IFAU — INSTITUTE FOR
, LABOUR MARKET POLICY
EVALUATION

A simple procedure for the
evaluation of treatment effects
on.duration variables

Jaap H Abbring
Gerard J van den Berg

WORKING PAPER 2003:19



The Institute for Labour Market Policy Evaluation (IFAU) is a research insti-
tute under the Swedish Ministry of Industry, Employment and Communica-
tions, situated in Uppsala. IFAU’s objective is to promote, support and carry
out: evaluations of the effects of labour market policies, studies of the function-
ing of the labour market and evaluations of the labour market effects of meas-
ures within the educational system. Besides research, IFAU also works on:
spreading knowledge about the activities of the institute through publications,
seminars, courses, workshops and conferences; creating a library of Swedish
evaluational studies; influencing the collection of data and making data easily
available to researchers all over the country.

IFAU also provides funding for research projects within its areas of interest.
There are two fixed dates for applications every year: April 1 and November 1.
Since the researchers at IFAU are mainly economists, researchers from other
disciplines are encouraged to apply for funding.

IFAU is run by a Director-General. The authority has a traditional board, con-
sisting of a chairman, the Director-General and eight other members. The tasks
of the board are, among other things, to make decisions about external grants
and give its views on the activities at IFAU. A reference group including repre-
sentatives for employers and employees as well as the ministries and authori-
ties concerned is also connected to the institute.

Postal address: P.O. Box 513, 751 20 Uppsala
Visiting address: Kyrkogardsgatan 6, Uppsala
Phone: +46 18 471 70 70

Fax: +46 18 471 70 71

ifau@ifau.uu.se

www.ifau.se

Papers published in the Working Paper Series should, according to the IFAU policy,
have been discussed at seminars held at [IFAU and at least one other academic forum,
and have been read by one external and one internal referee. They need not, however,
have undergone the standard scrutiny for publication in a scientific journal. The pur-
pose of the Working Paper Series is to provide a factual basis for public policy and the
public policy discussion.

ISSN 1651-1166



A Simple Procedure for the Evaluation
of Treatment Effects on Duration

Variables

Jaap H. Abbring *
Gerard J. van den Berg |

August 11, 2003

Abstract

Often, a treatment and the outcome of interest are characterized by
the moment they occur, and these moments are realizations of stochastic
processes with dependent unobserved determinants. We develop a simple
and intuitive method for inference on the treatment effect. The method can
be implemented as a graphical procedure or as a straightforward parameter
test in an auxiliary univariate single-spell duration model. The method
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that is discarded in binary treatment analyses.
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1 Introduction

In virtually every real-life treatment situation, both the treatment and the out-
come of interest are realized at specific points in time. Examples in economics
include the effect of training programs or punitive benefits reductions on un-
employment durations, the effect of the hiring of replacement workers on strike
durations, and the effect of promotions on tenure. Typically, the empirical anal-
ysis of the treatment effect is hampered by selection problems: individuals who
obtain a treatment may have systematically different outcomes than those who
do not. This creates non-trivial problems for inference. An extensive literature
on the evaluation of treatment effects exists, but in general this literature does
not address the specific timing of events in conjunction with selection problems
(see for instance Heckman, LaLonde and Smith, 1999, for an overview of this
literature). This paper is concerned with the evaluation of treatment effects in
such a dynamic context. Consider a subject in a certain state. After a certain
stochastic amount of time, the subject leaves this state. The subject may receive
a treatment at some stochastic moment before it leaves the state. We are inter-
ested in the effect of the treatment on the duration in the state, or, equivalently,
on the exit rate out of the state.

We develop a user-friendly method for obtaining evidence on the presence of
a treatment effect from single-spell data that allows for possible selection effects.
The method focuses on the sign of the treatment effect and not on its magnitude.
We provide two complementary implementations of our method. First, it may be
implemented as a graphical procedure. At first sight it may seem difficult to ob-
tain a simple graphical representation of the sign of a treatment effect. A natural
starting point would be to consider all individuals who have not yet received a
treatment at a given point of time and who have not left the state of interest,
and to compare those who do get a treatment to those who do not. However, a
difference in the level of the exit rate out of this state may be due to the fact
that one examines selected subsets of individuals. Alternatively, by analogy to
difference-in-difference estimators of treatment effects, one may condition on the
moment of treatment and compare what happens before and after this moment.
However, to observe the moment of treatment one has to condition on not having
left the state of interest before that moment, so one does not observe the exit
rate out of the state of interest before the moment of treatment. In this paper
we condition instead on the moment of exit and to examine the rate at which a
treatment is given before that. We then focus on properties of this rate as a func-
tion of time, for different moments of exit, and we demonstrate that these rates



are informative on the treatment effect. Basically, one has to examine whether
the treatment rate increases more for individuals with a short stay in the state
of interest than for individuals with a long stay in that state.

The second implementation of our method amounts to the estimation of an
auxiliary parametric single-spell duration model for the conditional rates at which
treatments are given. The estimates allow for a simple parameter test. Both im-
plementations involve only straightforward manipulation of raw data. In both
cases, it is the interaction between the moment of exit and the moment of treat-
ment in the conditional treatment rate that allows one to distinguish between a
causal treatment effect and selectivity.

Our point of departure is a nonparametric bivariate hazard rate model for
the treatment and outcome hazard rates. Both hazard rates are taken to be
multiplicative in duration dependence and unobserved heterogeneity terms, and
a causal effect of the realized treatment works on the hazard rate for the outcome
of interest from the moment the treatment is realized onwards. We do not exploit
variation in observed covariates. If such covariates are available, the method can
be applied to subsamples stratified with respect to the covariates. As such, our
analysis implicitly allows for maximum interaction between duration dependence,
unobserved heterogeneity and treatment effects on the one hand and the observed
covariates on the other hand. This is a major advantage over the usual approach
to identification of single-spell duration models, which rests heavily on covariate
variation and assumptions with respect to the covariate effects (see Van den Berg,
2001, for an overview). Alternatively, one may discard covariates, in which case
they can be absorbed by the unobserved heterogeneity term.

As a result, our method of inference does not require exclusion restrictions on
observed covariates, so the data need not contain an explanatory variable that
affects the treatment assignment but does not affect the outcome of interest other
than by way of the treatment. Also, our method does not need conditional inde-
pendence assumptions stating that the data capture all systematic determinants
of the process of treatment assignment so that the remaining observed variation
in the treatment assignment is independent of the determinants of the outcome of
interest. Both exclusion restrictions and conditional independence assumptions
are often difficult to justify.! Standard methods of treatment evaluation often

ITf a variable is observed by the analyst then it is often also observable to the individuals
under consideration. If the variable affects the probability of treatment, and the individual
knows that he may be subject to treatment, then he takes his value of the variable into account
to determine his optimal strategy, and this strategy affects the rate at which the individual
leaves the state of interest. Indeed, if the individual knows that the variable is an important
determinant of the treatment assignment process then he may have a strong incentive to in-



rely on exclusion restrictions, parametric functional form assumptions on the
joint distribution of the “error terms” in the model, or conditional independence
assumptions, to identify the treatment effect. In this sense, our method compares
favorably to those methods.

At stated above, it is the interaction between the moment of exit and the
moment of treatment in the conditional treatment rate that allows one to distin-
guish between a causal treatment effect and selectivity. Difference-in-differences
methods of treatment evaluation in regression-type models? also use interactions
in the data to make inference on treatment effects, and these methods also do
not require observed covariates (the main difference with our approach is that we
compare different individuals over time when quantifying the interaction effect.)
Our results therefore illustrate the usefulness of the information in the timing of
events to assess the treatment effect. We return to this in Subsection 4.1 below.

The paper is organized as follows. In Section 2 we discuss the model frame-
work. Section 3 contains the analysis underlying our method. Section 4 discusses
the implementation of the method. Section 5 briefly examines an alternative
graphical procedure. Section 6 concludes.

2 The model framework

For the sake of convenience, we use the term “individual” in general to denote a
subject in a state of interest. We normalize the point of time at which the individ-
ual enters the state to zero. The durations 7}, and 7}, measure the duration until
the event of interest and the duration until treatment, respectively. The popula-
tion that we consider concerns the inflow into the state, and the unconditional
probability distributions that are defined below are distributions in the inflow
into the state. Whether this is the inflow at a fixed point of calendar time or the
total inflow over time (or the inflow at another range of inflow dates) depends on
the application at hand.

The two durations are random variables. We use ¢, and ¢, to denote their
realizations. We assume that, for a given individual in the population, the dura-
tion variables are absolutely-continuous random variables. We assume that the

quire the actual value of the variable. All of this is inconsistent with exclusion restrictions.
Conditional independence may be difficult to justify if the treatment assignment is carried out
by case workers who use discretionary power, taking individual characteristics of the subject

into account that are unobserved to the analyst.
2See Angrist and Krueger (1999), Blundell and MaCurdy (1999), and Heckman, LaLonde

and Smith (1999), for overviews.



effect of individual differences on the joint distribution of 7;,,, T}, can be captured
by explanatory variables V' that are unobserved to the analyst. As discussed in
the introduction, we do not explicitly include observed covariates X in our anal-
ysis. It is implicitly understood that all our results are valid conditional on such
covariates and therefore extend to a model that allows for arbitrary effects of X
on the joint duration distribution and for dependence of V on X. Note that this
implies that we do not exploit covariates for inference on the treatment effect.

Of course, the joint distribution of T,,T,|V can be expressed in terms of
the distributions of 7,|V and T,,|T}, = t,, V. The latter distributions are in turn
characterized by their hazard rates 6,(¢|V') and 6,,(t|t,, V), respectively.?

As noted in the introduction, we are interested in the causal effect of treatment
on the exit out of the current state (see Abbring and Van den Berg, 2003, for
a presentation in terms of potential-outcome variables). The treatment and the
exit are characterized by the moments at which they occur, and we are interested
in the effect of the realization of 7, on the distribution of 7;,. To proceed, we
assume that, conditional on V', the relation between 7, and T, is characterized as
follows: the realization of T}, affects the shape of the hazard of T}, from ¢, onwards,
in a deterministic way. In Abbring and Van den Berg (2003), this fundamental
assumption is discussed in great detail. It implies that the causal effect is captured
by the effect of ¢, on 6,,(t|t,, V') for ¢t > t,. Note that it is ruled out that ¢, affects
O, (t|t,, V) on t € [0,¢,]. In a behavioral model, a natural interpretation of this
“no-feedback” assumption is that it excludes anticipation effects.*

3For a nonnegative random (duration) variable T', the hazard rate is defined as 0(t) =
limg o Pr(T € [t,t + dt)|T > t)/dt. Somewhat loosely, this is the rate at which the spell is
completed at ¢ given that it has not been completed before, as a function of t. It provides a full
characterization of the distribution of T' (see Lancaster, 1990, and Van den Berg, 2001). Consider
the distribution of a duration variable conditional on some other variables. It is customary to
use a vertical “conditioning line” within the argument of a hazard rate in order to distinguish
between (on the left-hand side) the value of the duration variable at which the hazard rate is
evaluated, and (on the right-hand side) the variables that are conditioned upon.

