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Abstract

In observational studies, the non-parametric estimation of a binary treat-
ment effect is often performed by matching each treated individual with a con-
trol unit which is similar in observed characteristics (covariates). In practical
applications, the reservoir of covariates available may be extensive and the ques-
tion arises which covariates should be matched for. The current practice consists
in matching for covariates which are not balanced for the treated and the control
groups, i.e. covariates affecting the treatment assignment. This paper devel-
ops a theory based on graphical models, whose results emphasize the need for
methods looking both at how the covariates affect the treatment assignment
and the outcome. Furthermore, we propose identification algorithms to select
a minimal set of covariates to match for. An application to the estimation of
the effect of a social program is used to illustrate the implementation of such
algorithms.
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1 Introduction

The potential outcome framework (also called the Rubin model) was introduced by
Rubin (1974) to estimate the effect of a binary treatment on an outcome of interest
based on observational data, i.e., where treatment assignment to individuals has
not been randomized. In this context, the identification of the average treatment
effect can be achieved under specific conditions, see, e.g., Holland (1986). The main
assumption for identifiability is that the treatment assignment can be considered
as having been randomized when conditioning on a set of pre-treatment variables,
also called covariates. In such cases, the average treatment effect can be estimated
non-parametricaly with matching estimators, where, for instance, each treated indi-
vidual is compared to an untreated (control) individual having identical or similar
characteristics (values for the covariates); see, e.g. Cochran & Rubin (1973), Rosen-
baum (2002) and Imbens (2004). The concept of matching corresponds to the idea
of “controlling” or “adjusting” for covariates in parametric regression models.

In typical observational studies, a large amount of covariates is available, describ-
ing the individuals to enter the study before being treated. In order to fulfill the
condition of randomized-like treatment assignment mentioned above, it is tempting
to match for as many covariates as possible. However, adjusting for covariates that
are not necessary (overmatching) lowers the quality of the estimation as was noted,
e.g., by Rosenbaum (2002, pp.76). This happens because matched individuals are
not identical (at least as soon as continuous covariates are involved) but only similar
with respect to the covariates matched for. Abadie & Imbens (2002) showed that
the bias of matching estimators increases with the number of continuous covariates
matched for. In Heckman & Navarro-Lozano (2004) it was noted that the literature
on matching provides no guidance on the choice of a minimal set of covariates in
order to avoid overmatching.

In this paper we introduce a two-step procedure for the identification of a minimal
set of covariates that guarantees the unbiasedness of the estimate of the treatment
effect (given that there are no unobserved covariates that need to be matched for)
while making sure that no unnecessary covariates are controlled for. In a first step,
the variables predicting the treatment are identified. The second step amounts to
a search among the variables identified in the first step for variables predicting the
outcome for a given treatment assignment. Alternatively, these two steps may be
taken in the reverse order with some slight modifications. Note that it is fairly
common in practice to only apply the first step described above. However, already
Cochran (1965) was aware that one should also look at how the covariates affect the
outcome (step 2 above) in order to identify an appropriate set of covariates to match
for. In this respect, our results confirm Cochran’s early insight.

The paper is organized as follow. Section 2 introduces the models and estimators
of interest. Section 3 reviews graphical models and some of their theory in order to
apply them to the context of this paper. In particular, a graphical representation
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of the Rubin model is proposed. In Section 4 a theory is developed allowing us to
introduce algorithms for the identification of a minimal set of covariates. Section
5 discusses the practical implementation of the algorithms. The implementation is
then illustrated in Section 6 by means of an application to the estimation of a social
program effect. Section 7 concludes the paper.

2 Framework: Model and estimators

2.1 The Rubin model

The potential outcome framework of Rubin (1974) is frequently used in observational
studies to assess the effect of a binary treatment T (T = 0 when not treated, and
T = 1 when treated) on an outcome of interest. For a given unit/individual, two
random variables are defined: the outcome when not treated, Y0, and the outcome
when treated, Y1. These two variables cannot both be observed because an individual
is either non-treated or treated. The estimand of interest is typically an expected
value of the difference between the potential outcomes: the average treatment effect,
E(Y1 − Y0) and/or the average treatment effect on the treated E(Y1 − Y0 | T = 1).

An assumption (the stable unit treatment value assumption, SUTVA) made in
this framework is that the values of Y1 and Y0 for the units are the same regardless
of the values we observe on T . This means that the treatment assignment to one
unit does not affect the value of the potential outcomes on that unit or any other
unit. For further discussion on SUTVA see Rubin (1991).

In an experiment, where the treatment assignment is randomized, we have that
the treatment assignment and the potential outcomes are independent, denoted

Y1, Y0 ⊥⊥ T. (1)

Thus, because (1) implies

E(Y1 − Y0) = E(Y1 | T = 1)− E(Y0 | T = 0), (2)

an unbiased estimate of the average treatment effect can be obtained by taking the
difference between the sample average of the treated and the sample average of the
controls (untreated).

In observational studies (without randomization), (1) does not hold and we need
to adjust for differences in the covariates between treated and controls. Adjustment
is often carried out by looking at differences in outcomes between treated and controls
conditional on some value of the covariates. The following assumptions underlie such
procedures, where X denotes a set of pre-treatment variables observed for each unit:

(A.1) Y0 ⊥⊥ T |X,

(A.2) P (T = 1 | X) < 1,
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(A.3) Y1 ⊥⊥ T |X,

(A.4) P (T = 0 | X) < 1.

