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Abstract

We perform inference on the effect of a treatment on survival
times in studies where the treatment assignment is not randomized
and the assignment time is not known in advance. We estimate sur-
vival functions on a treated and a control group which are made
comparable through matching on observed covariates. The inference
is performed by conditioning on waiting time to treatment, that is
time between the entrance in the study and treatment. This can be
done only when sufficient data is available. In other cases, averaging
over waiting times is a possibility, although the classical interpret-
ation of the estimated survival functions is lost unless hazards are
not functions of the waiting times. To show unbiasedness and to
obtain an estimator of the variance, we build on the potential out-
come framework, which was introduced by J. Neyman in the context
of randomized experiments, and adapted to observational studies by
D. B. Rubin. Our approach does not make parametric or distribu-
tional assumptions. In particular, we do not assume proportionality
of the hazards compared. Small sample performance of the estim-
ator and a derived test of no treatment effect are studied in a Monte
Carlo study.
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1 Introduction

In order to illustrate the type of studies we address in this paper, let us
consider the Stanford heart transplant data set previously analyzed by,
e.g., Crowley and Hu (1977) and Kalbfleisch and Prentice (1980). The
data set consists in survival times of potential heart transplant recipients
after their acceptance into the Stanford heart transplant program. The
choice of heart recipients is not randomized in the program. In such an
observational study background characteristics affecting both treatment
assignment and survival time must be controlled for when evaluating the
effect of heart transplantation. One of the peculiarities of the Stanford
program, which complicates the analysis (see Keiding, 1995), is that indi-
viduals may change treatment status during the follow-up time, being first
controls (not transplanted) and later treated (transplanted). Thus, sur-
vival times are censored due both to external reasons (e.g., end of study,
drop out) and to internal reasons (treatment).

In this paper, we show how a treatment effect can be estimated non-
parametricaly in studies such as the Stanford program. We propose to
estimate survival functions on a treated and a control group which are
made comparable through matching on observed covariates. The infer-
ence is performed by conditioning on waiting time to treatment, that
is time between the entrance in the study and treatment. This can be
done only when sufficient data is available. In other cases, averaging over
waiting times is a possibility, although the classical interpretation of the
estimated survival functions is lost unless hazards are not functions of the
waiting times. To justify the estimator and the related inference, we build
on the potential outcome framework, which was introduced by Neyman
(1990, translation of a text published in 1923) in the context of random-
ized experiments, and adapted to observational studies by Rubin (1974);
see also Holland (1986) for a review. We work entirely within a discrete
time framework, which is consistent with how the data is observed. Our
approach does not make any parametric or distributional assumptions. In
particular, we do not assume proportionality of the hazards compared,
which is equivalent to a constant multiplicative treatment effect. Note
that Heller and Venkatraman (2004) recently proposed a non-parametric
test of the no-treatment effect hypothesis. Their proposal does, however,
not allow for the actual estimation of a treatment effect.

Parametric models have been treated in the literature in connection
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with the estimation of treatment effects, see, e.g., Robins (1999), Hernán,
Brumback and Robins (2001) and Abbring and van der Berg (2003). The
literature on parametric modelling was discussed in Fredriksson and Jo-
hansson (2004), who also cast some of the ideas developed and studied
herein.

Observational studies of the Stanford program type may be found in
other fields than medical applications, including labor economics, where
the interest often lies on the estimation of the effect of a training program
(treatment) on, e.g., unemployment duration. Such a study is presented
in Section 5. While we have found the Stanford heart transplant study
to be appropriate as a red thread to illustrate the concepts and methods
developed in the paper because of its simplicity and previous use in the lit-
erature, the case study of Section 5 is a more realistic application, because
of the richness of background information on the individuals. Moreover,
the large number of individuals in the study allows us to conduct inference
conditionally on waiting time.

The remainder of the paper is organized as follows. The next section
describes the inferential issues of interest on an intuitive level. Section 3
presents the potential outcome framework and its associated Neyman’s in-
ference, and generalizes it to survival time outcome. For non-censored real
valued outcomes this approach has a long history for observational studies,
see, e.g., Cochran and Rubin (1973), Rubin (1973a, 1973b, 1990b), and
Rosenbaum and Rubin (1984, 1985). In Section 4 the treatment effects
of interest are defined. These are basically differences in hazard and sur-
vival functions for the treated and the controls. These functions are made
comparable through matching on observed covariates while conditioning
on waiting time to treatment. Thus, matching estimators are proposed.
They are shown to be unbiased and an estimator of their variance is de-
duced. In Section 5, we use a large data-set on Swedish unemployed and
estimate the effect of an employment subsidy on their unemployment dur-
ation. In Section 6, a Monte Carlo study is conducted to analyze the finite
sample performance of the proposed estimators and a corresponding test
of no treatment effect. Finally, the paper is concluded in Section 7.