4In reality, there is often no information available on the degree to which an actual treatment
is anticipated. Even if some anticipation cannot be ruled out, there is virtually never any
information on the moment at which the individual receives information on the moment of
treatment unless the moment of treatment is fully predictable at the individual level. The fact
that a realization of the event of interest could be due to the anticipation of a future treatment
has haunted the empirical literature on treatment effects. Many standard treatment evaluation
studies suffer from a potential bias due to anticipatory effects. This includes studies using
“difference-in-differences” methods where one “difference” concerns a comparison between pre-
and post-treatment circumstances (see Heckman, LaLonde and Smith, 1999, for an overview).

Now suppose that the determinants of the stochastic process of treatment assignment af-
fect the individual’s exit rate out of the state of interest before the actual realization of the



Let V := (V,,, V)" be a (2 x 1)-vector of unobserved covariates, with a dis-
tribution G (in the inflow) such that Pr(0 < V,, < 00,0 <V, < 00) = 1. Let
1, 1LV, |Vp, implying that 6,(¢]V) = 6,(¢|V,). Furthermore, let T,,, 1LV, |1}, Vi,
so that 0,,(t|t,, V) = 0, (t|ty, Vin). Somewhat loosely, one may say that V), (V)
captures the unobserved determinants of 7, (1,,,). Now let us turn to the spec-
ifications of the hazard rates 6,,(t|t,, V,,) and 6,(t|V,). We adopt the following
model:

Hp(t|‘{l7) = )‘p(t)vb

(1)
O (t|tp, Vi) = A (1)8' IV,

where I(.) denotes the indicator function, which is 1 if its argument is true and 0
otherwise.

The functions A, : [0,00) — (0,00) and A, : [0,00) — (0,00) are called
“baseline hazards”. A hazard rate is said to be duration dependent if its value
changes over t. Positive (negative) duration dependence means that \;(¢) increases
(decreases). For expositional convenience only, we assume that A, and \, are
differentiable on (0,00). Note that this does not exclude that lim; A;(t) = oo
for i = m and/or i = p, which implies that the popular Weibull specification
Ai(t) = ot~ ! with o; > 0 for the baseline hazards is included.® We also assume
that A,(t) = f(f Ai(T)dr < oo (i = m,p) for every t > 0. Finally, we assume
that limy o Ap(t) = 00. As we have also excluded a mass point at 0 in the
distribution of V,,,, this implies that the distribution of 7}, cannot be defective.
The model does allow for a defective distribution of 7),, through the possibility
of limy o Ap(t) < oo. In the latter case each individual has a positive probability
of never receiving a treatment even if they never leave the state of interest.
Because of the assumptions on A, and V}, the distributions of 7}, and 7|V, are
not degenerate. This implies that at the individual level there is variation in the
moment of treatment.

treatment. Then the treatment program is said to have an ez ante effect on exit out of the
state of interest. Such an effect is to be expected in well-established programs. The ex ante
effect should not be confused with anticipation of the realization of the process of treatment
assignment, because in the latter case the individual knows the stochastic outcome rather than
the determinants of the process. The ex ante effect can be contrasted to the ex post effect of
treatment, which is the effect of a realized treatment on the individual exit rate — this is of
course the effect we focus on in this paper.
5In that case, the value of \; at 0 needs to be an arbitrary positive number.



The term ¢6'(¢>%) captures the treatment effect. Clearly, treatment is ineffective
if and only if 6 = 1. Now suppose that 6 > 1. If T, is realized then the level of
the individual exit rate out of the current state increases by a fixed factor. This
stochastically reduces the remaining duration in that state, in comparison to the
case where the treatment is given at a later point of time.

The model does not impose parametric functional form assumptions on the
baseline hazards or the probability distribution of the unobserved heterogeneity
terms. As we allow for full interaction with observed covariates X, we do not
impose that there are X that do affect T}, but do not affect T, other than by way
of t,, so we do not impose an exclusion restriction.

Many empirical studies have estimated models that are closely similar to our
model framework. All of these include effects of observed covariates as additional
multiplicative terms in 6,,(t|t,, V;,) and 6,(t|V,). For example, Card and Sullivan
(1988), Gritz (1993), Bonnal, Fougere and Sérandon (1997), Abbring, Van den
Berg and Van Ours (1997), and Van den Berg, Van der Klaauw and Van Ours
(2004) study the effect of a treatment of unemployed workers on the transition
rate from unemployment to work. Lillard (1993) estimates a model for the joint
durations of marriage and time until conception of a child, and his model allows
the rate at which the marriage dissolves to shift to another level at moments
of child birth. Our model then describes a part of a two-dimensional stochastic
process in which the occurrence of an event in one dimension affects the hazard
rate in the other dimension. Lillard and Panis (1996) estimate a model on the
joint durations of marriage, non-marriage, and life, and their model allows the
death rate to shift to another level at moments of marriage formation and dis-
solution. Abbring and Van den Berg (2003) prove full identification of models
with covariates and with treatment effects that depend on model variables. They
also provide ample discussion of the model as an econometric model of treatment
effects.

If we abstract from duration dependence and unobserved heterogeneity terms
then the model is essentially equivalent to the bivariate exponential distribution
developed by Freund (1961). This model is usually motivated by the example of a
machine with two components, where one component may fail at a higher rate if
the other component has already failed. The Freund (1961) model is symmetric to
the extent that it allows each component to be affected by the failure of the other.
However, if the observational plan is such that observation stops at the moment at
which one specific component fails then this model is observationally equivalent to
our model with constant baseline hazards, absence of unobserved heterogeneity,
and constant §. Similarly, our model can be extended to a symmetric setup by



specifying the distribution of [T, |1, = t,,, T, > t,,]. Note that the assumption
that failure of one component induces a higher failure rate for the other means
that 6 > 1.

We now discuss the general problem of inference on the treatment effect in
the context of our model. The data provide observations on realizations of T;,.
In addition, if 7}, is completed before the realization ¢,, then we also observe the
realization t,, otherwise we merely observe that 7T}, exceeds ?,,. The individuals
who are observed to receive a treatment at a date ¢, are a selected subset from the
population under study. The most important reason for this is that the distribu-
tion of V), among them does not equal the corresponding population distribution,
because most individuals with high values of V,, have already had the treatment
before. If V,, and V;,, are dependent, then by implication the distribution of V;,
among them does not equal the corresponding population distribution either. A
second reason for why the individuals who are observed to receive a treatment at
a date t, are a selected subset is that, in order to observe the fact that treatment
occurs at t,, the individual should not have left the state of interest before ¢,.
Because of all this, the treatment effect cannot be inferred from a direct com-
parison of realized durations ¢, of these individuals to the realized durations of
other individuals. If the individuals with a treatment at ¢, have relatively short
durations then this can be for two reasons: (1) the individual treatment effect
is positive, or (2) these individuals have relatively high values of V;,, and would
have left the state of interest relatively fast anyway. The second relation is called
a spurious relation as it is merely due to the limited observability of the set of
explanatory variables. This relation is also referred to as “selectivity”. If V,,, and
V, are independent then I(¢ > ¢,) is an “ordinary” exogenous time-varying co-
variate for T, and one may infer the treatment effect from a univariate duration
analysis based on the distribution of 7,,|T,, = t,, V;, mixed over the distribution
of V,,,. However, in general there is no reason to assume independence of V,,, and
Vp, and if this possible dependence is ignored then inference on the treatment
effect may lead to incorrect conclusions.

3 Opposite cases

3.1 The pure treatment effect case

Our empirical procedure to assess whether ¢ >< 1 is based on the following idea.
Consider the subset of individuals whose spells end at a given duration 7;,, = t,,.
Note that T, is always observed, whether 7}, < T}, or not, so any t,, can be



chosen here. If treatment increases the exit rate (i.e. if § > 1) then a relatively
large fraction of those who exit at ¢, have been treated shortly before t,,. Thus,
conditional on t,,, the rate at which treatment is given 0, (¢|1,, = t,,) will tend to
increase shortly before ¢t = ¢,,. Of course, it still remains to show that this cannot
be explained by duration dependence or unobserved heterogeneity as well. To
deal with this, we will compare aspects of 0,(t|T,, = t,,) for different values of
tm- In Section 5 we discuss an alternative approach which compares aspects of
0,,(t|T, = t,) as a function of ¢, for different values of ¢,, and at values of ¢ that
exceed the largest ¢,. We argue that this approach is less attractive than the one
based on 0, (t|1,, = t,).

We analyze the behavior of 6, (¢|T},, = t,,) (or, in short-hand notation, 6,,(¢|t,,))
in two opposite extreme cases. Case I concerns the “pure treatment effect” case,
where ¢ may differ from 1 but a selection effect is absent. The latter amounts
to the assumption that V;,, and V), are independent. Case II concerns the “pure
selection” case, where there can be dependent heterogeneity but o = 1. In this
subsection and the next we show that these cases can be distinguished by ex-
amining the dependence of 6,(t|t,,) on ¢ and t¢,,. This enables us to construct a
simple empirical check on whether there is a positive treatment effect.

The present subsection deals with the first case,

Case I (Pure treatment effect). 1/, 1LV},

We denote the marginal distributions of V,,, and V,, by G,, and G, respectively,
so that in Case I, G(vp, vp) = G (vm)Gp(vy). We are able to derive more elegant
and slightly stronger results under a more stringent version of our Case I, denoted
as Case la:

Case Ia (Pure treatment effect). G, is degenerate.

For expositional reasons we start by considering an even simpler model version
in which there is no duration dependence or unobserved heterogeneity. As noted
above, we expect 6,(t|t,,) to increase as a function of ¢ if and only if 6 > 1.
ThlS can be confirmed easily for this model version. We write 6,(t|V},) = )\ and
O (tltp, Vi) = A - 01>1) Tt is also useful to define 6* := X, + (1 — 6)\,. After

some calculations, using Bayes’ rule, it follows that
0, () = — QLY with £ € [0, 1] 2)

A, + (1 — (5)()\ +A p)e 07 (tm=t)




for the generic case in which ¢* # 0. Note that numerator and denominator in
the right-hand side of equation (2) both have the same sign as §*. For the special
case in which ¢* = 0 (which implies that § > 1) we obtain

X,

0,(tlty) = ——
N 146X (tm — 1)

with t € [0, t,,] (3)

As aresult, 0, (t|t,,) increases in ¢ if and only if ¢ > 1. This is true for all parameter
values and for any t,,, and, given t,,, for any ¢ € [0,t,,].5 Moreover, § > 1 if and
only if 6,(t|t,,) decreases in t,,, since 6,(t|t,,) only depends on the difference of
t,, and t.