For instance, Yj ⊥⊥ T |X denotes that the treatment variable T and the potential
outcome Yj are independent given X; see Dawid (1979) for a general reference on
conditional independence.

The estimand of interest may be estimated by noting that, if (A.3-A.4) hold then

E(Y1 | X) = E(Y1 | X, T = 1),

and if (A.1-A.2) hold then

E(Y0 | X) = E(Y0 | X, T = 0).

Hence, assuming (A.1-A.4) we have

E(Y1 − Y0) = E(E(Y1 | X, T = 1)− E(Y0 | X, T = 0)), (3)

showing that unbiased estimation of the average treatment effect is possible with
the data at hand.

2.2 Estimation by matching

The application of the potential outcome framework to the estimation of average
treatment effects may be illustrated with the following simple example.

Assume that we have a random sample of n individuals, some of which have
been treated. Assume that the older you are the more likely you are to take the
treatment, and that the (expected) response to treatment differs with age. In this
setting, we have that (2) (and, hence, (1)) does not hold. On the other hand, we
assume that (A.1-A.4) hold for X = X1, where X1 denotes age.

Here, because (2) does not hold, we cannot estimate the average treatment effect,
E(Y1 − Y0), with

1

n1

n1
∑

i=1

Y1i −
1

n0

n0
∑

i=1

Y0i,

where Y0i and Y1i are the observed outcome for the n0 and n1 individuals in the
control and treated group respectively, with n0 + n1 = n . This estimator is biased
because of the confounding variable age.

An unbiased estimator of the average treatment effect must adjust for age. As-
suming that (A.1-A.4) hold for X = X1, an example of a non-parametric estimator
based on (3) is then

n

n1

n1
∑

i=1

(

Y1i − Ŷ0i

)

+
n

n0

n1
∑

i=1

(

Ŷ1i − Y0i

)

, (4)

4 IFAU - Covariate selection for non-parametric estimation of treatment effects



where Ŷ0i = Y0j , denotes the response of an individual j from the control group who
has same (or similar) age as individual i, and Ŷ1i = Y1j , denotes the response of a
treated individual j who has same (or similar) age as i. This estimator is called a
matching estimator because each treated unit is matched (with respect to X1) to a
control, and vice versa.

2.3 Bias due to overmatching

Assume that in the above presented example, we have measured another variable
X2 that is associated with the treatment but not with the response. Since the
variable is not affecting the response, we still have that assumptions (A.1-A.4) hold
for X = X1, and there is no need to adjust for this extra variable. However, if
the analyst does not have prior knowledge on the nature of the association between
the variables, she/he may be tempted to control for X2 as well, when exploring the
data and discovering that X2 is not balanced for (has the same distribution for) the
treated and controls.

An estimator such as (4), is biased if matching is not exact, i.e. when matched
individuals do not exactly have the same value for the covariates that are matched
for. This happens with continuous covariates. Results concerning the large sample
properties of matching estimators show that the bias increases with the number of
continuous covariates (Abadie & Imbens 2002), stressing the importance of avoiding
superfluous conditioning.

In the example discussed, we need to adjust for X1, but should avoid adjusting
for X2 since it brings in an unecessary bias. If exact matching on X2 is possible then
its use will not introduce a bias, although a loss of efficiency will still be implied (the
larger the dimension of X the more observations are needed to find a match).

In many applications it is not known which covariates one should be adjusting
for, and we, therefore, study their identification in the remaining of the paper. For
this purpose, we use a graphical representation of the relation between variables.

3 Graphical modeling

3.1 Graphs, causality and conditional independence

In order to develop, in Section 4, a theory for the identification of covariates we will
use a graphical representation of certain properties of the Rubin model.

A graph (see, e.g., Lauritzen, 1996) is a pair G = (V, E), where V is a set of
nodes representing the variables in the model and E is a set of edges representing
the relations between these variables. When two variables X,Y ∈ V are such that
both the edges XY and Y X belong to E, then the edge between X and Y is said
undirected (symbolically: X − Y ). The edge is directed if, e.g., only XY belongs to
E (symbolically: X → Y ; we say that X is a parent of Y ).
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In particular, graphs with only directed edges and which do not contain cycles
− called directed acyclic graphs (DAG)− are increasingly used for modeling causal
relationships, see, e.g., Pearl (2000), Lauritzen (2001) and Dawid (2002). Basically
a DAG is built by drawing directed arrows that stand for causal relations. For
instance, the graph X → Y is interpreted as X has an effect on Y , or, if X is an
attribute (which cannot be intervened upon), Y has no effect on X though Y and
X are dependent.

Once a graph G = (V, E) is given, a joint probability distribution, P (v), for the
variables in V which is compatible with G is specified to carry out inference.

Definition 1 (Markov compatibility, Pearl, 2000, Sec. 1.2) A joint probability dis-
tribution P (v) for the variables in V is compatible with a graph G = (V, E) if it
admits the factorization

P (x1, . . . , xp) =
∏

i

P (xi|{parents of xi}),

where the set {parents of xi} ⊆ V contains the variables having an arrow pointing
towards Xi in G.