2 Matching treated with controls

We, purposely, begin by presenting the inferential issues on an intuitive
level and delay its formal justification to Section 3 and 4 in order to im-
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prove the readability of the paper. We use the Stanford study described
in the introduction as background for the discussion. The survival times
of the individuals in the study are schematically displayed using Lexis
diagrams in Figure 1. In Panel A of the figure, survival times of treated
individuals, i.e., patients having received a heart transplant, are repres-
ented. Survival times without treatment, i.e. for control individuals, are
displayed in Panel B. Note that individuals of Panel A are also included in
Panel B since treated patients are not treated until they obtain treatment.
Treatment assignment is not made at entrance in the study but only when
a heart becomes available. Hence, deleting treated patients from the con-
trol group implies a conditioning on survival outcomes, thereby implying
a biased analysis.

In both panels, the x-axis represents calendar time with the origin at
the beginning of the study, while the y-axis represents time with origin at
the time patients are treated in Panel A, and at the time patients enter the
study in Panel B. Treatment assignments are represented by an open circle
in both panels. The diagonal lines represent the history of each patient,
starting with their entrance in the study and finishing with death (denoted
with a filled circle) or censoring. The solid part of the line highlights the
survival time (outcome) of interest, while the dashed part of the line is
part of the survival history, however, not part of the outcome.

We want to know which controls can be compared to which treated, or,
in other words, we want to select a control group which can be compared
to the treated patients, in an evaluation of the effect of the treatment on
the survival times (solid diagonal lines).

Randomized treatment: Assume first that treatment is randomized,
that is each time a heart transplant can be performed a patient is randomly
chosen for treatment from those still alive. Then, in contrast with usual
randomized studies, the treated and controls cannot directly be compared,
because on average the observed survival durations after transplatation are
shorter than the survival durations for the controls. This problem can be
corrected by conditioning inference on waiting time. For that purpose,
you consider all patients having been transplanted after a given waiting
time W , and use as a control group all those that have survived and have
not been treated until time W . This is illustrated in the Lexis diagrams
of Figure 1 for the first patient to receive a transplantation in Panel A.
She/he has waited timeW before being treated and, therefore, controls for
this treated patient are all those patients passing the horizontal dotted-
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dashed line alive and untreated in Panel B.

Observed treatment: Randomization of the treatment is seldom pos-
sible for ethical and/or practical reasons. In the Stanford heart trans-
plant program there was no randomization of treatment and, therefore,
one should not only condition for the waiting time W but also match for
other pre-treatment characteristics. In this context, the crucial assump-
tion is that conditional on waiting time and the observed pre-treatment
characteristics affecting both the treatment and the outcome, the treat-
ment assignment can be considered as randomized-like, see Rosenbaum
and Rubin (1983). This assumption is sometimes called unconfounded-
ness assumption. Thus, for a patient having been transplanted, a control
having survived until time W without being treated is selected such that
her/his pre-treatment characteristics are similar to the treated. This is a
so called matching procedure to construct a relevant control group; see,
e.g., Rubin (1973a,1974).

Estimation of a treatment effect: When a control group is constructed
by a matching procedure −we call such a group a matched control group in
the sequel−, it remains to compare survival times for the treated with the
survival times for the controls. Average survival times cannot be estimated
because censoring arises in both groups. On the other hand, hazards of
death and survival functions can be computed and compared for both
groups. An extra difficulty arises in the control group since patient’s
survival may not only be censored by an external mechanism (such as
the end of the study) but also by the fact that some controls receive
treatment. However, we show in the next section that, under certain
conditions, the unconfoundedness assumption yields that the censoring
due to treatment is independent of the outcome when conditioning on
pre-treatment characteristics.

3 Inferential framework

3.1 Potential outcome specification

Potential outcomes were introduced by Neyman (1990) in the context of
randomized experiments as a framework to perform inference on treatment
effects. Rubin (1974) generalized their applicability to the context of ob-
servational studies. We adapt below the potential outcome framework to
the context described in the previous section.

IFAU - Matching estimators for the effect of a treatment on survival times 5



Table 1: Observed status of some variables for a subset of patients among
those alive at time W = 21 and not treated before that time. We use
the convention that for a given day death precedes always treatment, and
death preceeds always censoring.

patient ident. D(21) T 1(21) T 0(21)

101 0 NA C@10
66 0 NA 21
4 0 NA T@15
47 1 51 NA
97 1 C@110 NA
58 1 321 NA

Note: NA for non-available; C@t for censored at time t after W ; T@t for treated at

time t.

For an individual which, up to time W, has both survived and has not
been treated, we define two potential outcomes:

T 1(W ) = survival time after time W if treated at W,

T 0(W ) = survival time after W if neither treated at W nor later.

We, further, denote by X the vector of pre-treatment characteristics,
and by

D(W ) =

{
1 if treated at time W,
0 if not treated at time W,

the treatment indicator. While, in general, X and D(W ) are observed, at
most one of the two potential outcomes T 0(W ) or T 1(W ) can be observed
for a given individual having survived until time W . As an example, we
summarize in Table 1 the observed status of the variables for a subset
of individuals from the Stanford heart transplant study given the waiting
time W = 21.

We make a first assumption, often called the stable-unit-treatment-
value assumption; see, e.g., Rubin (1990b).