Now let us examine what happens if we allow for duration dependence, i.e.
if A\, and A, are allowed to depend on the corresponding elapsed duration. The
shape of 0,(t|t,,) as a function of ¢ will reflect this. For example, if A,(¢) displays a
spike at a certain value of ¢ then 6,(¢|t,,,) also displays a spike at ¢. This is true for
any given value of ¢,, > t. This can be illustrated by the following identity which
can be shown to hold by definition (using Bayes’ rule) for any continuous-time
bivariate duration model,

. Pr(Ty € [ty b + dt)|T, = 1)
0,(t|tm) = 0,() - 1 ’ ”
b(tltm) = 0,(1) dt1o Pr(T,, € [ty tm + dt)|T, > 1)

(4)

where 60,(¢) is the hazard rate of the marginal distribution of 7). Under Case I,
T, is an exogenous determinant of T}, so the value of the duration dependence
term A, at ¢ enters the right-hand side only by way of its effect on 6,(¢). The
latter is independent of ¢,, and acts multiplicatively on 6,(t|t,,), so we can get
rid of the effect of the duration dependence term A, on 6,(t|t,,) by comparing
0log 0, (t|ty,)/0t for different values of ¢,,. Basically, 6, (t|t,,) may increase shortly
before a given ¢,,, because of duration dependence, but this can be corrected for by
comparing the curve to curves corresponding to larger values of ¢,,,. More precisely,
it can be shown that the derivative of dlog#,(t|t,,)/0t with respect to t,,, which
is of course the cross-derivative 9% log 0, (t|t,,)/0t0t,,, always has the same sign as
1 — ¢ for t < t,,,. Thus, without heterogeneity, the cross-derivative of log#é,(t|t,,)
at a point t < t,, provides sufficient information to infer the sign of 6 —1. If § > 1
then log 6,(t|t],) increases in ¢ relative to log8,(t|t,,), for each 0 <t < t], < tp,.
It can also be shown that, without heterogeneity, 0log8,(t|t,,)/0t,, has the same
sign as 1 — 0 for ¢t < t,,. This reflects the fact that 6 < 1 (6 > 1) generates a

6In fact, § > 1 if and only if 6,(t|t,,) is convex in ¢ on (0, ).



negative (positive) association between T,,, and 7}, which translates in a positive
(negative) relation between t¢,, and log#8,(t|t,). So, if 6 > 1 then the graph of
log 0, (t|t,,) as a function of ¢ is lower for higher values of ¢,.

Now let us examine what happens if we also allow for independent heterogene-
ity of V, and V;,,. This generates (additional sources of) negative duration depen-
dence in the observable hazard rates due to “dynamic selection”. This selection
mechanism should not be confused with selectivity in the treatment assignment.
Dynamic selection concerns the fact that, as time proceeds, the composition of
survivors shifts towards subjects with unfavorable unobserved heterogeneity val-
ues. Intuitively, this dynamic selection does not lead to duration dependence
patterns in the observable hazard rates that vary substantially with ¢,,. Indeed,
we prove that the comparison across various t,, of dlog#8,(t|t;,)/0t as a function
of t also effectively deals with the heterogeneity effects. The expected value of V,
conditional on survival up to time ¢ is decreasing in ¢, but this effect is the same
for every t,,. The heterogeneity in V,, complicates the derivations but does not
lead to substantially weaker results. Concerning the effect of t,, on the level of
6,(t|tm), we find that this is also still informative on the sign of 6 — 1.

Specifically,
Proposition 1. In Case I,
>0i4ifd<1
, Oy (t]tm) s
pmlog | g ey ) TO0Wo=t
" pAm <0ifé>1
and
fo <1
Tologb (i) dlogby(il)] | T 0TS
lim — =0fd=1
e, ot ot .
<0fo>1
for all 0 <t <tp,.
Proof. See Appendix 1, and Appendix 1.2 in particular. O

Suppose that 6 > 1, and let ¢/, < t,,. The graph of log,(t|t!,) as a function
of t € (0,¢],) lies above that of log 8, (t|t,,,), at least for ¢ just below ¢/,. Moreover,
the graphs of the log hazard rates diverge as functions of ¢, at least for ¢ just
below ¢! . Somewhat loosely, log 6, (t|t!,) increases relatively strongly in ¢ if ¢/ is
small. For § < 1, the ordering is reversed.”

"Instead of examining differences between expressions for t,, and t/ in Proposition 1, we
could as well have focused on derivatives with respect to t,, at a value t,,. However, the former
is more general. Proposition 1 allows for a global comparison of the expressions for various
values of t,, and t],,.

10



In Appendix 1.3 we show by way of an example that there are distributions
of V,,, for which the results in Proposition 1 can not be generalized to hold for all
t € (0,t,). However, in the more restrictive Case Ia,

Proposition 2. In Case la,

>04f0<1
log 0, (t|t.,
iﬁﬁiLl —0ifé=1
" <0ifd>1
and
Ploghy(tltn) | YO
ot =0¢fo=1
" <0ifd>1
for all 0 <t < t,,.
Proof. See Appendix 1.4. O

We illustrate these results by way of a number of examples. First, consider the
special case of Case la where there is no heterogeneity and no duration depen-
dence (see equations (2) and (3)). We normalize time by fixing A, = 1. Figures
1 and 2 plot log 8, (t|t,,) for Am =4, and § = 0.8 and § = 1.2, respectively. In
either figure, each curve corresponds to log 6,(¢|¢,,) on (0, ¢,,) for a single value of
tm (tm = 0.5,1,...,10). As the end points of the intervals on which log 6, (t|t,,)
is plotted coincide with ¢,,, we omit the legend from the graph. It is easy to see
that the graphs are consistent with Proposition 2.

Figures 3 and 4 provide similar graphs for the case in which G, and G, are
both unit exponential (so G;(v;) =1 —e~"). The results are basically the same
as in Figures 1 and 2, but the effects are attenuated at higher levels of t,, due to
the effects of the unobserved heterogeneity.

3.2 The pure selection case

Before we provide a full characterization of Case II, we introduce some termi-

nology and notation. For positive functions k£ and [, let k(y) w [(y) denote
limy . k(y)/l(y) =1 (see Feller, 1971).

Definition 1. A positive function L defined on (0, 00) is slowly varying at 0 if
limy o L(ya)/L(y) = 1 for every fixed a € (0, 00).
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Definition 2. A positive function & defined on (0, 00) is regularly varying with

exponent —oo < p < oo at 0 if k(y) ) y?L(y) for a function L that is slowly
varying at 0.

Case 1II is defined by

Case II (Pure selection). 6 = 1. Furthermore, the joint distribution G' of
(Vin, V) is such that V,, = V7 for some 7 > 0, where V}, has an absolutely con-
tinuous distribution function F'. The corresponding density f is regularly varying
at 0 with exponent —1 < 0 < 0.

This definition imposes that the relation between V,, and V), is deterministic
and nonnegative with one unknown parameter, that V;,, and V,, are continuously
distributed, and that the densities have a regular left-hand tail. We will show
that this actually covers a very wide range of flexible specifications. In Appendix
2 we consider more general relations V,, = h(V},) between V;,, and V,,, where h
is not required to be non-decreasing, and we show that the results below can
be generalized to include such relations. In Appendix 2 we also allow for certain
classes of discrete distributions. For expositional convenience, we do not present
those general results here. We briefly turn to them at the end of this subsection,
and we also discuss results for other distributions there.

We proceed to discuss the notable features of Case II in some more detail.
First, consider the relation between V,,, and V,. It can be generalized to V,, = ¢- V],
with ¢ > 0, but this is equivalent to changing the scale of the baseline haz-
ards. The deterministic relation effectively imposes that V,, and V), satisfy a
one-factor loading specification. This specification is best known in the repre-
sentation V,,, = exp(c,w), V, = exp(c,w), where w is a random variable with
suitably normalized moments (note that we take 7 := ¢,/cp). The one-factor
loading specification for unobserved heterogeneity in multivariate duration mod-
els was introduced by Flinn and Heckman (1982) and has become extremely
popular in empirical research (see Van den Berg, 2001, for an overview).

Another notable feature is that the relation between V;, and V, is assumed
to be nonnegative (specifically, the correlation between logV;, and logV,, is zero
or one). This is not so restrictive as it may seem. Often, the economically inter-
esting issue is whether 6 > 1 or 6 = 1. This is because an intervention is often
intended to increase the exit rate out of an undesirable state. If we are interested
in testing 6 > 1 versus ¢ = 1, the main problem is that both ¢ > 1 and positively
related unobservables induce a positive association between 17, and 7},. As such,
the restriction to positively related unobservables does not solve the selectivity
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problem, and leaves a non-trivial identification task.

Yet another notable feature concerns the restriction to densities that are regu-
larly varying at zero. This basically requires that the density just above 0 should
not be too thin and should not have an irregular shape. Examples include densi-
ties with finite positive limits at 0 (like exponential and uniform densities) and a
wide variety of densities truncated at 0 (like truncated normal densities). It also
includes densities that converge to 0 at a polynomial rate as v | 0, like gamma
densities and densities kv* on (0, 1), for £ > 0. Furthermore, it includes certain
densities that have infinite limits at 0 (see also Feller, 1971). The rationale be-
hind this requirement is that it facilitates the analysis of the observed hazard
rates at high durations. As time proceeds, the individuals with high values of the
unobserved heterogeneity terms leave the state of interest, and the shape of F'
near the lower bound of its support determines “how much” heterogeneity is left
among the survivors. Somewhat loosely, one may say that if the density of V,,, just
above 0 is not very thin then the heterogeneity among survivors is sufficient to
affect the observed hazard rates at high durations. It should be noted, however,
that our method of inference often also works well if the distribution of V,,, is not
covered by Case II (or by the more general case discussed in Appendix 2), i.e, if
the density just above 0 is actually very thin (see below).

The condition on G,, in Case II should not be confused with a finite mean
condition like E(V;,) < oo that is typically imposed on the unobserved hetero-
geneity term in non-parametric analyses of the mixed proportional hazard model
(e.g., Elbers and Ridder, 1982). Our condition deals with the left-hand tail of
G, whereas the finite mean assumption from the non-parametric mixed propor-
tional hazard model literature deals with the right-hand tail. We do not make
assumptions on the right-hand tail or the moments of V,,,.

We aim to contrast the behavior of 6, (¢|t,,) in Case II to the behavior in Case
I. It is easy to see that in the model laid out by equations (1) with § =1,

Op(tltm) = Ap(t) E(VL[T, 2 t, T = tm) (5)
regardless of whether Case II holds or not. Let G have density g. By Bayes’ rule,
the distribution of V,|T,, > t, T,, = t,, has density

fooo U e—Ap(t)vp—Am(tm)vm Q(Um, Up) d’Um

fooo ‘/‘OOO Um e—Ap(t)'Us —Am(tm)vm dG(UmJ US)

(6)

If ¢ increases then there are two effects on 6,(¢|t,,). First, there is the proportional
duration dependence effect A\, (¢). Secondly, there is the effect on the distribution
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of unobserved heterogeneity V),: a large value of ¢ makes smaller values of V,, more
likely, and this reduces the level of the hazard rate aggregated over V.

If ¢,,, increases then there is only one effect on 6,(¢|t,,), and this works by way
of the distribution of V. A large value of ¢,, makes smaller values of V,,, more
likely. If V,,, and V,, are positively related (as in Case II), then this makes smaller
values of V,, more likely. As a result, we expect ¢,, to have a negative effect on
the level of 6,(t|t,,). This sign is the same as in Case I, so it seems that the effect
of t,, on 0,(t|t,,) cannot be used to distinguish between Case I and (positively
related unobservables in) Case II.