The set of distributions which are compatible with a DAG G is characterized by a
list of conditional independencies between the variables in V. These independencies
can be retrieved directly from the graph by using the d-separation criterion (Verma &
Pearl 1990), or the moralization criterion (Lauritzen, Dawid, Larsen & Leimer 1990).
In order to describe d-separation we need the notion of a path between two nodes
in a graph. A path from X to Y is a sequence of distinct nodes which are connected
by an arrow in any direction.

Definition 2 (d-separation, Pearl, 2000, Sec. 1.2) A path from A to B in a DAG
is said to be blocked by C ⊆ V if it contains a node N such that either i) N ∈ C
and arrows in the path are not such that → N ←,(then N is called a collider) or ii)
N /∈ C, there is no arrow such that N → B for C ∈ C, and arrows of the path are
such that → N ←.

Then, a set C is said to d-separate A and B if it blocks all paths between these
two nodes.

D-separation is equivalent to conditional independence as follows (see also Figure
1).

Theorem 3 (Pearl, 2000, Sec. 1.2) For any two variables A and B nodes in a
DAG G, for any subset C of nodes in the same graph, and for all joint probability
distribution P (v) for the variables in the graph, we have: C d-separates A and B if
and only if A ⊥⊥ B|C for every P (v) compatible with G.
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3.2 Graphical specification of the Rubin model

In the Rubin model of Section 2.1, the notion of causality is implicit. The purpose
with the model is to estimate the effect of a treatment (cause) on an outcome of
interest; see Holland (1986). Furthermore, the variables which need to be controlled
for are pre-treatment and pre-outcome variables. This ensures that the treatment
and the outcome do not affect the control variables. The latter causality state-
ments as well as the conditional independence assumptions (A.1) and (A.3) can be
translated into two DAGs, see Figure 1, one for each potential outcome.

 

T  jY
 

X  

Figure 1: Rubin model displayed as a directed acyclic graph (DAG), GR
j , where X

is a set of pre-treatment variables, T is the treatment assignment and Yj, j = 0, 1
are the potential outcomes. Here, X d-separates Yj from T and hence Yj ⊥⊥ T |X.
Note that only Yj is represented in the graph and not both Y0 and Y1 because the
latter are “complementary” random variables: Either you are in the world where Y0

is realized or in the world where Y1 is realized; see Dawid (2002) on the dangers to
contemplate the metaphysical joint distribution of Y0 and Y1.

We emphazise that we do not consider the DAGs of Figure 1 as equivalent to
the Rubin model, but merely as a representation of some of its properties.

In the sequel, we work in the context where a set of pre-treatment variables, X,
is available, for which (A.1-A.4) hold. Some of these variables affect the outcomes
and/or the treatment. It is, however, unknown which of the pre-treatment variables
(if any) affect the outcomes and the treatment. Further, the pre-treatment variables
may have an effect on each other in a non-specified fashion, though their causal
structure is assumed to be compatible with a DAG.

Formally, let us denote by GR
j , j = 0, 1, the graphs described in Figure 1. We

make the following assumption in the sequel:

(A.5) The unspecified arrows within X are assumed to be such that GR
j is a DAG.

Because we do not have knowledge of the full causal structure between the variables
involved, GR

j is only a partially specified DAG. This is an essential characteristic of
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our framework since when all the causal relations are known, i.e. the DAG is fully
specified, then the covariate selection problem (which as noted earlier is equivalent
to finding a d-separator between Yj and T ) is solved (Back-door criterion in Pearl,
2000; see, also, Tian, Paz & Pearl 1998).

4 Theory for the identification of covariates

In Section 2 we saw that in order to estimate an average treatment effect we should
match for a set of covariates for which assumptions (A.1-A.4) are fulfilled. We noted
further that we should also avoid overmatching. Thus, we want to look for a set of
covariates for which (A.1) and (A.3) hold, but such that these assumptions ceases
to hold when discarding any of the covariates included in the set. This concept of
minimality is formalized in Definition 4 below, followed with the theoretical frame-
work which will allow us later to propose a procedure to identify a minimal set of
covariates.

4.1 Minimal d-separators

Definition 4 Given two nodes A and B in a DAG, G, a set C that d-separates A
from B in G is said to be minimal if no proper subset of C d-separates A from B.

In Tian et al. (1998), this definition is shown to hold if and only if reducing C
by a node cancels its d-separating property.

We now define some subsets of the covariates X in GR
j , which have the property

of d-separating the treatment T from the potential outcome Yj. We assume in the
sequel that there is at least one path between T and Yj.

Definition 5 Let XT be the set of nodes in X that are parents to the treatment
variable T in GR

j , j = 0, 1. Let Xj be the set of nodes in X that are parents to the

potential outcome variable Yj in GR
j , j = 0, 1.

The sets XT and Xj in GR
j both d-separate Yj from T since all paths from T

must go through XT and all paths from Yj must go through Xj and no nodes in
XT or Xj can unblock a path from T to Yj. They are, however, not necessarily a
minimal d-separator for T and Yj.

Remark 6 The set XT has the property of d-separating T and X \XT in GR
j . The

corresponding property also holds for Xj. Both of these properties are used later on
for identification purposes.

Definition 7 Let Qj ⊆ XT be a minimal d-separator for T and Yj in GR
j , j = 0, 1.
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j=0,1 jY  
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Figure 2: Illustration of the subsets introduced in Definitions 5, 7 and 8.

Definition 8 Let Zj ⊆ Xj be a minimal d-separator for Yj and T in GR
j , j = 0, 1.