Assumption A: The values T 1(W ) and T 0(W ) for a given individual
are not affected by the values taken by D(W ) for any other individual.
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3.2 Inference

Assume now that at a given timeW in a study, n1 individuals are treated,
indexed by i = 1, 2, . . . , n1. A certain amount of individuals (often ≫ n1)
have also survived until time W although they are not treated at that
time, thereby providing a reservoir of controls. A matched control group
is extracted from this reservoir as described in Section 2, indexed by i =
n1+1, . . . , 2n1. In this paper, we focus on estimands of the following type:

∆(W ) =
1

2n1

2n1∑

i=1

(
T 1i (W )− T 0i (W )

)
,

i.e. the average treatment effect for treated patients and their match in
the control group for a given waiting time. Other type of estimands based
on different populations may be considered, see Rubin (1991) and Imbens
(2004). For instance, one may be interested in ”the average treatment
effect for a future patient exposed to treatment, where treatment is as-
signed with p(X,W ) at a given time W”. These two types of estimands
are called ”average treatment effect on the treated” in the econometrics
literature, see, e.g., Imbens (2004). The former, ∆(W ), is a sample aver-
age, with missing values, while the latter is defined on a super-population.
The information available in the observed sample on ∆(W ) is also all the
information we have on the estimand defined on the super-population.
Moreover, for an unbiased estimator of ∆(W ) to be an unbiased estimator
of the second estimand, we need to further assume that the patients in the
study are representative (e.g., a random sample) of the super-population
implicitely defined. Yet another estimand of interest might be ”the aver-
age treatment effect for a future patient on which treatment is imposed at
a given waiting time W”. This is again a super-population estimand and,
in general, to obtain an unbiased estimator one would need to match both
the treated with similar controls and the controls with similar treated.
All the estimands described are equivalent if we have constant additive
treatment effect, i.e. T 1(W ) = T 0(W ) = δ for all individuals.

To perform inference, we need a probability model. Several models
and resulting modes of inference may be entertained, see Rubin (1990b,
1991). In any case, a model for the treatment assignment mechanism is
the corner stone to the identifiability of the estimand of interest. That is a
specification of Pr(D(W ) = 1|X, T 1(W ), T 0(W )) the probability of being
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treated when the waiting time has beenW . The following two assumptions
are often made within the potential outcome framework.

Assumption B: The assignment mechanism D(W ) is independent
of the potential outcomes, conditional on the set of pre-treatment char-
acteristics X, i.e., Pr(D(W ) = 1|X, T 1(W ), T 0(W )) = p(X,W ), where
p(X,W ) is a function of (X,W ) only; see Dawid (1979) for an account
on conditional independence statements.

Assumption C: 0 < p(X,W ) < 1.

Assumption B is sometimes called the unconfoundedness assumption.
Assumption C states that each individual having survived without being
treated until time W has non-zero probability of being both treated and
not treated at time W . Assumption B and C together were termed strong
ignorability of the treatment assignment by Rosenbaum and Rubin (1983).
They guarantee that a treated and a control individual having the same
value forX (a matched pair) can be compared in order to infer a treatment
effect.

If we would have uncensored survival times, an estimator of ∆(W )
would be

∆̂(W ) =
1

n1

n1∑

i=1

(
T 1i (W )− T 0i+n1(W )

)
, (1)

where we assume that individual i + n1 is a match to individual i, i =
1, . . . , n1. The properties of the Statistic (1) can be studied by consid-
ering its sampling distribution under treatment reassignments through
p(X,W ) for fixed values of T 1i (W ), T 0i (W ), i = 1, . . . , 2n1, with the con-
straint that within each matched pair both treatment and non-treatment
arise. Under this assignment mechanism, over the

(
2n1
n1

)
randomizations,

we have unbiasedness (Neyman, 1990, Rubin, 1990b): E(∆̂(W )) = ∆(W ).
If, moreover, we have constant additive treatment effect, then

1

n1

n1∑

i=1

(
(T 1i (W )− T 0i+n1(W ))− ∆̂(W )

)2
(2)

is an unbiased estimate of the variance of ∆̂(W ). This mode of in-
ference dates back to Neyman (1990) and is called by Rubin (1990a)
randomization-based repeated-sampling inference; see also the Appendix.
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4 Survival analysis

4.1 Hazards: estimand and estimators

The estimator ∆̂(W ) above cannot be computed, because the survival
times of the observed individuals are censored. Controls can be censored
by treatment and both controls and treated can be censored, for instance,
by the end of the study period. In such situations, it is customary to use
the survival analysis approach, see, e.g., Kalbfleish and Prentice (1980).
Assumptions on the censoring mechanisms must be made, however.

First, we want censoring due to treatment after time W to be in-
dependent of the potential outcome T 0(W ) conditional on X. To shed
light on this issue let CT (W ) denote the time to treatment for an indi-
vidual not treated at time W . By convention T 0(W ) is censored when
CT (W ) < T 0(W ).We have, for j < t0,

Pr(CT (W ) = j|X, T 0(W ) = t0)

= Pr(D(W + j) = 1,D(W + l) = 0, l = 1, . . . j − 1|X, T 0(W ) = t0).