Now consider the interaction between ¢ and t,, in logé,(t|t,,). By analogy to
Case I, the evaluation of 0log6,(t|t,,)/0t at various values of ¢, serves to elim-
inate the proportional duration dependence effect on 6,(t|t,,) (see also equation
(5)). It turns out that the interaction can indeed be used to distinguish between
Case I and Case 11,

Proposition 3. In Case II, for each t > 0,

lim A (t) 0log 0, (t|t,,) ~ <o,
tm —00 )\m(tm) 8tm

and
T+1 92
lim A (t)71 0% log 6, (t|tm)
tn—00 A (tm) OtOt,

Ao [Le 242 Tlo+2+7) >0ifr>0
T Tor2+7)  T(o+2) } —0ifr=0

Proof. See Appendix 2, which includes the proof of the proposition for an exten-
sion of Case II. O

In words, suppose that there is positive selection (i.e., individuals with a high
treatment rate also have a high exit rate out of the current state). Then the graph
of log 0, (t|ty,) is lower if ¢, is larger, at least if the values of ¢, are sufficiently
large. Moreover, in that case, the graphs of the log hazard rates converge as
functions of ¢.

Note that Proposition 3 examines derivatives in the limit as ¢,, — oo, whereas
Proposition 1 for Case I examines derivatives at arbitrary t,,. This may make
Proposition 3 look restrictive and less relevant. However, for reasons of smooth-
ness, the derivatives in Case II with 7 > 0 generally have the limiting sign well
before the limit is reached. Below we show in detail that in many instances the
predictions in Proposition 3 hold true for every t,,, even when the distribution
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G does not satisfy the description of Case II at all. In practice, to distinguish
between Case I and Case II one would have to examine large values of ,,.

We provide intuition behind Proposition 3 by considering the special case
where 7 =1,i.e. V, =V, V,, = V,and V has distribution function F' concentrated
on (0, 00). In that case, equation (5) reduces to 6, (t|t,,) = N\,() E(V|T, > t, T}, =
tm). Moreover, derivatives of log#,(t|t,,) with respect to t and/or t,, can be
expressed in terms of moments of [V|1,, = t,,, T, > t|. The family of gamma
distributions plays an important role in the intuition that we give. It is not
difficult to see that if F'is a gamma distribution with parameters r, a, i.e., if the
density f(v) equals

f(v) = & yrlee with a,r >0

then the equations in Proposition 3 hold, with 7 = 1 and o := r — 1, for every
tm > 0, i.e., not just in the limit as t,, — oo. Now suppose that F' is, more
generally, a distribution that satisfies Case II. We introduce short-hand notation

2= N (t) + Ap(2).

From the results in Appendix 2 it follows that the moments of z-[V|T, = t,,, T, >
t] converge to the moments of a gamma distribution with parameters o + 1, 1.
This suggests that the distribution of [V'|T}, = t,,, T, > t] becomes more and
more similar to a gamma distribution, as time proceeds.

Hougaard, Harvald and Holm (1992) study the (non-causal) effect of condi-
tioning on the realization of one duration variable on the log hazard rate for the
other, if both share the same unknown unobserved heterogeneity term V. Specifi-
cally, they examine to what extent this effect depends on the type of distribution
of V' across duration pairs. For the gamma distribution, the effect increases in
the time distance since the realization of the first duration variable (on which we
condition). Let us translate this to our Case II model with V,,, =V, = V. We
examine the effect of knowing that 7}, = t,, on the log hazard rate of T,. Let V
have a gamma distribution. If 7}, = ¢ is close to ?,, then the effect is relatively
small, whereas if T}, = ¢ is much smaller than ¢,, then the effect is much larger.
This implies that if one compares the function log6,(t|t,,) for different values of
tm, then the effect of ¢, is larger for small ¢. If V' does not have a gamma distri-
bution but satisfies Case II then this result holds as the ¢,, values become large.
This explains the convergence of the graphs of the log hazard rates as given in
Proposition 3. If V,, = V7 then the moments of [27 - V,|T,,, = t,,, T, > t] converge
to the moments of a generalized gamma distribution (see McDonald, 1984, for a
description of this distribution), and a similar intuition can be given.
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We now examine the special case with V,,, =V}, = V from another angle. By
analogy to (6), it follows that [V'|T}, = t,, T, > t] has the distribution function
F.(v) := [, dF.(n) with

vexp(—zv)dF (v)

I, vexp(—zv)dF (v)

dF;(v) := (7)
if ¢,, > 0 and ¢ > 0. For convenience, we define V, := [V|T,,, = t,, T, > t]. Let
1(%) denote the expectation of the distribution F,, so p(z) := E(V,). Equation
(5) then reduces to 8,(t|t,) = Ap(t)p(z). We denote the normalized centralized
moments of V, by %;(z) := E(V, — u(2))"/u(2)". In addition, we denote the coef-
ficient of variation by v»(2) := /72(2), and Cox and Oakes’ (1984) standardized

3/2

index of skewness by v3(z) := 3(2)/72(2)*/*. Using the equations in Appendix

2.2, it is easy to verify that

%’f“’") = “An(tm)u(2)72(2)
and
%’ﬁtm) Ao (DAt )11(2)* ()™ [v3(2) = ()],

Clearly, 0log,(t|t,,)/0t, < 0. Note that this is true for all t,, > 0if V,,, =V, =
V', and that this is true regardless of whether the left-hand tail of the density
has a regular shape, and, indeed, regardless of whether V is continuous. The
interaction effect 02 log 8, (t|t,,)/0tdt,, is positive if and only if

v3(z) > va(2), (8)

i.e. if the distribution of V, is sufficiently skewed to the right relative to its
dispersion.

Normalized variation and skewness indicators like v and 13 are frequently
used to classify scale families of distributions (see e.g. Cox and Oakes, 1984).
The inequality (8) is satisfied by all log-logistic, log-normal, and gamma distri-
butions, and by some distributions in the Weibull class. Intuitively, this result
is not surprising, as these distributions all resemble gamma distributions, and
we know that the interaction effect is positive for all ¢, if V' has a gamma dis-
tribution. Note however that the inequality (8) concerns the distribution F), of
V, = [VI|T,, = tm, T, > t]. If F, belongs to a well-known family of distributions
then the underlying distribution F' of V' does not necessarily belong to a well-
known family, and vice versa. The exception is when F' is a gamma distribution
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with parameters r, a, since then F, also is a gamma distribution with parameters
r+1,a+ z, and ve(z) = 1/3/r, v3(z) = 2//r, and v3(z)/ve(z) = 2 for all z > 0.
A special case of this is when V' has an exponential distribution: then » = 1, and
therefore 15(z) = 1 and v3(2) = 2.

The “skewness” condition in equation (8) which ensures the desired sign of
the interaction between ¢ and ¢, in log0(t|t,,) does not refer to the “regularity”
condition on f(v) close to v = 0 in the characterization of Case II and its gener-
alization in Appendix 2. For example, if V' has a log-normal distribution and z is
close to zero then the “skewness” condition is satisfied whereas the “regularity”
condition is not, as log-normal densities are not regularly varying at zero (we
return to log-normal heterogeneity distributions below). This suggests that the
“regularity” condition in Case II is by no means necessary to obtain the desired
interaction sign.

Now let us examine discrete distributions for V,, with a finite number of
positive points of support. Such distributions have zero probability mass right
next to 0, so they are not covered by Case II or its generalization in Appendix
2. As time proceeds, individuals with V;,, exceeding the smallest point of support
leave the state of interest rather quickly, and at very large t the survivors are
virtually homogeneous. In such a case, for sufficiently large ¢,,, the conditional
hazard rate 6,(¢|t,,) behaves as in the model without unobserved heterogeneity,
so the interaction effect 02 log 0, (t|t,,)/0tdt,, converges to zero.®

In Appendix 2 we consider more general relations V, = h(V},) between V,,
and V), where h is not required to be non-decreasing. Basically, if T}, and T,
are negatively related then the effect of t,, on log#,(t|t,,) is positive. It turns
out that, in addition, the limiting interaction effect may be positive or zero. This
means that on the basis of these signs it cannot be distinguished from Case I
with § < 1.

We illustrate the results of this subsection by plotting log#,(t|t,,) in some
specific examples. Like in Subsection 3.1, we exclude duration dependence and
we take A\, = 1 and A,, = 4. Figure 5 plots log6,(t|t,,) for the case that F
is unit exponential and V;,, = V,. This is a case in which there is a positive
association between 7}, and T}, which is potentially confused with a positive
effect of treatment (6 > 1). We indeed find a negative effect of ¢, on the level of
log 0, (t|t,) for given ¢, as in Figures 2 and 4 for Case I. However, consistent with

8If V,,, has a continuous distribution F concentrated on (v, o0), for some v € (0,00), and
where Fy(vy,) := F(vn, + v) satisfies Case II, then our results can be translated to this case by
using properties of Laplace transforms of translated random variables. We do not pursue this
further here.

17



the propositions above, the interaction effect is now reversed relative to Case I.
So, we are able to distinguish between these cases by exploiting the interaction
effect. It should be noted that the effects of varying t¢,, disappear quite rapidly
with increasing t.

In this example, the results hold for all ¢,%,,, so we do not need to restrict
attention to large values of t,, only. Figure 6 provides an example where it is
necessary to restrict attention to large ¢,,. In this example, V,, =V, =V, and F'
is a left-skewed beta-distribution on (0,1) (F(v) = v'!, which satisfies Case II).
At all values of ¢,,, the log hazard log 6,(t|t,,) decreases in t,,. However, the sign
of the interaction effect may lead to confusion with 6 > 1 in Case I (see Figures 2
and 4) if one examines small values of ¢,,. In particular, for small values of t,,, the
change in the slope of log 6, (t|t,,) with t,, resembles Case I with § > 1. However,
this changes rapidly with increasing t,,.

Figure 7 shows that the distinction between treatment effect and selectivity
may also work well for heterogeneity distributions that are excluded under Case
IT and its generalization in Appendix 2. It plots log6,(¢|t,,) for the case that F
is a standard log-normal distribution truncated from above at 2, and V,,, = V.
The resulting graph is not much different from that in Figure 5.

If V, = —log(Vin), then T;, and T}, are negatively related. With F' being unit
exponential truncated from above at 1, this case is in the domain of the more
general Proposition 4 in Appendix 2. As is to be expected, we find a positive effect
of t,, on log 0, (t|ty,) (see Figure 8). We also find a positive interaction effect. This
means that in terms of these signs it cannot be distinguished from Case I with
d < 1 (see Figures 1 and 3). It can however be distinguished from Case I with
o >1.

4 Inference of a causal effect

4.1 A graphical check

The results of the previous section enable the construction of an informal test on
a positive treatment effect. The basic procedure is as follows. First, choose some
large values of t,,. Secondly, draw log#,(t|t,,) as a function of ¢ for each of these
values of t,,. If the line is higher for the smaller ¢,, (in particular at durations
t just below this ¢,,) then this means that there is a positive treatment effect
and/or there are positively related unobserved determinants of T,,, and T,. If, in
addition to this, the lines diverge, then there must be a positive treatment effect.
If they converge then there must be positively related unobserved determinants. If
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they diverge then there may also be positively related unobserved determinants,
but the selection effect is dominated by the positive treatment effect. Similarly,
if the lines converge then there may also be a positive treatment effect but this
is dominated by the selection effect. If the lines are parallel then both effects are
present.