We have the following useful results.

Proposition 9 For j = 0, 1, the sets Qj and Zj are unique as defined in Definition
7 and 8 respectively.

Proof. We give the proof for Qj. Assume that there are two distinct subsets A
and B of XT , A 6= B, that are minimal d-separators for T and Yj. By the definition
of minimality we know that A 6⊂ B and B 6⊂ A. Hence, there must be a ∈ A such
that a /∈ B. Since a ∈ A there must be a path from T to Yj that is blocked by a
(reducing A with a destroys d-separability). Since a /∈ B the path from T to Yj that
is blocked by a must be blocked by some other node b ∈ B that is not in A.

This is a contradiction because XT contains only parents of T and, therefore, a
path from Yj to T that is blocked by a node in XT cannot be blocked by another
node in XT .

Corollary 10 In GR
j , Qj is a d-separator between Yj and XT \Qj, j = 0, 1. More-

over, if ξj ⊆ XT is a d-separator between Yj and XT \ ξj of minimum cardinality
then ξj = Qj.

Proof. Assume that there is a path from XT \Qj to Yj that is not blocked by
Qj. Since all nodes in XT \Qj are parents to T there is a path from T to Yj not
blocked by Qj, which is a contradiction.

To prove the second part of the corollary consider a set ξj of minimum cardinality
such that it d-separates Yj and XT \ ξj. A path from Yj to T has to go through
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either ξj or XT \ ξj . Paths from Yj to T that go through XT \ ξj are blocked by ξj

since ξj d-separates Yj and XT \ ξj , and paths from Yj to T that go through ξj are
blocked by ξj (since ξj does not contain a collider in a path from T to Yj). Hence,
ξj d-separates Yj and T .

Since ξj is a set of minimum cardinality in XT such that it d-separates Yj and
XT \ξj we know that ξj cannot be reduced by a node, thereby implying (by the first
part of the corollary) that it is a minimal d-separator for T and Yj. By Proposition
9, Qj ⊆ XT is unique as a minimal d-separator for T and Yj and, therefore, ξj = Qj.

Corollary 11 In GR
j , Zj is a d-separator between T and Xj\Zj , j = 0, 1. Moreover,

if ξj ⊆ Xj is a d-separator for T and Xj \ ξj of minimum cardinality then ξj = Zj.

Proof. Similar to Corollary 10

 

 

1X  

2X  

4X  

5X  

3X  

T  0Y  

6X  7X  

Figure 3: Graph with set Q0 marked with ellipses and Z0 marked with rectangles.

Example 12 Figure 3 presents an illustrative example. Here XT = {X1,X2,X3}
and X0 = {X3,X4,X5}. The set Q0 = {X1,X3} is a d-separating set between Y0

and XT \Q0 = {X2}. Similarly Z0 = {X3,X4} d-separates T from X0 \Z0 = {X5}.
Both Q0 and Z0 are minimal d-separators for Y0 and T .

Note that in Example 12 the set {X3,X6} is also a minimal d-separator for Y0 and
T . This illustrates the fact that the sets defined in Definition 7 and 8 are not the
only existing d-separators. They are, however, unique as subsets of XT and Xj , and,
most importantly, they are identifiable without making assumptions on the causal
structure within X as we shall see in the following section.
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4.2 Identification algorithms

In the previous section we have defined subsets of the covariates d-separating the
treatment from the potential outcomes. By Theorem 3, all the definitions and results
of the previous section specifying d-separators can be translated into conditional
independence statements valid for all the distributions compatible with the graphs
GR

j , j = 0, 1. In particular, we have from Definitions 7 and 8 that

Y0 ⊥⊥ T |Q0 and Y1 ⊥⊥ T |Q1

and

Y0 ⊥⊥ T |Z0 and Y1 ⊥⊥ T |Z1.

In other words, assumption (A.1) holds for the sets Q0 and Z0 and assumption
(A.3) holds for the sets Q1 and Z1. These sets are minimal in the sense that the
conditional independence would not hold anymore if one variable were taken away
from them.

Our purpose is to identify these minimal sets. However, because the above condi-
tional independence statements involve partially unobserved variables (the potential
outcomes), they cannot be utilized. On the other hand, the identification can be
achieved by the two algorithms proposed in Table 1.

Table 1: Identification of covariate sets Q0,Q1,Z0 and Z1.
Algorithm A: Identification of Q0 and Q1

Step 1. Identify XT such that (T ⊥⊥ X \XT |XT ) holds.
Step 2. For j = 0, 1:

Identify Qj ⊆ XT such that (Yj ⊥⊥ XT \Qj|Qj , T = j) holds.

Algorithm B: Identification of Z0 and Z1

For j = 0, 1:
Step 1. Identify Xj such that (Yj ⊥⊥ X \Xj|Xj , T = j) holds.
Step 2. Identify Zj ⊆ Xj such that (T ⊥⊥ Xj \ Zj |Zj) holds.

The identifiability of XT in Step 1 of Algorithm A is a consequence of the prop-
erties of the set XT described in Remark 6, while the identifiability of Q0 and Q1

in Step 2 is due to Corollary 10 and to the fact that, for j = 0, 1,

Yj ⊥⊥ XT \Qj|Qj ⇔ Yj ⊥⊥ XT \Qj|Qj, T = j. (5)

This result allows us to specify an algorithm based solely on observed variables, since
given T = j, Yj is observed.

