indicate

whether an unemployed individual has participated in a training program, and

Y > 0 may indicate whether he has found a job. The binary speci�cation for Y

e�ectively reduces the information in the data, so identi�cation needs at least as

many assumptions as above (see Cameron and Heckman, 1998, for results).

Before we contrast the identi�cation results, it should be noted that using

latent variable models with binary treatment assignment or discrete-time panel

data models when Y is in fact a (function of a) duration variable leads to a

number of intractable practical problems. First, it requires aggregation over time.

Often, it is recorded whether a treatment occurs in a baseline period, and it

is recorded whether the outcome (i.e. the duration variable) is realized in the

subsequent period. Then, the question arises what to do when the treatment

and the outcome occur in the same period. In addition, it is not clear how to

deal with observations that are right-censored before the end of the observation

window. It is common that a spell in a state of interest can end in di�erent

ways. Usually, only a subset of these are deemed interesting. For example, an

unemployment spell can end because of a transition to work, but also because of

a transition into education, military service, etcetera. A study of the transition

rate to work may treat transitions to other destinations as independently right-

censoring the duration until work. The treatment e�ect estimate may be biased

if such observations are discarded or if they are treated as observations of exit to

work.

Now let us consider the similarities and di�erences between the above model

and the duration model of Section 2 in its regression representation (3-4), and

the corresponding identi�cation results. To shape thoughts, one may, in the above

latent variable model, interpret Y as logTm and Z > 0 as Tp < Tm. Of course,

alternative interpretations are possible, and each of them is imperfect. Moreover,

if Model 1 is the true model then in general the parameter Æ0 in the above model

speci�cation is a complicated function of all parameters of Model 1.

The most notable similarity between the models concerns the proportionality

assumptions in Model 1 and the additivity assumption in regression equations.

Both impose some \smoothness" by excluding certain interactions of time and

explanatory variables at the individual level. The MPH speci�cation does impose

more structure than a regression speci�cation, because the former decomposes

the \error term" into two terms.
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The most fundamental di�erence between the data used for the latent variable

model and the data used for Model 1 concerns the fact that the latter incorporate

the timing of the treatment whereas the former do not. At the same time, the most

fundamental di�erence between the identi�cation result for the latent variable

model and the identi�cation result for Model 1 concerns the fact that the latter

does not need exclusion restrictions while the latter even allows the treatment

e�ect to have a time dimension. This suggests that the timing of events provides

potentially very useful information on the treatment e�ect.

We shed more light on this by returning to Model 1. A single observation

is equivalent to an observation of a realization of minfTm; Tpg; I(Tm > Tp) and

Tm � I(Tm > Tp) given x. The pair minfTm; Tpg; I(Tm > Tp) is called the identi-

�ed minimum of Tm; Tp. The data and the model can be decomposed into two

parts: the identi�ed minimum given x, and the duration from Tp until Tm if Tp is

the �rst to be realized. Let us examine the part of the model that speci�es the

distribution of this identi�ed minimum given x. This is in fact the well-known

competing risks model with dependent risks, where the dependence runs by way

of related unobserved heterogeneity terms (see Heckman and Honor�e, 1989, Lan-

caster, 1990). Note that the speci�cation of the competing risks model does not

depend on Æ, which is intuitively obvious. Heckman and Honor�e (1989) show that

under a number of assumptions, the dependent competing risks model is identi-

�ed from single-spell data on the identi�ed minimum and x. So if the data provide

exact knowledge of the joint distribution of the identi�ed minimum given x then

�m; �p;�m;�p; and G can be deduced. Of course, we observe more than the iden-

ti�ed minimum and x, namely Tm � I(Tm > Tp). The latter, which is intimately

linked to the time distance between the moment of outcome and the moment

of treatment, can be used to identify Æ(tjtp; x). Intuitively, one can compare the

actual distribution of this time distance to the distribution that would prevail if

Æ = 1. The latter distribution is identi�ed from the competing risks model.