We now briefly compare our method of inference to the difference-in-differences
method of inference on treatment effects in panel data. In both approaches, the
data and model have time dimensions, and the treatment effect works from a
specific point of time onwards, whereas the selection effect works at all points of
time in a more permanent way. In both approaches, the inference focuses on in-
teraction effects in the data, and one needs to make separability assumptions that
rule out certain interaction effects of the determinants of the individual outcome
of interest. In particular, in panel data models, additivity of the treatment effect,
the unobserved heterogeneity, and the residual error term in the individual out-
come equation is crucial. In our approach, additivity of the determinants of the
individual log outcome hazard rate log6,,(t|t,, Vi) is crucial. These separability
assumptions at the individual level enable an empirical distinction between the
treatment effect, that works from a specific point of time, and the selection effect
that works at all points of time. Observed covariates do not play an important
role in either case.

However, our approach is more involved, for the reason that we essentially
only observe one outcome per individual (which implies that the composition in
terms of unobserved heterogeneity terms changes over time). As a result, we can-
not straightforwardly apply difference-in-differences. The individual-specific un-
observed heterogeneity terms cannot be treated as incidental parameters or fixed
effects but are treated as realizations of random variables, and our examination
of interaction effects involves a comparison over time of different individuals. The
prices to be paid (relative to the panel data approach) are that the treatment as-
signment process has to be specified, that we have to assume that the individual
treatment effect is constant after imposition, and that we are only able to make
inference on the sign of the treatment effect.

Nevertheless, our results highlight the usefulness of the information in the
timing of events to assess the treatment effect on a transition rate. This informa-
tion is discarded in a binary treatment framework. Intuitively, if treatment and
outcome are typically realized very quickly after each other, no matter what the
values of the other observed outcome determinants are, then this is evidence of
a positive causal treatment effect on the individual transition rate. The selection
effect does not give rise to the same type of quick succession of events.
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We now turn to some practical issues that arise when implementing our infor-
mal test. To plot the conditional log hazard rate log 6, (t|t,,) for given t,, we have
to select the subsample of individuals with realization 1,, = t,,. In fact, to obtain
a positive subsample size, we have to select individuals with realizations in an
interval around t,,, say (a, b). It is straightforward to nonparametrically estimate
and plot 6,(t|t,,) at values ¢ < a. If b | a then this estimator converges to a
consistent estimator of the underlying hazard rate. Some care has to be taken
to estimate the terminal value limyy,,, 6,(t|t,,), though. The observed empirical
equivalent of Pr(a < T, < T,,|la < T,, < b,T, > a)/ (b — a) is not a consistent
estimator of this, because, basically, it ignores the probability that the latent
variable T}, is realized in the interval (7,,,b). In fact, it can be shown that

Pr(a <T, < Tyla < T, <bT,> |
lim HosTy<Twa T <b1y2a) = = - 0(aT,, =a)
bla b—a 2

(this holds for any bivariate distribution). As a result, limyy,, 6,(t|t,,) can be
estimated by the observed empirical equivalent of 2 Pr(a < 7T, < T,,la < T, <
b, T, > a)/(b—a). For sizeable intervals (a, b), and with relatively smooth duration
dependence, this may actually underestimate limgyy,, 6, (¢[t,,), for the reason that
most realizations of 77, and T}, are at the lower end of the interval.

This highlights the fact that the intervals for the values of ¢,,, should be small.
At the same time, it is useful to have large subsamples of individuals in a given
interval for ¢,,, because that makes the plotted hazard rates less prone to sampling
error, By conditioning ¢,, to be in a small time interval, we effectively consider a
small subsample. Note that, at the same time, the chosen values of ¢,, should be
rather large.” These demands can only be reconciled if the data set is very large.

4.2 Examples

In general, recipients of unemployment benefits have to comply with minimum
requirements concerning search behavior. Compliance is imperfectly monitored.
If violation of the search rules is detected, then a punitive sanction is imposed,
consisting of a benefits reduction, and entailing an increase of monitoring in the

90ne may wonder whether a particular t,, is sufficiently large. This can be investigated by
examining 0,,,(t|T, = t)/0m (t|Tp, > t) as a function of ¢, which is directly estimable from the
raw data. In Case II, as t — 0o, this converges to a constant, and this reflects the convergence
of the partial derivatives in Proposition 3. In Case I, 0,,,(t|T, = t)/8(t|T, > t) = J, which
is also constant. Somewhat loosely, one may therefore argue that t,, is sufficiently large if the
plot of 6,,(t|T, = t)/60m(t|Tp > t) as a function of ¢ is flat at t = t,,.

20



future. A sanction can thus be expected to affect the re-employment rate of the
individual. Abbring, Van den Berg and Van Ours (1997) and Van den Berg,
Van der Klaauw and Van Ours (2004) analyze the effect of, respectively, unem-
ployment insurance and welfare sanctions on re-employment rates by estimating
models that are extensions of the model in this paper.

In Abbring, Van den Berg and Van Ours (1997), the full sample of unemploy-
ment insurance recipients contains about 148,000 individuals. Only about 4300
of these are observed to receive a “sanction” treatment, while about 44% of the
spells are right-censored. It turns out that this sample is sufficiently large to con-
struct graphical checks that are robust with respect to the choice of (the intervals
of) the t,, values. (The graphical analysis does not stratify on X.) The graphical
check provides strong evidence for the presence of a positive sanction effect on
the individual transition rate into employment.'? Estimation of the full bivariate
duration model results in an estimate of § that is significantly larger than one
and in significant positively related unobserved heterogeneity. The latter suggests
that both reasons for a positive relation between 7T}, and 7T}, given X are present,
and that the causal treatment effect dominates in the interaction effect of ¢ and
tm in log 8, (t|t,,).

In Van den Berg, Van der Klaauw and Van Ours (2004), the full sample
of welfare recipients contains about 8,000 individuals. About 1100 of these are
observed to receive a “sanction” treatment, and about 60% of the spells are
right-censored. This sample is too limited to construct sensible graphical checks.
The plotted shapes of the hazard rates are erratic and strongly dependent on
the choice of (the intervals of) the t,, values.!’ The estimate of § obtained by
estimation of the full bivariate duration model is significantly larger than one,
and there is significant positively related unobserved heterogeneity. We tackle the
problems with small sample sizes in Subsection 4.3 below.

Richardson and Van den Berg (2002) study the effect of participation in a
vocational training program by unemployed workers on their transition rate to
work. Individuals spend on average 6 months in training. Presumably, job search
continues during the training. The data show that a large fraction of individuals
move to work in the days following exit from the training program. This can not
be captured by the model of Section 2. Whether one halts the time clock during
the training or not, the transition rate to work depends on the time since the
start of the treatment. If one halts the clock then the figure produced by the
graphical check merely displays enormous peaks at the moment of exit to work.

10See Abbring, Van den Berg and Van Ours (1997) for the figure.
1This is not discussed in Van den Berg, Van der Klaauw and Van Ours (2004).
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If one does not then then these peaks occur 6 months before exit to work. The
graphical check is better suited for situations in which the treatment is permanent
and the treatment is either instantaneous or is time consuming but takes place in
“quarantine” (i.e., all activities regarding the outcome of interest other than the
treatment are put on hold). However, it is not difficult to envisage modifications
of the graphical check that allow for a positive joint occurrence of treatment and
outcome and for a treatment effect that decreases as a function of the time since
treatment. We leave this for future work.

4.3 Estimation of an auxiliary duration model

To get around the practical problems of discretization and sample size require-
ments, one may formalize our preferred graphical procedure by estimating an
ad hoc descriptive specification for 6,(¢|t,,) and test the signs of the estimated
effects of ¢ and ¢, (and their interaction) on log 6, (t|t,,). This way, we may simul-
taneously use the information on all individuals in the sample who are observed
to realize T,,, including those who are not observed to receive a treatment. In
addition, we may allow the parameters of the ad hoc specification to depend on
X. The specification is only relevant for 1), < ¢,.
For example, we may specify for ¢ < t,, that

ep(t|l';tm) = eXp(gjlﬁl + 52 10gtm) a(tm) ta(tm)—l (9)

with  «a(t,,) = exp(ay + oy logt,,)

It should be stressed that this specification merely summarizes the data. The
parameters should not be given causal interpretations. Rather, they represent
patterns across individuals, between X and 7, on the one hand and 7}, on the
other.

The above specification is a univariate duration model, where the hazard
rate 6,(t|t,,) follows a Weibull specification, with the duration dependence pa-
rameter o being dependent on the “explanatory” variable t,,. It is straightfor-
ward to derive the likelihood function corresponding to i.i.d. observations of
1,|X = z,T,, = t,, where T, may be right-censored. Note that the censoring
variable is the “explanatory” variable T,,. One may also restrict attention to
relatively large values of 7, (i.e. truncate 7, from below). The parameter es-
timates can be used to test the signs of the effects of ¢ and ¢,,. Notably, the
cross-derivative of log6,(t|t,,) with respect to ¢ and t,, is positive (negative) if
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ay; >0 (if ap <0).12

Note that we have thus effectively reduced the dimension of the duration
analysis from 2 (in the full model) to 1. Of course, the specification (9) does not
follow from the full model. It is desirable that the sign of the probability limit of
the estimator of «; equals the sign of the cross-derivative in the underlying full
model. We feel that the derivation of results on this is beyond the scope of the
paper.

We applied the above univariate approach to the data on sanctions of welfare
recipients. It turns out that 6,(¢|t,,) is estimated to decrease with ¢, while the
estimate of «; is insignificantly different from zero.'* This implies that there
is a positive treatment effect as well as a positive selection effect, which is in
agreement to the estimates for the corresponding full bivariate model.

5 An alternative graphical check

We now discuss the extent to which 6,,(¢|7, = t,) (or, in short-hand notation,
0,,(t|t,)) can be used for an alternative graphical check on the treatment effect.
The idea is that the log of this hazard rate can be plotted for say two different
values of ¢,, and that the resulting lines can be compared for ¢ exceeding the
largest of the two values of ¢,. In fact, in Case II, the hazard rates 6,,(t|t,) and
6,(t|tm) are closely related. This is easy to see if V;;, = V},. For example, we then
have that

O (t|tm,1)
Op (t|tm,2)

O (tmalt) and 9% log 0, (t|ty)  0710g b (tmt)
O (tmalt) otot,, N otot,,

for all possible realizations t,t,,, t,, 1, tm2.*

120ne may of course adopt alternative specifications, like 8, (t|z, t,,) = exp(z'S1+S2 log tm+
ag logt + a;(logt) - (logty,)), which is also a Weibull specification. Here as well, the cross-
derivative is positive (negative) if a1 > 0 (if @z < 0). More general specifications may allow the
cross-derivative to vary with ¢, ¢, and x in a flexible way, but then the simplicity appeal of the
estimation procedure is lost.

13These results are not reported in Van den Berg, Van der Klaauw and Van Ours (2004).

14In fact, in Case II, the properties of the hazard rates are closely related to the properties of
O (t| Ty = tp)/0m (| T, > t) as a function of ¢ for different ¢,. The latter is often used to study
the way in which the dependence of two duration variables changes over time if the dependence
runs by way of a common unobserved heterogeneity term (see e.g. Hougaard, Harvald and
Holm, 1992, and Yashin and Iachine, 1999). We conjecture that this can also be used for a
graphical check for our purposes, but we do not pursue this further.
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It is easy to show that with V,, =V}, in Case II, the hazard 6,,(t|t,) as seen
as a function of ¢ is always higher for smaller ¢,. It can also be shown that in
Case I with 6 > 1, 6,,,(t]t,) is always lower for smaller ¢,. The latter result can
be understood as follows: if there is a positive treatment effect at say ¢, = 1 then
the individuals with high values of V,,, leave the state very quickly, so that the
survivors at say t, = 2 have smaller values of V,,, than if the treatment would be
given at ¢, = 2. Note that in Case la, the hazard 6,,(¢|t,) as a function of ¢ on
(tp, 00) does not depend on ¢, at all. If V,, # V}, in Case II then we have to focus
on high durations again.