Similarly, for Algorithm B, the identifiability of Xj, j = 0, 1, in Step 1 is due to
the properties of the set Xj described in Remark 6 and to (5) where Qj is replaced

IFAU - Covariate selection for non-parametric estimation of treatment effects 11



by Xj and XT is replaced by X, while Z0 and Z1 are identified in Step 2 by Corollary
11.

In Section 5 we discuss how both algorithms can be implemented with data.

4.3 Parameters of interest

As noted in Section 2.1 the typical parameter of interest is the average treatment
effect E (Y1 − Y0). Using the minimal d-separators identified with Algorithms A and
B, this effect can be identified as follows.

E (Y1 − Y0) = E (E (Y1 | V1))− E (E (Y0 | V0))

= E (E (Y1 | T = 1,V1))− E (E (Y0 | T = 0,V0)) ,

where either V1 = Q1 and V0 = Q0 or V1 = Z1 and V0 = Z0.

In some applications, it is of interest to study the impact of a treatment on the
subpopulation consisting of the treated units. The parameter of interest is then
the average treatment effect on the treated, E(Y1 − Y0 | T = 1). Then, under
assumptions (A.1-A.2),

E (Y1 − Y0 | T = 1) = E (Y1|T = 1)− E (E (Y0|T = 1,V0) |T = 1)

= E (Y1|T = 1)− E (E (Y0|T = 0,V0) |T = 1) ,
(6)

and we only need to identify V0 = Q0 or V0 = Z0.

5 Practical implementation

Assume that we have a random sample of individuals for which the variables of the
graph GR

j have been observed. We can think of two main approaches to implement
Algorithms A and B based on such data. Note that because the final purpose is
to estimate a treatment effect non-parametricaly, the identification of the covariates
must be done by avoiding distributional assumptions where possible.

The first and most general approach consists in using a non-parametric test of
conditional independence. Recent results have been obtained in this area by Su &
White (2003), who propose an empirical likelihood ratio procedure. For instance,
Step 1 of Algorithm B could in theory be implemented by examination of all possible
subsets ξ of X, and selection of the subset of minimum cardinality for which the
null hypothesis Y0 ⊥⊥ X \ ξ|ξ, T = 0 is not rejected. There are two main problems
with this procedure when the cardinality of X is large (which is the typical case
in applications). Because many subsets of covariates must be visited it is difficult
to keep control of the overall size of the testing procedure. Moreover, the non-
parametric test cited above is in fact applicable only to sets of low dimension due
to the curse of dimensionality (Bellman 1961), as noted by Su & White (2003).
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The second approach is obtained by making one important simplification. We
assume that conditional independence in the mean is sufficient for conditional inde-
pendence in distribution,

E(A|B,C) = E(A|B)⇒ A ⊥⊥ C|B,

for all the conditional independence statements of Table 1.

While this is a restrictive assumption in general, it is not restrictive neither for
Step 1, Algorithm A, nor for Step 2, Algorithm B, because the variable T is binary.

Let us consider Step 1 of Algorithm B as an illustration. By the above assump-
tion, this step is simplified to

Identify X0 such that E(Y0|X, T = 0) = E(Y0|X0, T = 0) holds.

The identification of X0 is then a usual covariate selection issue in a regression
framework Y0 = g(X0, T = 0) + ε. We do not want to make model assumptions,
and, hence, the function E(Y0|X0, T = 0) = g(X0, T = 0) should be estimated
non-parametricaly. However, because of the large number of covariates typically
available and to avoid the curse of dimensionality, we suggest the use of a regression
function polynomial in the covariates (linear in the parameters). Other possibilities
exist, including generalized additive models, projection pursuit regression, etc.; see,
e.g., Hastie & Tibshirani (1990) and the references therein. The distribution of the
error term ε can also be left unspecified by using, e.g., least squares. There is a
large literature on how to select covariates in such a regression framework, see, e.g.,
Miller (1990), McQuarrie & Tsai (1998) and Burnham & Anderson (2000). Scoring
methods such as Akaike’s information criteria, cross-validation, and many others, are
most popular because they avoid the multiple testing problem. With such methods,
a score is computed for each candidate model, and the model with maximum score
is preferred.

The above discussion is valid for all the steps in Algorithms A and B, thereby
yielding the translation of Algorithms A and B given in Table 2.

6 Application: estimation of a social program effect

6.1 The Lalonde data

We use a data set first analyzed by Lalonde (1986). Lalonde studied data from
the National Supported Work Demonstration (NSW) where 297 individuals were
assigned to participate in a training program and 425 were assigned to be controls.
The NSW program was operated in ten locations across the United States. The in-
tention of the training that included counselling and work experience was to provide
means for workers without job skills to get access to the labour market.
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Table 2: Identification of covariates sets Q0,Q1,Z0 and Z1.
Algorithm A’: Identification of Q0 and Q1

Step 1. For all ξ ⊆ X, fit a model for E [T |ξ],

and select ξ = ξ̂ which yields maximum score.
Step 2. For j = 0, 1:

For all ξ ⊆ ξ̂, fit a model for E [Yj|ξ, T = j],

and select ξ = ξ̃ which yields maximum score.

Algorithm B’: Identification of Z0 and Z1

For j = 0, 1:
Step 1. For all ξ ⊆ X, fit a model for E [Yj|ξ, T = j],

and select ξ = ξ̂j which yields maximum score.