In order to be able to take advantage of Assumption B we assume that
the following decomposition holds.

Assumption D: For j < t0,

Pr(D(W + j) = 1, D(W + l) = 0, l = 1, . . . j − 1|X, T 0(W ) = t0)

= Pr(D(W+j) = 1|X, T 0(W ) = t0)Pr(D(W+j−1) = 0|X, T 0(W ) = t0)

× · · · × Pr(D(W + 1) = 0|X, T 0(W ) = t0).

Assumption D says that treatment assignments at different times (after
time W ) are independent of previous assignment when conditioning on X
and T 0(W ). Under this assumption and Assumption B, we can then write

Pr(CT (W ) = j|X, T 0(W ) = t0)

= Pr(D(W + j) = 1|X)Pr(D(W + j − 1) = 0|X) · · ·Pr(D(W + 1) = 0|X).
(3)

By the latter equality we see that with Assumptions B and D we
obtain a censoring mechanism due to treatment which is independent of
the potential outcome T 0(W ) when conditioning on X.
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Let us now define the variable CE(W ), the time to censoring (by other
reasons than treatment, e.g. end of study and drop out) for an individual
having survived until timeW . Then, the observed survival time is censored
depending on whether CE(W ) < T 1(W ), or CE(W ) < T 0(W ). We make
the following assumption.

Assumption E: CE(W ) is independent of T 1(W ) and of T 0(W )
when conditioning on X.

Assumption E corresponds to usual hypotheses of independent censor-
ing mechanism made in survival analysis. We restrain here to introduce a
new notation to denote censored potential outcomes. Thus, in the sequel,
T k(W ), k = 0, 1, denotes time to death or to censoring.

In a survival analysis approach, instead of comparing the average sur-
vival times, ∆(W ) above, the sample hazards (proportion of individuals
dying at time t among those having survived up to time t) are compared
for the treated and controls. We therefore consider the estimand

∆h(t;W ) = h1(t;W )− h0(t;W ), (4)

where

hk(t;W ) =

∑2n1
i=1 I(T

k
i (W ) = t)∑2n1

i=1 I(T
k
i (W ) ≥ t)

, for k = 0, 1.,

where I(T ≥ t) = 1 if T ≥ t, i.e. if the individual has survived and is not
censored until time t, and I(T ≥ t) = 0 otherwise. Also, I(T = t) = 1 if
T = t because of death (not censoring) and I(T = t) = 0 otherwise.

Estimand ∆h(t;W ) and its building blocks hk(t;W ), k = 0, 1, are
defined with respect to the potential outcomes which have been censored.
Another estimand could have been defined based on the uncensored poten-
tial outcomes. Our focus on the censored version is justified by Assumption
E and by (3), consequence of Assumptions B and D, which together guar-
antee that the ∆h(t;W ) defined under censoring is representative (in a fre-
quentist sense) of the same estimand without censoring. Note, moreover,
that under a zero constant additive treatment effect, T 1i (W )−T 0i (W ) = 0,
for all i, the estimands with and without censoring are equivalent.

Estimand ∆h(t;W ) can be estimated with

∆̂h(t;W ) = ĥ1(t;W )− ĥ0(t;W ),

where

ĥk(t;W ) =

∑n1
i=1 I(T

k
ik+(i+n1)(1−k)

(W ) = t)
∑n1
i=1 I(T

k
ik+(i+n1)(1−k)

(W ) ≥ t)
, for k = 0, 1.
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We show in the Appendix that, under the Assumptions A-C, ∆̂h(t;W ) is

unbiased for ∆h(t;W ): E
(
∆̂h(t;W )

)
= ∆h(t;W ). Moreover, the vari-

ance of the estimator ∆̂h(t;W ) can be estimated with

V̂ ar
(
∆̂h(t;W )

)
=

ĥ1(t;W )(1− ĥ1(t;W ))∑n1
i=1 I(T

1
i (W ) ≥ t)− 1

+
ĥ0(t;W )(1− ĥ0(t;W ))∑n1
i=1 I(T

0
i+n1

(W ) ≥ t)− 1
.

This estimator is unbiased, for instance, when there is no treatment effect
in the sense that T 1i (W ) = T 0i (W ), for i = 1, . . . , 2n1. In general, however,
it is positively biased (yielding conservative inference); see the Appendix.
This is a qualitatively different result from that of Neyman (1990), where
unbiasedness of the variance estimator (2) is guaranteed under constant
additive treatment effect. This difference is due to the fact that the hazard
is based on indicator functions of the survival times and not on the times
themselves.