This implies that a sensible check on the treatment effect can be based on
0,.(t|t,), and, indeed, on the sign of the effect of ¢, on this hazard rate. There
are however a number of reasons to prefer the check based on 6,(t|t,,). Taken
in isolation, neither of these reasons may be sufficiently convincing, but taken
together we feel that they are.'® First of all, consider the result that 6,,(¢[t,)
increases with ¢, in Case I with 6 > 1. The above-mentioned intuition behind it
makes clear that this is critically dependent on the proportionality of the treat-
ment effect and the unobserved heterogeneity term in the individual hazard rate
0, (t|ty, Vin). The shape of 6,(t|t,,) in Case I is likely to be less sensitive to this
assumption. For example, the sign results on 6,(t|t,,) in Case I do not depend
on whether there is unobserved heterogeneity or not, whereas the sign results on
0,,(t|t,) in Case I do. Also, suppose that J is a not constant but instead decreases
slightly with the realization of 7},, while 6(¢,) > 1 everywhere. Then in Case Ia,
0,n(t|t,) is always higher for smaller ¢,, so that the check based on 6,,(t|t,) leads
to the wrong conclusion, whereas the check based on 6,(¢|t,,) does not.

Another reason concerns the fact that with 6,,(¢|¢,) it is difficult to distinguish
between 0 < 1 and positively related unobserved heterogeneity. In both of these
cases, log6,,(t|t,) may be larger for small ¢,, and in both cases the interaction
term may be positive, so that the lines corresponding to different ¢, converge
to each other. Yet another reason concerns the fact that the check based on
6,(t|t,) also detects a treatment effect in structural nested failure time models
(see Robins, 1998, and Keiding, 1999) whereas the check based on 6,,(t|t,) does
not. Structural nested failure time models are popular in biostatistics as a frame-
work to study the effect of treatments over time on duration variables. In our
terminology, it is assumed that V), is degenerate, so that all systematic deter-

150ne may wonder whether a graphical check based on 6, (t|t,) can be designed for multiple-
spell data, using variation in ¢, across spells for given individuals. However, there is often
insufficient information for such a graphical approach. The partial likelihood approach in Ab-
bring and Van den Berg (2003) formalizes the underlying idea.
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minants of whether an individual gets a treatment at a duration ¢, are known.
This implies that selectivity due to related unobserved heterogeneity is absent.
The models do however allow for time-varying confounders, which are basically
time-varying explanatory variables for 6, that may depend on the (moment of)

treatment.'®

6 Conclusion

In this paper, we have developed a simple procedure to infer the presence of a
positive treatment effect on a transition rate. The procedure can be implemented
as a graphical check. In this check, one has to condition on the moment of exit
and examine what happens before that (rather than condition on the moment
of treatment and examines what happens after that). The check focuses on the
shape of the rate at which a treatment is given conditional on the moment of exit,
and as such it is easy to use. In practical cases where sample sizes are too small to
rely on the graphical check, it can be replaced by a formalized version in which the
key properties of the shape are represented by parameters in an ad hoc auxiliary
duration model. Our method demonstrates that variation in the duration until
treatment relative to the duration until the outcome of interest conveys useful
information on the causal treatment effect in the presence of selection effects. If
treatment and outcome are typically realized very quickly after each other, no
matter what the values of the other outcome determinants are, then this is taken
as evidence of a positive causal treatment effect. The selection effect does not
give rise to the same type of quick succession of events.

Some topics for further research remain. The results on the graphical pro-
cedure are derived conditional on the assumption that the treatment effect, the
unobserved heterogeneity term, and the duration dependence term act multi-
plicatively on the hazard rates. Concerning the unobserved heterogeneity term,

16Yet another reason for preferring the check based on 6, (t|t,,) follows from the fact that
we need the durations t,,, and/or t, to be large. Consider again for convenience the special
case that V;;, = V. Both in 0, (tp|tm) and in 6., (¢, |tp) the relevant unobserved heterogeneity
distribution is affected by a multiplicative term exp(— (A (tm) + Ap(tp))v) (this can be seen
from equation (7) for 6,(t|t,,)), and from Appendix 2 it follows that Ay, (tr,) + Ap(t,) needs to
be large. Typically, in practical applications, A, (t) >> Ap(t) for all sufficiently large ¢. Also,
in practice, both T}, and T}, are right-censored at a common value, say 7. Suppose that 7T is
sufficiently large for the “large duration approximation” to be valid at some points ¢,,,t, < 7.
We may plot 8, (t|t,,) for a few t,, just below T, and the resulting lines may be compared in an
interval for t. We may also plot 6, (t|t,) for a few ¢, below T, but the interval in which these
lines may be compared is much smaller, which is unattractive.
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this is essential for reasons of tractability, as this allows us to rely on the pow-
erful Laplace transformation theory. The proportionality of the treatment effect
and the duration dependence term may however be violated in practice, and it
remains to be seen to what extent our results are robust with respect to this.
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Appendix

Appendix 1 Results for Case I: pure treatment effect
Appendix 1.1 Characterization of the data

The results in Appendix 1.1 apply to all Cases. By analogy to Tsiatis (1975), it is not difficult to
see that the observed joint distribution of T,,,I(T,, > T}), and T}, - I(T}, > T},) is characterized
by the functions

Qm (t) :=Pr (T, > t,Tp, > T),) and (10)

Qp (t,tp) :=Pr (T > t,Tp > tp, Ty > T)p). (11)

(see also Lancaster, 1990).
By differentiation of (10) and (11) we obtain, in notation to be explained below,

an; (t) = Am (t) . Egn) (Am (t) 7Ap (t)) (12)
and
8Q%§t,tp) = A (1) - L8 (A (1) + 6 A (8) = A (8)], Ay (1)) (13)

for ¢,t, € (0,00) and ¢, < t. L is the bivariate Laplace transform of G,
o0 o0
L& (Sm, Sp) ::/ / exp(—SmUm — SpVp)dG (U, Vp)
o Jo
and L‘g) (Sm,Sp) (1 =m,p) is the partial derivative of L& (s, sp) With respect to s;.
Appendix 1.2 Proof of Proposition 1
Ezxpressions for 0, (t|tn).
Note that G(vim,vp) = G (v )Gp(vp) implies that La(s,t) = Lo, (s)Lp(t), where £, and L,

are the Laplace transforms of respectively G, and G)p. Let Ms(t, ty) := (1—0) A (£) +0 A0 (Em)-
Define the following notational short hands:

Ms = Ms(t,tym) or Ms(z,tm),
Ay = AL(t) or Ap(z),

Ay = Ap(tm),

Ly = Ln(Ms), and

Ly = Lp(Ay),

where the argument is z (instead of ¢) if and only if the function is part of the integrand, and
integration is with respect to dz. We also use the same short hands for derivatives of £, and
L,, in obvious notation.
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We can express 6, (t|ty,) in terms of the probability function (), defined in Appendix 1.1,
0 0Qp(tm, 1)
by (tftm) = ot 8 { Otm
_02Qy(tm, t) /Ot 0t
 =0Qp(tm,t)/Otm

for t < t,,. An explicit expression for the numerator of this is easily found by taking the

(14)

derivative of equation (13) with respect to t,,, which gives (under Case I),

2*Qp(tm, 1)
Ot Ot

for t < tp,. For t > t,,, the joint density of T := T}, and T,,, at (t,ty,) is given by
A (tm) Ap (8) Lo [Am (8 )] £ [Ap ()],
so the denominator of (14) is given by

8t Bz

= 0Am (tm ) Ap () L3 [Ms (2, tm)] L [Ap (B)], (15)

=/5MMMWWMMMM%W@W

/ Am 2) L0, [A (tn)1£, [ A (2)]dz (16)

/ 5 () Ap (2) £ M (2 )] [Ap (2)] 2

A (b ) Lo [ A (£ ) £p[Ap (£,

for t < t,,. Here, we have used that lim;_,o Ap(t) = co. Dropping A, (¢y,) from both (15) and
(16) gives

SN ()L L)

Op(tltm) = —
Jo OX(2) L0 Lz — L0 [N ()| L [Ap ()]

; (17)

for t < t,,. Note that the denominator in (17) is positive due to the fact that derivatives of
Laplace transforms are negative.

Ezpressions for 0log 8,(t|t,,)/0t.
First note that OMs(t, tp,)/0t = (1 — 0) Ay, (t). The derivative of the log numerator in equation
(17) is

1W@Mmﬂ}:

0 .

(18)
WAUNN LMt tm)] LyAp(®)]
@ O ) T g 01
The derivative of the log denominator in equation (17) is
8 8 mo
7108 [ (tn) 1220 g, o1, (19)
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Subtracting (19) from (18) gives

ﬁ;;l EII
T )\p(t)_—z, + 0p(tltm), (20)
m P

Dlog b, (tltn) _ Ayt

for ¢ < tp,. The second term is positive (negative) if § > 1 (6 < 1). The first term on the
r.h.s. represents individual duration dependence in 6,, and could be either positive or negative,
independent of §. Also, the combined effect of the last two terms does not necessarily have the
sign of 6 — 1.

Using limyyy,,, Ms(t, 1) = A () and limgyy,,, 0 (E[tn) = —6Ap(tm) L [Ap(tm)]/Lp[Ap(tm)]
gives

iy 2108 0p(tltm) _
1t m ot

>

el
=
3
~—

LyAp(tm)]  —Lp[Ap(tm)] } (21)

—Lp[Ap(tm)]  Lp[Ap(tm)]
£8 [Aun(tm) Lo lAp(tm)]
+(5—1){Am(m)m Ap(tm m}

~ 53yt {

>
bS]
=~
3
~—

but the ambiguity does not disappear. The third term in the right hand side of (21) has the
same sign as 0 — 1. However, the first term shows that any increase (decrease) in 8, (t|t,,) near t,,
could be due to positive (negative) duration dependence of 6, (t). Furthermore, the second term
is (strictly) negative if G} is not degenerate. This is the observed duration dependence caused
by heterogeneity: the expected value of V), conditional on survival up to time ¢ is decreasing in
t.

Let 0 < t], < tp,. Then it follows from (20) and (21) that

lim 9 1og by ([tm) _ Olog Op (t]t7,)
el ot ot

C [ CARE)] LMyt )]
(1‘5Mm“m){—c;mm0%n"—ﬁ;mZuEJmn} 22

+ ep(t;n|tm) - t11i‘11§p ep(t|tlrn)7

for 0 < ¢, < ty. Note that OM;(t,t,)/0tm = 6Am(tm) > 0 implies that Ms(t, t,,) > Ms(t,t) =
Ap(t) for all 6 > 0 and 0 < t < t,,,. Also, note that 9[L"(s)/L'(s)]/0s = L"(s)/L'(s) —
[£"(s)/L'(s)]? > 0if £ is a Laplace transform. Using these results, it can easily been seen that
the first term on the r.h.s. of (22) has the sign of 1 — J. Next, let

tm) 1= — L3, [Ms(tr,, tm)]Lp[Ap(t,)]

b 5 (23)
— oAy (2) L7, Ldz + Lo [An ()| £p[Ap (8]

and note that

. Iy ! _[’;)[Ap(t;n)]
tlTlg Op(t]t;,) = 6)\P(tm)m'
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Then, the remaining terms in the r.h.s. of (22) satisfy

—Ly[Ap(t,)]
' T ry / pL™P\"m
Dty tm)

Jo S (2) Lo Lz = Lo [Arm (b )] Lp[Ap (t)]

We now show that D; has the sign of 1 — 4.