Step 2. For all ξ ⊆ ξ̂j , fit a model for E [T |ξ],

and select ξ = ξ̃j which yields maximum score.

The participation in the program was randomized and, therefore, the effect of
the program on income could be estimated by the difference in mean income be-
tween participants and non-participants. Two additional data sets consisting of
non-experimental groups not participating in a training program were used for com-
parisons to the original experiment: the Panel Study of Income Dynamics (PSID)
and Westat’s Matched Current Population Survey-Social Security Administration
File (CPS). Lalonde (1986) extracted subsets from the PSID and CPS data that
were similar to the experimental group in some of the characteristics. The subsets
are referred to as CPS 2, CPS 3, PSID 2 and PSID 3 in the following data analysis.
The data analysed in this section is a subset of the NSW experimental group of the
Lalonde data set that was selected by Dehejia & Wahba (1999, 2002) and also stud-
ied in Smith & Todd (2005), and Abadie & Imbens (2002). Dehejia & Wahba (1999)
motivates the use of this subset instead of the full experimental treatment group
by the fact that an additional variable (earnings 1974) can be taken into account
that was not available for the full sample. In total there are ten covariates: age
(years), education (years in school), black (0 or 1), hispanic (0 or 1), married (0 or
1), no high-school degree (0 or 1), earnings 1974 ($), earnings 1975 ($), unemployed
1974 (0 or 1), unemployed 1975 (0 or 1). The effect of the program is measured
on the response variable earnings 1978 ($). For a more detailed description of the
variables see Lalonde (1986) or Dehejia & Wahba (1999). The data is available at
http://www.columbia.edu/ rd247/nswdata.html.

6.2 Description of the study

The main purpose of this case study is to illustrate the use of our identification algo-
rithms for the estimation of treatment effects with observational data. We, therefore,
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ignore the randomized control group. We have, on the other hand, six different non-
randomized control groups which leads us to conduct six different analyses. In line
with the previous studies on the Lalonde data we aim at estimating the average
treatment effect on the treated, E(Y1 − Y0|T = 1). As a consequence, merely Z0 or
Q0 need to be identified, see Section 4.3.

6.2.1 Matching

We match each treated unit to a control unit in a given control group. For each
treated unit a subset of controls with the same values on the indicator covariates is
selected. The unit is then matched with the control that is closest in terms of the
remaining continuous covariates. To measure the closeness between a treated and a
control unit we use the Mahalanobis distance see, e.g., Gu & Rosenbaum (1993).

d(Xt,Xc) = (Xt −Xc)
T S−1(Xt −Xc),

where Xt is the covariate vector for the treated unit, Xc is the covariate vector
for the control unit and S is the pooled sample covariance matrix. Matching is
done with replacement so each control unit can be used as a match more than once
which increases the set of potential matches and thereby the matching quality. The
treatment effect of the treated is estimated as the mean of the differences in the
response variable between the treated and the matched units.

6.2.2 Covariate selection

We want to control on a set of covariates which is as small as possible. We, therefore,
estimate the parameter of interest by first identifying the sets Q0 and Z0 by means
of the algorithms in Table 2. Note that Dehejia & Wahba (1999) used a set of
covariates which were balanced for treated and controls. In GR

0
, this corresponds to

adjusting for the set XT .

In order to implement the algorithms we need to regress T and Yj|T = j on
the covariates. When T is the response, we use logistic regression. We allow for
non-linearity by using a polynomial logistic regression, that is

log

(

P (T = 1|X)

1− P (T = 1|X)

)

= f(x),

where f(x) is a second order polynomial function. The response Yj|T = j (earnings
1978) is split into two variables; Uj (one if zero earnings and zero otherwise) and
Wj ≡ (Yj |T = j, Uj = 1). A two step regression is then performed to identify the
covariates affecting Yj |T = j. First a second order polynomial logistic regression
is used to explain Uj . Then, a second order polynomial regression is used to fit
lnWj (modelling income on the log scale is customary in the related literature). The
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covariates found to explain Uj and Wj are pooled together as the variates explaining
Yj|T = j.

A covariate selection procedure is needed in all the regressions described above in
order to implement the algorithms of Table 2. We use a forward stepwise procedure
where the AIC criterion is used to enter covariates. More precisely, we use the
function stepAIC available in the software R (R Development Core Team 2004). All
our computations are performed with R.

The reservoir of variables available for selection are the ten covariates from the
Dehejia & Wahba subset of the Lalonde data described in Section 6.1.

6.3 Results

We focus our presentation and discussion on the results of the study performed with
the CPS 3 control group. We report in the Appendix (Tables 5-8) the results for the
other groups. The units in CPS 3 are a subset of CPS 1 consisting of all unemployed
in 1976 whose income in 1975 was below the poverty level. We have 185 treated
units and 429 controls.

Table 3 shows the covariates selected by the different steps of the algorithms
A’ and B’, and the resulting estimated treatment effects on the treated. Moreover,
mean and median Mahalanobis distances for both steps of algorithm A’ and B’ are
reported. For these four covariate sets the treatment effect of the treated varies
from 45 to 1646. More interesting is that the mean Mahalanobis distance decreases
from 0.125 to 0.107 and from 0.563 to 0.133 when matching for the smaller sets Q0

and Z0 instead of XT and X0 respectively. Thus, as expected, by matching for less
variables better matches are obtained. Moreover, one may here prefer Q0 to Z0 since
it provides better matches (compare 0.107 to 0.133).