To clarify this further, we compare the observable exit rates �m at t of those

who are treated exactly at t to those who are not yet treated at t:

log �m(tjTp = t; x)� log �m(tjTp > t; x)

There holds that

�m(tjTp = t; x) = �m(t) � �m(x) � Æ(tjt; x) � E(VmjTm � t; Tp = t; x)

�m(tjTp > t; x) = �m(t) � �m(x) � E(VmjTm � t; Tp > t; x)
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so, as a result,

log �m(tjTp = t; x)� log �m(tjTp > t; x) = (7)

log Æ(tjt; x) + logE(VmjTm � t; Tp = t; x)� log E(VmjTm � t; Tp > t; x)

The selection e�ect log E(VmjTm � t; Tp = t; x) � logE(VmjTm � t; Tp > t; x) is

identi�ed from the competing risks part of the model, that is, from information on

events in [0; t). In words, we know the average \quality" (Vm) among treatment

and control groups at t from the competing risks part of the model. This enables

identi�cation of Æ(tjt; x). A given treatment works and only works from the day

the subject is exposed to its possible e�ects, whereas unobserved heterogeneity

a�ects the observed exit rate out of the current state from day 1.3

The above results based on the partitioning of model and data reinforce the

conclusions from the comparison between the binary treatment approach and the

duration model approach. First of all, the timing of events conveys useful infor-

mation on the treatment e�ect. Secondly, the MPH speci�cation is important,

because this is assumed for the identi�cation of the competing risks model (see

also Abbring and Van den Berg, 2001a, for intuition behind the identi�cation of

the competing risks model).

4 Comparison to panel data models

Consider the dynamic panel data model

Wt = x0W;t�W + x0W;tÆ0 � I(Zt > 0) + VW + �W;t

Zt = x0Z;t�Z + VZ + �Z;t;
(8)

where the index t denotes time. We deliberately introduce new notation Wt for

the outcome because below we adopt two di�erent interpretations of Wt in terms

of duration outcomes. Inference is based on a random sample of subjects with

information on Wt, Wt�1, xW;t, xW;t�1, xZ;t, xZ;t�1, I(Zt > 0) and I(Zt�1 > 0) for

each subject. We take �j;t to be i.i.d. across time and across j = W;Z, so that

3In most econometric evaluation approaches, a treatment e�ect can only be identi�ed if

some of the variation in the assignment of treatment is not fully collinear with the variation in

the other determinants of the outcome of interest. In our framework, this is taken care of by

the random component "p in the \regression" equation (3) for Tp. The variation in "p a�ects

Tm only by way of the treatment.
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the spurious dependence between treatment and outcome (the \selection e�ect")

runs by way of the relation between VW and VZ . We take E[�j;tjxj] = 0, where

for sake of brevity we use xj := (xj;t; xj;t�1). We can treat VW as a �xed e�ect by

taking �rst di�erences of Wt across time,

E[Wt�Wt�1jZt�1 � 0; Zt > 0; xY ; xZ ] = (xW;t�xW;t�1)
0�W+x0W;tÆ0: (9)

Clearly, Æ0 is identi�ed.

Now suppose that �W varies over time. The equivalent of the right-hand side of

equation (9) equals x0W;t�W;t�x0W;t�1�W;t�1+x0W;tÆ0. As a result, Æ0 is unidenti�ed

from E[Wt�Wt�1jZt�1 � 0; Zt > 0; xW ; xZ ]. A \di�erence-in-di�erences" however

gives

E[Wt �Wt�1jZt�1 � 0;Zt > 0; xW ; xZ ]

� E[Wt �Wt�1jZt�1 � 0; Zt � 0; xW ; xZ] = x0W;tÆ0:

(10)

so Æ0 is again identi�ed. Note that this does not require the speci�cation of a

model equation for the treatment assignment Zt. Moreover, Zt and XW;t may be

dependent, and the method even works in the absence of observed covariates.

Also, clearly, Æ0 can be allowed to depend on t.

We can translate the dynamic panel data model towards our model in two

ways. We can either (i) letWt be a survival indicator for a single outcome duration

Tm and set Wt = 1 () Tm < t, or (ii) relate each Wt to a separate outcome

duration, say Tm;t.

Option (i) suggests a link between our single-spell duration model and a multi-

period panel data model. In fact, because a duration variable has a time unit,

single-spell duration models are often thought to be similar to multi-period panel

data models. However, this apparent similarity is deceptive. In the case of (i), we

only observe one duration outcome per individual, soWt�1 = 1 =) Wt = 1, which

is not necessarily so in the general case of speci�cation (8). The latter speci�cation

allows for more variation in Wt and Wt�1 given Zt�1; Zt; xW ; xZ . This variation

distinguishes panel data models from our duration model. As a result, we cannot

apply (9) and, in particular, we cannot do di�erence-in-di�erences like in (10).

Nevertheless, the results at the end of the previous section (see equation (7))

suggest that an approach in the spirit of the di�erence-in-di�erences approach

might be possible, provided that one can usefully compare di�erent sets of in-

dividuals across time, and provided that the treatment assignment process is

speci�ed. In Abbring and Van den Berg (2001b) we develop such an approach.

14



Not surprisingly, it is much more involved than straightforward di�erence-in-

di�erences.