4.2 Survival function

The survival function, the proportion of individuals surviving at least up
to time t, constitutes a convenient way to summarize or aggregate the
information from the hazards calculated above. Denote by T 1(1)(W ) ≤

T 1(2)(W ) ≤ · · · ≤ T 1(m1)
(W ) the m1 ≤ 2n1 not censored survival times

if treated, sorted in ascendant order. Then, the survival function when
treated is defined as

F 1(t;W ) =
∏

i:T 1
(i)
<t

(1− h1(T 1(i)(W );W )). (5)

Similarly, we define the survival function when not treated by

F 0(t;W ) =
∏

i:T 0
(i)
<t

(1− h0(T 0(i)(W );W )), (6)

where T 0(1)(W ) ≤ T 0(2)(W ) ≤ · · · ≤ T 0(m0)
(W ) are the m0 ≤ 2n1 not cen-

sored survival times if not treated, sorted in ascendant order. We are,
thus, interested in estimating the difference
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∆s(t;W ) = F 1(t;W )− F 0(t;W ). (7)

An estimator of ∆s(t;W ) is readily available by replacing the hazards
by their estimators described above, as follows

F̂ 1(t;W ) =
∏

i:T̃ 1
(i)
<t

(1− ĥ1(T̃ 1(i)(W );W )),

where T̃ 1(1)(W ) ≤ T̃ 1(2)(W ) ≤ · · · ≤ T̃ 1(m̃1)
(W ) are the m̃1 ≤ n1 observed

and not censored survival times for the treated individuals, and

F̂ 0(t;W ) =
∏

i:T̃ 0
(i)
<t

(1− ĥ0(T̃ 0(i)(W );W )),

where T̃ 0(1)(W ) ≤ T̃ 0(2)(W ) ≤ · · · ≤ T̃ 0(m̃0)
(W ) are the m̃0 ≤ n1 observed

and not censored survival times for the matched control individuals. These
estimators of the survival functions are usual Kaplan-Meier estimators
(Kaplan and Meier, 1958).

The asymptotic variance of the estimated survival functions can be
estimated by, for j = 0, 1,

V̂ ar(F̂ j(t;W )) =
[
F̂ j(t;W )

]2
×

∑

i:T̃ j
(i)
<t

ĥj(T̃ j(i)(W );W )
∑n1
k=1 I(T

j
kj+(k+n1)(1−j)

(W ) ≥T̃ j(i)(W ))−
∑n1
k=1 I(T

j
kj+(k+n1)(1−j)

(W ) =T̃ j(i)(W ))
,

see Kaplan and Meier (1958). The above expression is called the Green-
wood’s formula (Greenwood, 1926). Finally, the estimator based on this

asymptotic approximation V̂ ar(∆̂s(t;W )) = V̂ ar(F̂ 1(t;W ))+V̂ ar(F̂ 0(t;W ))
is, as in Section 4.1, expected to be conservative when the treatment effect
is not exactly zero for all individuals. The simulation study of Section 6
shows that this estimated variance can be useful to test the hypothesis of
no treatment effect.

4.3 Averaging over waiting times

The theory above has been developed for a fixed waiting time to treat-
ment, W . However, estimating the survival functions non-parametrically
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for a given waiting time assumes the availability of sufficiently many ob-
servations at each waiting time W of interest. This is not always the case
as, e.g., with the Stanford heart transplant data. In such cases, one may
average over the observed waiting times yielding the new estimand

∆h(t) = h
1
(t)− h

0
(t), (8)

where h
k
(t) =

∑2N1
i=1 I(T

k
i =t)∑2N1

i=1 I(T
k
i
≥t)

, for k = 0, 1, and now i = 1, . . . , N1 indexes all

the treated individuals in the study, and i = N1 + 1, . . . , 2N1 indexes all
the corresponding match controls. This is the average treatment effect for
treated patients and their match in the control group. The corresponding
estimator is obtained by considering all individuals in the treated-matched
sample instead of only those with a given waiting time. This estimand
and estimator have a clear interpretation (average difference in hazard).

However, ∆s(t) obtained by “plugging in” h
k
(t), k = 0, 1, in (6) and

(5), is difficult to interpret unless the hazards hk(t;W ), k = 0, 1, are not
functions of W . On the other hand, interpretability of ∆s(t) is less of an
issue if the main objective of the analysis is to test the hypothesis of no
treatment effect.

Finally, computing and estimating the variance of such an estimator
is difficult since some treated may be used as control. However, in cases
where such double use of the same individual is rare (e.g., many untreated
controls are available) the variance provided in the previous section may
be used when averaging over waiting times as well.

4.4 The Stanford heart transplant program

We replicate the analysis of Crowley and Hu (1977) based on the Cox
proportional hazard model. They model the hazard for patient i with

h(ti) exp(δZ(ti;Wi) +X
′
iβ) (9)

where h(ti) is the baseline hazard and Z(ti;Wi) = I(ti ≥ Wi), the heavy
side function. We use exact partial maximum likelihood to estimate the
parameters of model (9), where the vector Xi contains age when eligible
and year of acceptance into the study. Information on prior surgery is not
included because it was found not significant.

The estimate ∆̂s(t) is displayed in Figure 2. The estimation is obtained
by one to one matching. That is for each treated a control is chosen by
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matching exactly on year of acceptance and waiting time to transplant,
while matching on the age when eligible on a nearest neighbor (Euclidian
distance) basis. The nearest neighbor must not be more than four years
apart. This restricts the sample to 60 treated and matched control in-

dividuals. Together with ∆̂s(t) we display in Figure 2 the difference in
survival functions resulting from the fitted Cox proportional hazard model
described above. We do not display the 95% confidence bands to improve
readability. They clearly include zero. Since there is a large percent of
treated in this study, the variance estimator is, however, not reliable as
noted in Section 4.3.