In Table 4 we display the sample means and the standardized bias for the dif-

ferent covariates calculated as x̄d/
√

(

s2
t + s2

c

)

/2 where x̄d is the mean difference in

the covariate between the treated and control group and s2
t and s2

c are the variances
within the treated and control groups before matching. When comparing the stan-
dardized bias we see that the quality of the matches improves for all the variables
selected by the algorithms.

The sets of covariates selected by the two algorithms are different. This is to
be expected in general. Drawing a graph representing the selection procedures as
in Figure 4 provides a useful diagnostic tool to evaluate the sets Q0 and Z0 ob-
tained. For instance, we see that algorithm A’ does not select the variable RE75
in Z0 although according to the graph it should be in a d-separator for T and Y0.
Again Q0 should be preferred to Z0, since Figure 4 indicates that Z0 may lead to
undermatching (two few covariates are matched for). This discussion highlights the
usefulness of running both algorithms and of looking at all information obtained.
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Table 3: Covariates XT , Q0, X0 and Z0 selected by algorithms A’ (step 1 and 2)
and B’ (step 1 and 2) respectively, with resulting mean and median Mahalanobis
distances, treatment effects on the treated (TT). Standard deviations divided by√

185 given in parentheses.

CPS 3
Covariate XT Q0 X0 Z0

age
√ √

education
√ √

married
√ √

black
√ √ √ √

hispanic
√

nodegree
RE74

√

RE75
√ √ √

U74
√ √ √ √

U75

Mean distance 0.125 0.107 0.563 0.133
Median distance 0 0 0.170 0.042
TT 257 563 45 1646

(728) (712) (740) (622)

Table 4: Sample means and standardized bias before and after matching for control
group CPS 3 (matched variables highlighted in bold).

Sample means Standardized bias

Covariate Treated Control Pre-matching XT Q0 X0 Z0

age 25.82 28.03 -0.242 -0.020 0 0.040 -0.011
education 10.35 10.24 0.045 0.022 0.018 -0.059 -0.015
married 0.84 0.20 1.668 0 0 -0.204 -0.324
black 0.06 0.14 -0.277 0 0 0 0
hispanic 0.19 0.51 -0.720 0 0.127 0.054 0.018
nodegree 0.71 0.60 0.235 0.160 0.103 0.148 0.137
RE74 2096 5619 -0.596 0.015 0.041 0.042 0.004
RE75 1532 2466 -0.287 0.070 0.061 0.113 0.018
U74 0.71 0.26 -0.998 0 0 0 0
U75 0.60 0.31 -0.602 0 0 0.011 -0.158
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Figure 4: Graph illustrating the results from algorithm A’ and B’ with control group
CPS 3. Covariates with arrows pointing towards T represent XT , and covariates
with arrows pointing towards Y0 represent X0. Selected set Q0={married, black,
RE75, U74} marked with ellipses and Z0={age, education, black, U74} marked with
rectangles.

7 Discussion

Balancing all observed covariates, e.g., by matching, between the treated and the
control groups in observational studies is frequently encouraged in the literature.
However, all covariates do not need to be balanced for, and balancing for unnecessary
covariates (overmatching) has a cost in terms of increased bias. An ad-hoc covariate
selection procedure was proposed in Cochran (1965), see also Rosenbaum (2002,
pp.77), where the need for looking also at how covariates affect the outcome was
recognized.

The theoretical results of this paper emphasize the need for methods looking
both at how the covariates affect the treatment assignment (balancing property)
and how they affect the outcome. Furthermore, we are able to propose identification
algorithms which are formally justified.

Of the two algorithms proposed, only one may be used in practice. However,
running both of the two algorithms is advantageous since it allows us to do a cross-
checking of the results. The d-separating sets obtained by the two algorithms can be
evaluated by drawing graphs corresponding to the one in Figure 4. This evaluation
can help to decrease the risk of undermatching (using too few covariates). Of course,
subject matter information, when available, must be used when determining the
covariates to be matched for.

The theoretical results of this paper have been deduced under assumption (A.5).
We believe this assumption to be over-restrictive and conjecture that it is sufficient
to assume that the unspecified arrows within X be such that GR

j is a chain graph;
see, e.g., Lauritzen (1996).

18 IFAU - Covariate selection for non-parametric estimation of treatment effects



References

Abadie, A. & Imbens, G. (2002), ‘Simple and bias-corrected matching estimators for
average treatment effects’, NBER Technical Working paper (No. 283). National
Bureau of Economic Research, Cambridge Massachusetts.

Bellman, R. E. (1961), Adaptive Control Processes, Princeton University Press,
Princeton.

Burnham, K. & Anderson, D. (2000), Model Selection and Inference: A practical
Information-Theoretic Approach, Springer-Verlag, New York.

Cochran, W. (1965), ‘The planning of observational studies of human populations
(with discussion)’, Journal of the Royal Statistical Society Series A 128, 134–
155.

Cochran, W. & Rubin, D. B. (1973), ‘Controlling bias in observational studies: A
review’, Sankhya Series A 35, 417–446.

Dawid, A. P. (1979), ‘Conditional independence in statistical theory’, Journal of the
Royal Statistical Society Series B 41, 1–31.