Lemma 1. Under Case I,

>0ifo<1
Ds(t!  tm) =0ifd=1
<0ifdo>1

for all0 < t), < tp,.

Proof. The integral in Ds can be expanded by partial integration to

[ O M 2, ) 0 2

m

tm

=0 |‘£Im[M6(Z:tm)]£p[Ap(Z)]
= [ 0= AR M )} [y ()

m

= 5{c;[Am<tm>]cp[Ap<tm>] — L [M;(#,, tmncp[Ap(t:n)]}
= O = ) A (2) Ll [My (2, b)) [ (2)]dz-

tm

Substituting (25) in (23) gives

D5(t;n7tm) :(1 - 5){_E;n[Mt?(t;n:tm)]ﬁp[Ap(t;n)] + E%[Am(tm)]ﬁp[/\p(tm)

tm

tm

+ 6Am(z)£;:1[M5(z,tm)]ﬁp[Ap(z)]dz.}

]
(26)

Note that OM;(t,t,,)/0t = (1 — 8) A\ (t) implies that Ms(t],,tm) < Ms(tm,tm) = Am(tm), and
therefore that the term between brackets in (26) is positive, for all § < 1 and 0 < ¢/, < t,,. So,
for 6 <1 it is immediately clear that Dy has the sign of 1 —§, and it only remains to be shown

that the term between brackets is also positive for § > 1. If § > 1, we can bound this term from
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below by
- ﬁin[Ma (tlnw tm)]ﬁp[Ap(t;n)] + E;I[Am(tm)]ﬁp [Ap(tm)]

[ AL Mz, )L A ()
> L0, (Mt ) JEp [ (ta)] + Lo [ (1)) L[4 (1)
[ () LM (2, ) A ()12

0 Mt )1 A ()] + L (Ao ()L A (1)
L Ay () (b)) = Mt )]}

= %ﬁp[Ap(tm)]{_ﬁk[Am(tm)] + L‘;n[Md(t;n:tm)]} >0,

-1
where the last inequality follows from the fact that My(t!,,tm) > Ms(tm,tm) = Am(tm) if
0> 1. O

As aresult, 0, (2], |tm) —limge  6,(t]t,) also has the sign of 1 -4, and the whole expression
in (22) has the sign of 1 — 4. In sum, if 6 > 1 (§ < 1) then log8,(t|t!,) increases (decreases)
relative to log 0, (t|tm,), for ¢ near ¢/, and all 0 < ¢, < tp,.

Now let us turn to the effect of ¢,,, on the level of 6,(t|t,,). Lemma 1 is also of direct use
here. Evaluating (17) at ¢t = ¢/, dividing by (24), and taking logs gives

: Op(tltm) | _ o ' ,
}%2103; {01,(15|t’m) = — log " ONp(2) L7, Loydz — L, [N (tm )] Lp[Ap(tm)]

(27)
+log { =L, [M (£, tm)] Lp[Ap (t,)]} -

Clearly, limys log [0, (t|t,) /0, (t|t7,)] has the same sign as Djs(t,,,t,,) and thus, by Lemma 1,
as 1—4.
This proves Proposition 1.

Appendix 1.3 Additional results for Case I

Ezxpressions for 0log 0,(t|ty,)/0tm.

Note that OMs(t, tm)/Otm = dAm (tm), Ms(t,t) = Ay (t), and

9 [ _10Qp(tm, t)] _
Oty [ Am (tm) Oty B

(6 = DAp(tm) Lo [Am (tm)1 £, [Ap (Em)]

(28)
/ 6209 (2) A () L1 M5 (2, ) L[ (2)]d2
tm) Lo [Am ()] Lp[Ap (tm)]-
The derivative of the log denominator in (17) is given by
0 ~102Qp(tm,t)| _ Lon[Ms(t,tm)]
o log {/\ (tm) 1W = 5)\m(tm)m (29)
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The derivative of (17) with respect to t,, is then given by

i -\ (t )—18Qp(tm7t)
Olog Oy (t|tm) _ 0 L PQptm,t)] Otm | T Oty
P = gy o ) S B0 - o]
()t
m\tm 8tm

To evaluate the sign of this derivative, we multiply (30) with the positive numerator
[— A () 71 0Qp (tm, t) /Otin ], which gives

_10Qp(tm,t)] Ologby,(t|tm) B
{_/\m(tm) Btm ] Btm B
(1= 8)Ap (i) L [ (£ JL A (ti)] + 82 A (t1m) X
b , , Lo Ms(t b)) L0 [Ms(2,tm)] (31)
= Al )t} o 2 ol o]

Recall that OMs(t,t,,)/0t = (1 — )\ (t) implies that Ms(t,ty) > Ms(z,ty) if § > 1 and
Ms(t,ty) < Ms(z,tm)if 6 < 1,fort < z < t,,. In particular, Ms(t, t,) > Ms(tm,tm) = An(tm)
if 6 > 1 and Ms(t,tm) < Ap(tm) if § < 1, for t < t,,,. Also, note that 9[L"(s)/L'(s)]/0s =
LM (s)/L'(s) — [£"(s)/L'(s)]? > 0 if £ is a Laplace transform. Collecting these results, it is
clear that the term between brackets in the integrand of the second term on the r.h.s. has the
same sign as § — 1. Again, this causes ambiguity, as the first term in the r.h.s. has the sign of 1—4.

Ezpressions for 0 log 8, (t|t.,)/0t0t,,.

The cross-derivative of log 6, (t|t,,) is given by

0 log B (t[tm) _ Lo Ms(t tm] (Lo [Ms(t,tm] )
OtOtm =00 = A () (i) {E;n[Ma(t,tm] - (E;n[Ma(t,tm]> } (32)
06, (t|tm)
+ Oty

The first term in the r.h.s. of (32) has the sign of 1 — §, but the second term has the sign of
0log 0, (t|tm)/Otm, which we cannot sign unambiguously, as argued before.

An example.

Let 6 = 1/2, A\, = 1 and A\, = 1. Furthermore, let G,, be discrete with support {1,2}
and Pr(V,, = 1) = Pr(V,, = 2) = 1/2, and let G, be degenerate at 1. Then, L,,(s) =
[exp(—s) + exp(—2s)]/2, L,(s) = exp(—s), and A, (t) = Ap(t) = t. For simplicity we give
results for ¢ | 0. It can be shown that the numerator and denominator of 8, (t|t,,) satisfy

_10Qp(tm, 1) _ 4dexp(—2t,,) + 9exp(—3ty,) + 2exp(—tm/2) + 3exp(—tm)

~ lim A (t) o 5 , (33)
and
. 102Qu(tm,t)  exp(—tm/2) + 2exp(—ty)
1 p\!m, _ m m
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respectively. Dividing (34) by (33) gives

B 3exp(5tm/2) + 6 exp(2t,,)
~ dexp(ty) + 9+ 2exp(5t,,/2) + 3exp(2t,,)

0p(0 + [tm) (35)
Note that limy, 0 6p(0+,¢n) = 1/2 and limy,, o0 6p(0+,%,) = 3/2. As a function of t,,,
lim¢ o 0, (t|tm,) is increasing for small ¢, and decreasing for large t,,. This can also be learned
directly from the fact that, for ¢ | 0, the expression in (31) equals

{[24 exp(tm/2) + 48] [exp(—tn/2) + 2exp(—tm)]} X [12 exp(—2t,,) + 40 exp(—5t,,, /2)+

77 exp(—3ty,) + 162 exp(—Tty, /2) + 144 exp(—4t,) — exp(—tm) — 2 exp(—3t,,/2)

in this case. Multiplying with (33) gives

01og0,(0 + |tm)
Ot
12 exp(t.,) + 40 exp(ty, /2) + 77 + 162 exp(—ty, /2) + 144 exp(—t,) — exp(2ty,) — 2exp(3tm/2)
[2exp(tm/2) + 4] [exp(—tm/2) + 2exp(—tn)] [4 exp(tm) + 9 + 2 exp(5ty, /2) + 3exp(2t,)]
(36)

Now note that lim; 10 0,(0+, t,,) = 4/3 and lim;,, o0 €xp(tn /2)0,(0+, tm) = —1/4. So, 6,(0+, tn)
is positive near 0 and negative for sufficiently large t,,,. More precisely, exp(t,,/2)0,(0+,t,) is
monotonically decreasing from 4/3 at 0 to —1/4 at infinity. So, we can conclude that we get
ambiguous results on the sign of dlog 8 (t|ty,)/0ty, for fixed § < 1.

It is easy to extend this example to 92 log6,(t|ty,)/0tOt,, by noting that the second term
in the r.h.s. of (32) equals 6, (t|t,,)010g[0, (t|tm)]/Otm. As 0,(0+,1,,) is positive and has a finite
limit as ¢, — oo, for ¢ | 0 this term behaves much like 01og[6,(0 + |t5,)]/Otm. The first term
on the r.h.s. of (32) has the sign of 1 — d, but can be suppressed for ¢ | 0 by changing A, in
a neighborhood of 0 such that A,(0+) = 0. The effects of this change on the results for the
second term can be made arbitrarily small by changing A, on a sufficiently small neighborhood
of 0. Concluding, the first term can be made to vanish without changing much of the results
concerning the second term, for ¢ | 0, and the ambiguity result concerning the first derivative
carries over to the cross-derivative. A specific example that produces the desired ambiguity in
both derivatives is the example above with \,(¢) = 1/10 for ¢ < 1 and A\, (¢) =1 for ¢ > 1.

Appendix 1.4 Proof of Proposition 2

If G, is degenerate, say at 1, then L‘%)(s) = (—1)%exp(—s). This implies that £/ (s)/L].(s) =
—1, and is independent of s. Therefore, the second term in the r.h.s. of (31) vanishes, and
the third term reduces to —(1 — 0)Lp[Ap(tm)] Lo [Am (tm)], which carries the sign of 1 — 4.
Therefore, 0log 6, (t|tm) /Oty has the sign of 1 -4, which proves the first assertion in Proposition
2. The proof of the second assertion easily follows from the observation that £ (s)/L! (s) —
(£ (5)/LL,(s)]? = 0 for all s, as G,, is degenerate. Substitution in equation (32) shows that
02 1og 0, (t|t,m,)/OtOty, = 06, (t|t)/Otm, which has the same sign as 0log 8, (t|t,,)/Otm.
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Appendix 2 Proofs for Case II: pure selection

In this appendix we analyze a generalized version of Case II, denoted by Case Ila (recall that
Case Ia is actually a more restrictive version of Case I).