Model (9) assumes proportionality of the hazards with and without
treatment. Moreover, both the parametric and the matching estimat-
ors must assume that hazard functions do not to depend on W due to the
small sample available. This together with the fact that there is little back-
ground information on patients make the evaluation of the transplantation
effect difficult.

5 Effect of an employment subsidy program

To illustrate the use of the non-parametric estimator with a realistic ap-
plication we use a data set previously analyzed in Forslund, Johansson and
Lindqvist (2004). The interest is to estimate the effect on employment of
an employment subsidy program targeted at the long-term unemployed,
i.e., individuals at least 25 years-of-age and who had been registered as
unemployed at the public employment service (PES) for at least 12 months
without interruption. The subsidy amounted to 50 percent of total wage
costs and was paid for a maximum period of 6 months. The subsidy was
also capped at 350 Swedish crowns per day and could be extended to 12
months in some exceptional cases.

Register data from the Swedish National Labor Market Board is used
to evaluate the program. The database contains information on all indi-
viduals registering at the PES in Sweden since August 1991, including,
age, sex, educational attainment, the individuals’ registration date and
past job training activities.

The individuals in the data are classified into two different groups:
those who start the employment subsidy program after having become
eligible and eligibles who do not start the program. The study start on
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January 1998. Each time a person becomes eligible, the duration (months)
until she or he either finds an employment or becomes right censored (end
of study on October 1 2002, drop out) is recoded. A total of 631,358
individuals, aged 25—63, were eligible for the program during the study
period. Three percent of the eligible spells ended into the program. The
most salient feature of the eligible persons is that they, on average, had a
long lasting relationship with the employment service; see Forslund et al.
(2004) for more details.

To obtain ∆̂s(t;W ) and ∆̂s(t) we use one to one exact matching. For
each participant we look for one control (nonparticipant) which has ex-
actly the same values for a set of covariates: sex, Nordic citizenship, un-
employment insurance, disabled, high school degree, university degree−all
binary−, age (≤ 30, 31-40, 40-50), number of previous days in unemploy-
ment register (0, 1-100, 101-500, 501-1000, >1000), number of previous
spells in unemployment register (0, 1-5,6-15), and the local labor market
of the individuals (Sweden is divided into 100 local labor markets). All
these covariates are expected to affect both the unemployment duration
and the participation into the program. The matching estimator is based
on 7, 651 treated individuals, thus 12, 300 people in the employment sub-
sidy program are removed due to lack of common support (no matching
individual found in the control group).

This study does not suffer of the limitations of the Stanford heart
transplant program. Because we have many observations (7, 651) we are
able to estimate treatment effects by conditioning on W . Moreover, we
have few treated (3%) and, therefore, only 265 individuals in the matched
control group also belongs to the treated group. This should allow us to

use the variance calculations of Section 4.2 for the estimator ∆̂s(t). Note
that here right censoring concerns 51% of the sample. There are also some
drop-outs, see Forslund et al. (2004) for more details on those.

Thus, Figure 3 shows the estimated treatment effects ∆̂s(t) and the
estimated treatment effects ∆̂s(t;W ) for W = 1, 11, 21 and, 31. In all
cases 95% confidence bands (based on the normal approximation) are also
displayed to judge significance.

The conditional (on waiting time) results are similar which indicates
that the hazards are fairly constant with respect to waiting time. This
enables us to focus our discussion on the average estimate. We see that
after an initial period of about 6 months with a negligible (negative) pro-
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gram effect there is an downward jump; from then on the effect gradually
becomes smaller, but it is positive (i.e., the program shorten unemploy-
ment duration) and significant over the rest of the follow-up horizon (57
months). This scenario is consistent with an initial period of locking in
effect (i.e. individuals do not find a job while being in the program −they
are supposed to seek non-subsidized employment while into the program)
and a subsequent period with a positive program effect. The sum of the
effects over the whole follow-up horizon is 7.8, which corresponds to a
decrease in unemployment duration (from the entrance into the program)
by almost 8 months.

As a way of comparison, we tried to fit (using partial maximum likeli-
hood) a Cox regression model separately for the participants, h0(t,X,W ) =
h0(t,W ) exp(X′β0), and the non-participants, h