Dawid, A. P. (2002), ‘Influence diagrams for causal modelling and inference’, Inter-
national Statistical Review 70, 161–189.

Dehejia, R. & Wahba, S. (1999), ‘Causal effects in nonexperimental studies: Reeval-
uating the evaluation of training programs’, Journal of the American Statistical
Association 94, 1053–1062.

Dehejia, R. & Wahba, S. (2002), ‘Propensity score matching methods for nonexper-
imental causal studies’, The Review of Economics and Statistics 84, 151–161.

Gu, X. S. & Rosenbaum, P. R. (1993), ‘Comparison of multivariate matching
methods: Structures distances and algortihms’, Journal of Computational and
Graphical Statistics 2, 405–20.

Hastie, T. & Tibshirani, R. (1990), Generalized Additive Models, Chapman and Hall,
London.

Heckman, J. & Navarro-Lozano, S. (2004), ‘Using matching, instrumental variables
and control functions to estimate economic choice models’, The Review of Eco-
nomics and Statistics 86, 30–57.

Holland, P. W. (1986), ‘Statistics and causal inference’, Journal of the American
Statistical Association 81, 945–960.

IFAU - Covariate selection for non-parametric estimation of treatment effects 19



Imbens, G. W. (2004), ‘Nonparametric estimation of average treatment effects under
exogeneity: A review’, The Review of Economics and Statistics 86, 4–29.

Lalonde, R. J. (1986), ‘Evaluating the econometric evaluations of training programs
with experimental data’, American Economic Review 76, 604–620.

Lauritzen, S. (1996), Graphical Models, Oxford University Press, Oxford.

Lauritzen, S. (2001), ‘Causal inference from graphical models’, In Barndorff-Nielsen,
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A More tables

We display here the results obtained with all the non-randomized control groups
available as described in Section 6.

Table 5: Covariates XT and Q0 selected by algorithm A’ (step 1 and 2) with resulting
mean and median Mahalanobis distances, treatment effects on the treated (TT) for
CPS subsets. Standard deviations divided by

√
185 given in parentheses.

CPS 1 CPS 2 CPS 3
Covariate XT Q0 XT Q0 XT Q0

age
√ √

education
√ √

married
√ √ √ √ √ √

black
√ √ √ √ √ √

hispanic
√ √ √

nodegree
√ √

RE74
√ √

RE75
√ √ √ √ √ √

U74
√ √ √ √ √ √

U75

Mean distance 0.211 0.182 0.006 0.004 0.125 0.107
Median distance 0.042 0.041 0 0 0 0
TT 2099 2335 661 640 257 563

(695) (701) (753) (749) (728) (712)
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Table 6: Covariates X0 and Z0 selected by algorithm B’ (step 1 and 2) with resulting
mean and median Mahalanobis distances, treatment effects on the treated (TT) for
CPS subsets. Standard deviations divided by

√
185 given in parentheses.

CPS 1 CPS 2 CPS 3
Covariate X0 Z0 X0 Z0 X0 Z0

age
√ √ √ √ √

education
√ √ √ √ √

married
√ √ √ √

black
√ √ √ √ √ √

hispanic
√ √

nodegree
√ √ √

RE74
√ √ √ √

RE75
√ √ √ √ √

U74
√ √ √ √ √ √

U75
√

Mean distance 0.182 0.182 NA* 0.006 0.563 0.133
Median distance 0.041 0.041 NA* 0 0.170 0.042
TT 2335 2335 NA* 661 45 1646

(701) (701) (753) (740) (622)

*Not available since exact matching for indicator variables was not possible.
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Table 7: Covariates XT and Q0 selected by algorithm A’ (step 1 and 2) with resulting
mean and median Mahalanobis distances, treatment effects of the treated (TT)for
PSID subsets. Standard deviations divided by

√
185 given in parentheses.

PSID 1 PSID 2 PSID 3
Covariate XT Q0 XT Q0 XT Q0

age
√ √ √ √ √ √

education
√ √ √ √

married
√ √ √ √ √

black
√ √ √ √ √

hispanic
√ √ √ √

nodegree
√

RE74
RE75

√ √ √ √

U74
√ √ √ √ √ √

U75
√ √ √ √ √ √

Mean distance 0.737 0.737 NA* 0.858 NA* 0.099
Median distance 0.172 0.172 NA* 0.217 NA* 0.010
TT 2373 2373 NA* 2276 NA* 1635

(741) (741) (737) (757)

*Not available since exact matching for indicator variables was not possible.
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Table 8: Covariates X0 and Z0 selected by algorithm B’ (step 1 and 2) with resulting
mean and median Mahalanobis distances, treatment effects of the treated (TT) for
PSID subsets. Standard deviations for PSID divided by

√
185 given in parentheses.

PSID 1 PSID 2 PSID 3
Covariate X0 Z0 X0 Z0 X0 Z0

age
√ √ √ √ √ √

education
√ √ √ √

married
√ √ √ √

black
√ √ √ √

hispanic
√ √

nodegree
√

RE74
√ √ √ √

RE75
√ √ √ √

U74
√ √ √ √

U75
√ √ √ √ √

Mean distance NA* 0.737 0.203 0.141 0.174 0.099
Median distance NA* 0.172 0.132 0.114 0.041 0.010
TT NA* 2373 2236 1579 2099 1635

(741) (747) (739) (700) (757)

*Not available since exact matching for indicator variables was not possible.
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