Appendix 2.1 Definition of the more general Case Ila
Case Ila: § = 1. Furthermore, the joint distribution G of (V;,,,V}) is such that V, = h(V};,) for
some nonnegative h which is regularly varying at 0 with exponent 7 > 0,

h(v) " v M(v),

where M is an arbitrary function that is slowly varying at 0. The random variable V,,, has a
distribution function F concentrated on (0,00). We denote F; to be the class of (improper)
distribution functions that satisfy dF;(v) := exp[—A,(t)h(v)]dF (v). We assume that the model
determinants are such that F; satisfies either one of the following conditions.

(i). F} is absolutely continuous with density f;. Let ¢ > 0 be given. Then, f; is regularly
varying at 0 with exponent —1 < o; < 00, or

fol0) "X 0%t Ly (v),

where L, is slowly varying at 0.

(ii). F; is infinitely discrete, i.e. concentrated on a countable subset S C (0, 00), with dense
support near 0. Denote the elements of S by the sequence vg > vy > vy > --- > 0, and
let!?

prie ifv=wv, k=0,1,2,---
dF; =
«(v) { 0 elsewhere

for some 0 < pg; <1,k =0,1,2,---. Let t > 0 be given. Then, p; is regularly varying
at infinity with exponent —oco < —o; < —1, or

k—o0 7 g,
Pt~ kT Ly(k),

where L; is slowly varying at oo. Furthermore, vy, is regularly varying at infinity with
exponent —oo < —o < 0, or

o M O L(k),
where L is slowly varying at infinity.

(which is where the definition of Case Ila ends.) In the proofs, we focus on continuous dis-
tributions of type (i). Discrete distributions of type (ii) can basically be treated in the same
way.

1"Note that we are focusing on the behavior of F; near 0, and that the restriction to a support
bounded from above by vy is immaterial and only made for notational convenience.
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Appendix 2.2 Proof for Case ITa and Proof of Proposition 3

It can easily be shown that, in the notation introduced in Appendix 1.1,

L8P Aa(tm), Ay (D))
LAt Ap(8)]

op(t|tm) = _)‘p(t)

where
O Lg(s,t)
Osiot
denotes the (i, j)-th cross-derivative of L. Note that these exist for all ¢,t,, > 0. Taking the
derivatives to t,, and then to ¢ of (37) in logs gives

L8 (5,1)

01086, tlim) _ \ 1 [LG" (b Ay (O] _ LG Aom(tm), Ay (0) (38)
Otm LG At A0 LE A (tm), Ap(0)
and

0210g 0, (t|tm)

oot Ap () A (tm) X (39)
£gIOLET () Lgr)

g 0)? £g" )

cgﬁ“%>_c$ﬁ”0£$wam]
L&) O

It will prove useful to rewrite equations (37), (38) and (39) in terms of the conditional moments
pij := E[VLVI Ty > ty, T, > t], which are given by

L0 PN (), Ay(8)]
Lol (tm), A1)

Also, using the normalized moments

i (tm, t) = (=1)"7

_ i (tm, t)
1,0 (tm > 1) 0,1 (Em s t)7

Vi,j (tma t) :

we can write

op(t|tm) = )‘p(t)NOJ(tm;t)'YLl(tm;t)a (40)
Olog 0, (t|tm) ¥2,1(tm,t)
—" = Ayt byt tm,t) — ——F—< 41
ot (tm)p,0(tmst) |72,0(tm, t) Yol D) (41)
and
0% log 0, (t|tm
010800(tlim) _ 3 (1) M (b 11,0 (b )10, (b £) %
otot,, (42)

V2,2 (s ) Y21 (Ems 1) 71,2(Em, B)
V1.1 (tm, ) Y1 (tm, £)?

We now present some lemmas that are used in proving the results for the absolutely con-

¥2,0 (tm> £) 71,1 (Ems 1) — Y2,1(Ems 1) +

tinuous version of Case Ila. First, we need two results from the theory of regular variation. The
first lemma mirrors part of the lemma from Feller (1971), Section VIIL9.
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Lemma 2. Let L > 0 vary slowly at 0. Then, for i > —1, fov n'L(n)dn varies regularly at 0
with exponent i + 1.

Proof. Define F;(v) := fov n'L(n)dn. As L is slowly varying, for each a > 0 and € > 0, (1 —
€)L(v) < L(av) < (1 4 €)L(v) for all sufficiently small v. Therefore,

(1—e€)a™ Fi(v) < Fi(av) < (14 €)a' Fy(v) (43)

for all sufficiently small v. Note that from (43) it is clear that F; converges for v | 0 for all
i > —1. Dividing (43) by F;(v) gives

(1 - aitt < Flav)

= Fi(v) < (1+ea'th

Because this is true for arbitrary € > 0 the claimed result follows. O

Next, let F' be a distribution function and let F; denote a class of (improper) distribution
functions such that dFy(v) := exp[—A,(t)h(v)]dF (v). Let Fj;(v|t) := [ n'h(n)’dF,(n), and
assume that F; is absolutely continuous with density f;. By analogy to Feller (1971), Section
VIIL.9, Theorem 1,

Lemma 3. Lett > 0 be given. If Ly > 0 and M > 0 are slowly varying at 0, —1 < 0 < o0,
0< 71 <00, fi(v) & o Li(v), and h(v) el v" M (v), then

0 i Li(v)M(v)? . .
F; j(v]t) e v"t“*””#i(_:ﬁ, foror+1+i+71j>0.

Proof. Let Z(v) be such that

Z(v) _ vh(v) fi(v)
v FiJ' (’U|t) '

(44)

As f; varies regularly with exponent oy, h(v) varies regularly with exponent 7, and oy + 1414+
75 > 0, v'h(v)? fi(v) varies regularly with exponent o; + i + 7j, and, by Lemma 2, F; ; varies
regularly with exponent oy + 1 + i + 7j. Therefore, Z(v)/v varies regularly with exponent —1,
and Z(v) is slowly varying at 0. As the numerator in the r.h.s. of (44) is almost everywhere the
derivative of the denominator, we can integrate between v and aw, which gives

log L (@0lt) :/ Z(m) ,
Fij(v[t) v

Due to regular variation, the Lh.s. of (45) tends to (ox+1+4+i+7j)loga if v | 0. Let v | 0 such
that the integral in the last line converges to a limit [ < co. Because Z is slowly varying, the
integrand in the last line converges to ! if v | 0. Therefore, by Fatou’s Lemma, [ > log .. This
implies that Z(v) - mifv | 0, where m < 04 +1+i+7j < co. Therefore, Z is bounded near 0,
and lim, o Z(av) = m for all a. As the integrand in the second line is bounded for sufficiently
small v, limyo [;"[Z(nv)/n]dn = mloga, and therefore m = o; + 1+ i + 7j. Combining with
(44) gives the desired result. O
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Without proof we state the following well known Abelian theorem (see e.g. Feller, 1971, Section
XIIL.5, Theorem 3).

Lemma 4. If L is slowly varying at 0 and 0 < p < oo, then H (v) el v? L(v) implies L (s)

T(p+1)s™PL(1/s).

§—00
~

We can apply this to Fj ;.

Lemma 5. Let t > 0 be given. If Ly > 0 and M > 0 are slowly varying at 0, —1 < o4 < o0,
0< 71 <00, fi(v) 0 o Li(v), and h(v) el v" M (v), then

LriAm(tm)] 7"R% Do + 2 40 4 7§) A (t) =@ FHHHTI)
Li[A (t) " M [ A ()P
or+1+i+71)

where Lp, ;| s the Laplace transform of F; j(vlt).
Proof. This is a direct consequence of Lemmas 3 and 4. O
As a result of this lemma, we have

Lemma 6. Lett > 0 be given. If Ly > 0 and M > 0 are slowly varying at 0, —1 < 0 < o0,
0< 71 <00, fi(v) & o Li(v), and h(v) el v" M (v), then

tm—oo  L(op+1+1+ 7))

T D) () T M (t) Y

Wi, (tmst)

and therefore

‘ C(o+1+i+7j) ( Dlop+1)
o) = 1 (s t) = : :
Vi, (00, t) o Vg (bm; 1) (6+1)T (ot +1) \I'(or +1+7)

Proof. Follows directly from Lemma 5. O
We are now in a position to prove

Proposition 4. In Case Ila, with a non-degenerate F', there holds for each t > 0 that

lim A (tm) Olog Oy (tltm) _ <o,
tm—00 A\, (tm) Otm

and

i A (t)™ 1L 0% log Oy (t|tn)
tm—00 Ay (b)) M[An(tm) Y] OtOty, B

T(oy + 2+ 27) F(Ut+2+7')] {>0if¢>0

(1) Loy +2+7)  D(oy+2) =0if7=0

Proof. Follows directly from Lemma 6. The last assertion follows from log-convexity of the
Gamma function. O

Finally, note that in Case II, h(v) = v7, so that Case II is the special case of Case Ila with
M(v) =1, 00 = o and Li(v) = exp[—A,(t)v7]L(v).'® It is easy to check that Proposition 4
reduces to Proposition 3 under these restrictions, which proves Proposition 3.

18We could also simply take Li(v) = L(v) if 7 > 0, and L¢(v) = exp[—A,(t)]L(v) if 7 = 0.
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Figure 1: log 6,(t|t,,) for various values of ¢, (Case I: 6 = 0.8; G,, and G, degen-

erate at 1)
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Note: Each curve corresponds to a t,, equal to the largest value of ¢ for which it is drawn.

Figure 2: log 6, (t|t,,) for various values of ¢,, (Case I: 6 = 1.2; G, and G, degen-
erate at 1)
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Note: Each curve corresponds to a t,, equal to the largest value of ¢ for which it is drawn.
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Figure 3: log 8, (t|t;,) for various values of t,, (Case I: § = 0.8; G}, and G, unit
exponential)

-30 -26 -22 -18 -14 -10 -06 -02 02
T T T T T T T

L L L L L L L L L
[e] 1 2 3 4 5 6 7 8 9 10

Note: Each curve corresponds to a t,, equal to the largest value of ¢ for which it is drawn.

Figure 4: log#,(t|t,,) for various values of ¢, (Case I: § = 1.2; G,,, and G, unit
exponential)

0.2

-06 -0.2
T

-1.4 -1.0
T T

-1.8
T

-2.2

©
o
|

L L L L L L L L L
[e] 1 2 3 4 5 6 7 8 9 10

Note: Each curve corresponds to a t,, equal to the largest value of ¢ for which it is drawn.
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Figure 5: log 6, (t|t,,) for various values of t,,, (Case II: f(v) = exp(—v); V, = V},)
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Note: Each curve corresponds to a t,, equal to the largest value of ¢ for which it is drawn.

Figure 6: log 6, (t|t,,) for various values of ¢,, (Case IL: f(v) = 11v'% V,, = V};,)
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Note: Each curve corresponds to a t,, equal to the largest value of ¢ for which it is drawn.
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Figure 7: log0,(t|t,) for various values of ¢,,, (Case II: f(v) o exp(—(logv)?/2)/v;
V,=Vm; 0<v<2)
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Note: Each curve corresponds to a t,, equal to the largest value of ¢ for which it is drawn.

Figure 8: log#,(t|t,,) for various values of t,, (Case II: f(v) o< exp(—v); V, =
—logVi; 0 < v < 1)
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Note: Each curve corresponds to a t,, equal to the largest value of ¢ for which it is drawn.
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