The point of departure in Abbring and Van den Berg (2001b) is the observa-

tion that di�erence-in-di�erences amounts to an examination of a speci�c inter-

action term: the extent to which the outcome over time di�ers between treated

and controls. Abbring and Van den Berg (2001b) focus on the log rate at which a

treatment is given conditional on the moment of exit (log �p(tjx; tm) with t < tm)

and examine whether this behaves di�erently as a function of t when tm is di�er-

ent. Intuitively, if Æ > 1 then many of those who \die" at tm received a treatment

shortly before tm, so �p(tjx; tm) will tend to increase shortly before tm, relative to

�p(tjx; tm) for larger tm. This amounts to examining the interaction term between

the moment of treatment t and the outcome tm in log �p(tjx; tm). It turns out that

this approach allows one to distinguish between a causal treatment e�ect and se-

lectivity. Intuitively, if treatment and outcome are typically realized very quickly

after each other, no matter what the values of the other outcome determinants

are, then this is evidence of a positive causal treatment e�ect. The selection e�ect

does not give rise to the same type of quick succession of events. The x variables

play no role here. However, Æ is assumed to be constant over t and tp.

This result again illustrates the usefulness of the information in the timing

of events to assess the treatment e�ect. Both in the panel data approach and in

our duration model approach, the treatment e�ect works from a speci�c point of

time onwards, whereas the selection e�ect works at all points of time in a more

permanent way. In both approaches, separability assumptions, ruling out certain

interaction e�ects of the determinants of the individual outcome of interest, are

needed. In the panel data approach, additivity of treatment e�ect and unobserved

heterogeneity in the outcome equation (8) is crucial. The previous section argued

that in the duration model approach the additivity of the determinants of the

individual log outcome hazard rate log �m(tjtp; x; Vm) (equation (2)) is crucial.

The results in this section so far emphasize that what is particularly crucial is

the additivity of treatment e�ect and unobserved heterogeneity in this log hazard

rate (although this by itself seems to be insuÆcient to identify the whole duration

model including the way the treatment e�ects varies with t and tp).

These separability assumptions at the individual level enable an empirical dis-

tinction between the treatment e�ect, that works from a speci�c point of time,

and the selection e�ect that works at all points of time. The duration approach is

much more involved because of the dynamic nature of selectivity in duration anal-

ysis: as time proceeds, the composition of the survivors changes, so the selection

e�ect changes.
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Now consider option (ii) for the translation of the dynamic panel data model

towards our duration model framework. Let Zt indicate whether a treatment

is given during the t-th spell. This interpretation allows for a straightforward

comparison with our multiple-spell duration model. In both cases we observe

multiple outcomes for an individual with the same unobserved covariates. This

suggests that we can remove the role of unobserved heterogeneity in multiple-spell

data by some sort of conditional likelihood or �rst-di�erencing approach. AVdB

develop an analogue of the �xed-e�ect panel data estimator based on (10). Both

estimators do not require any observed explanatory variables or a speci�cation

of the treatment assignment process.

5 Conclusions

Variation in the duration until treatment relative to the duration until the out-

come of interest conveys useful information on the causal treatment e�ect in the

presence of selection e�ects. This information is discarded in a binary treatment

framework. Analysis of the duration variables allows for inference on causal treat-

ment e�ects if no valid instruments are available and if conditional independence

assumptions can not be justi�ed. With single-spell duration data, this works as

follows. If treatment and outcome are typically realized very quickly after each

other, no matter what the values of the other outcome determinants are, then

this is taken as evidence of a positive causal treatment e�ect. The selection e�ect

does not give rise to the same type of quick succession of events.

We make a number of quali�cations. First, it is pivotal that individuals do not

anticipate the realization of the moment of treatment, because then the treat-

ment works from a moment in time that precedes the actual participation. It is

obvious that this would lead to incorrect inference. See AVdB for an extensive

methodological analysis of this issue. Secondly, the information in the timing of

events is useful for inference on how the causal treatment e�ect varies with time

and with the time since treatment. This provides potentially very useful insights

into the workings of the treatment, and this is important from a policy point

of view. Thirdly, it is an important topic for further research to investigate to

what extent the identi�cation results for the single-spell duration model frame-

work are robust with respect to separability assumptions embedded in the model

framework.

The results lead to some suggestions for empirical work. First, it is useful not

to discard information on the timing of the treatment, and, in particular, not

to round-o� such information into a binary treatment indicator. Secondly, it is
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potentially useful to exploit multiple-spell data, as this leads to inference under

much weaker assumptions than single-spell data.
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