1(t,X,W ) = h1(t,W ) exp(X′β1).
Using two different Cox regression specification allows us to avoid the as-
sumption of proportionality (with respect to the treatment assignment);
see Kalbfleish and Prentice (1980, pp. 136). However, due to the large
amount of covariates in comparison with the small amount of participants,
this approach was not practically feasible. Paradoxically, the parametric
approach is here more data demanding than matching. On the other
hand, we can use Rosenbaum and Rubin (1983) result saying that it is
sufficient to control for the probability of being treated given X, p(X,W )
if Assumptions B and C hold. Hence, we start by fitting (maximum like-
lihood) a logistic regression model to obtain fitted values p̂(X,W ). The
covariates used are those matched for earlier, with age, number of pre-
vious days unemployed and number of previous spells in unemployment
register included as polynomial of order two as well. The controls used
are those which have survived at least until time W . Next, we estim-
ate the two Cox regressions h0(t,X,W ) = h0(t,W ) exp(β0p̂(X,W )) and
h1(t,X,W ) = h1(t,W ) exp(β1p̂(X,W )). The resulting difference in sur-
vival functions are also displayed in Figure 3. In accordance with Assump-
tion C we have used only the controls which have probability p̂(X,W ) of
entering the program as large as the lowest fitted probability for the ob-
served participants. Thus, for instance, 3,005 controls are deleted when
not conditioning on waiting time. The results based on the Cox regression
on p̂(X,W ) have the same general pattern as the matching estimators,
though the effect is slightly higher in all cases. Note that we expect the
variability of the Cox regression survival functions to be larger because
conditioning on p̂(X,W ) instead of X (matching estimator) is typically
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less accurate. However, we are not aware of any theoretical or applied
work on the Cox regression approach implemented here, which constitutes
an interesting future topic for research.

6 Monte Carlo study

6.1 Design

We study here the small sample performance of the matching estimators
introduced in this paper. To this end we generate geometrically distributed
survival times. Without loss of generality we consider a situation where
all n individuals simulated have same entry time into the study. The
study lasts 50 units of time. From the entry time, time to death Ti, for
each individual i, is simulated from a geometric distribution function with
probability of success (death) equal to p0(Xi). The probability distribution
of time to death is, thus, given by Pr(Ti = ti|Xi) = p0(Xi)[1− p0(Xi)]

ti .
Similarly, we generate the time to treatment T di , for each individual i, from
a geometric distribution function with probability of success (treatment)
pd(Xi). The probability distribution of time to treatment is then given
by Pr(T di = ti|Xi) = pd(Xi)[1 − pd(Xi)]

ti . For p0(Xi) and pd(Xi) we use
a logistic function: p0(Xi) = (1 + exp(−(a0 + a1Xi))−1, and pd(xi) =
(1 + exp(−(b0 + b1Xi))−1. We consider the following situations: a0 =
−3.0, b0 = −5.5 and −3.0, and b1 = a1 are set either to 0 or 1. In the
homogenous case (i.e. b1 = a1 = 0) the death hazard if not treated is
p0(Xi) = 0.047 and the hazards into treatment are pd(Xi) = 0.0041 and
0.047 respectively for b0 = −6.5 and −3.0. The proportion of treated was
on average equal to 2.9 and 49 per cent in these two simulated situations.
These designs were chosen to resemble the situation encountered in the
two applications described earlier: the employment subsidy where only
3% were treated and the Stanford heart transplant program where we
had 67% of treated individuals. In the employment subsidy treatment the
unconditional monthly hazard to death (employment in this application)
if not treated is approximately constant, around 0.045. In the Stanford
heart transplant program the daily unconditional hazard to death if not
treated is decreasing: we obtained an unconditional hazard of 7%, 4%, 3%
and 1% based on respectively the first 7 deaths, the first 13 deaths, the
first 23 deaths, and on all 30 observed deaths. In order to keep the design
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simple and transparent we use a constant unconditional hazard of 0.047
in both simulations.

We further need to simulate a time to death T 1i from the time of
treatment, for those individuals who are treated, i.e. such that T di <
Ti. We use again a geometric distribution Pr(T

1
i = ti|Xi) = p1(Xi)[1 −

p1(Xi)]
ti , where p1(Xi) = (1+exp(−(a0+aw+a1Xi))

−1. Finally, the Xi’s
are generated from a (0, 1) uniform distribution, and are fixed in repeated
samples.

This simulation design can be related to the potential outcome frame-
work of Section 3 as follows. The treatment assignment mechanism at
time Wi, Di(Wi), is given by

Pr(Di(Wi) = 1|Xi) = Pr(Ti > Wi ∩ T di =Wi|Xi)

= Pr(Ti > Wi|Xi)Pr(T
d
i =Wi|Xi).

For a given individual i, the potential outcomes simulated are: T 0i (W ) =
Ti−W for individuals such that Ti > Wi and T 1i (W ) = T 1i for individuals
such that T di = W . Thus, while we simulate T 0i (W ) for all individuals
having survived until time W , we simulate T 1i (W ) only for those treated
at time W . A consequence is that the hazard h0(t;W ) is known while
h1(t;W ) is not. We, therefore, choose to use their limit (letting the number

of treated n1 tend to infinity) in probability, hk(t;W )
p
−→ h̃k(t;W ) as

n1 →∞, k = 0, 1, to assess the quality of the estimators. We have

h̃k(t;W ) =

∫
Pr(T j(W ) = t|T k(W ) ≥ t,Xi)dxi ≃

1

n

n∑

i=1

pk(Xi)

for n, the number of simulated design points, large enough. In particular,
when a1 = 0, h̃k(t;W ) = pk(Xi) = pk. Thus, we use ∆̃s(t;W ) obtained
by using h̃1(t;W ) and h̃0(t;W ) as an approximation of the estimand of
interest ∆s(t;W ). This approximation is used to compute the bias of the
estimator ∆̂s(t;W ) with 1,000 simulated replicates. This is reasonable
because the difference hk(t;W ) − h̃k(t;W ), k = 0, 1, is zero on average
(over the replicates).

In general, the hazard h0(t;W ) may depend on W . This is not the
case here due to the choice of the geometric distribution for generating
survival times. In this experiment we have, therefore, that the difference
in hazards depends on W only through aw. When the latter is constant
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with respect to W, we have ∆s(t;W ) = ∆s(t), but otherwise we can make
∆s(t;W ) depend on W .

The no-treatment effect situation is obtained by letting T 1i (W ) =
T 0i (W ). Situations with a non-zero treatment effect are designed for an
homogenous (a1 = 0) and an heterogenous (a1 = 1) case as follows. We
let aw = ln((0.047 + (1/(W + 23)))/(1− 0.047− (1/(W + 23)))). For the
homogenous case this yields the treatment effects ∆̃h(t; 1) = 1/24 ∼= 4.2%,
∆̃h(t; 5) = 1/28 ∼= 3.6%, ∆̃h(t; 10) = 1/33 ∼= 3.0%, ∆̃h(t; 15) = 1/38 ∼=
2.6%. Figure 4 displays the treatment effects ∆̃s(t;W ) for these four val-
ues of W as well as for the average. The figure shows clearly that the
treatment effect varies with W , getting smaller as waiting time goes.

6.2 Results

We study the bias of the estimator ∆̂s(t;W )), where matching is performed
as described in the applications, see Section 2. The continuous covariate
xi is matched using the nearest neighbor with respect to the Euclidian
distance. Moreover, the size and the power of the test of no treatment
effect (T 1i (W ) = T 0i (W )) with the Wald-test statistic

∆̂s(t;W )

V̂ ar(∆̂s(t;W ))1/2

is also studied. We perform experiments, where the number of individuals
are varied as n = 500, 1,500 and 6,000, and the number of replicates is
1,000.

To save space, we restrict the presentation of the results to the setting
with covariates (i.e. a1 = b1 = 1). For the bias study, we show results
for the case with a treatment effect (i.e. aw �= 0). The non-reported cases
gave a similar picture to those reported. We start by presenting the case
with 2.9% treated. Thereafter, results for the situation with 49% treated
are commented. The results are displayed in figures with panels ordered
from left to right with respect to sample size and from bottom to top with
respect to W, except for the panels on the first row, where the results for
the average estimator/test are displayed.

6.2.1 The case with 2.9 percent treated

The bias of the estimator and the size and power of the test of no treatment
effect are presented in Figures 5, 6 and 7, respectively. In this setting, the
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number of treated equals on average 14.5, 44 and 174 when the sample
size equal 500, 1, 500 and 6, 000, respectively. For W = 1 and 15 the
corresponding figures are 1.63, 3.37 and 9.13 and 1.18, 1.57 and 4.01,
respectively.

The bias (Figure 5) is, as expected, decreasing with sample size n.
Considering the relatively small sample sizes of treated for each W the es-
timator does well. The size of the Wald test is displayed in Figure 6. For
sample sizes 1,500 and 2,500 the average estimator have approximately
correct size. For the conditional estimator the size is too small for small
n and too large when n = 6, 000 and W > 5. Considering the extremely
few number of treated for each W these results are perhaps not surpris-
ing. When extending the sample size to 12, 000 the correct size is well
approximated for all values of W. The power of the Wald test is displayed
in Figure 7. As expected the Wald test has significant power only for
the average effects, due to the low number of treated individuals in each
sub-group defined by W .

6.2.2 The case with 49 percent treated

The bias of the estimator, and the size and power of the test of no treat-
ment effect are presented in Figures 8, 9 and 10, respectively. In this
setting the number of treated is for sample size of 500, 1, 500 and 6, 000
on average 240, 718 and 2,876, respectively. For W = 1 and 15 the cor-
responding figures are 30, 90 and 363 and 4, 10 and 39, respectively.

The bias displayed in Figure 8 is positive however decreasing with
n. The size of the Wald test is displayed in Figure 9. There is a small
tendency of too large size when n is small for the conditional estimator.
The average estimator always displays too large a size. Larger sample
sizes do not help in this situation. Because the fraction of treated is large
and constant, this result should be expected. The power of the Wald test
is displayed in Figure 10. It increases with n. The power of the test for
the average case is not comparable to the others due to the size failure.

7 Concluding discussion

We have proposed a non-parametric estimator of a treatment effect on a
survival outcome. The effect (estimand) is a difference of survival functions
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estimated on two groups of matched individuals (treated and control). The
estimators and their inference presented are best suited for observational
studies including many individuals. Such large observational studies allows
us to relax restrictive assumptions such as parametric functional forms,
proportionality of the hazards, and homogeneity of the hazards with re-
spect to waiting time until treatment.

To avoid assumptions of constant hazard with respect to waiting time
until treatment we propose to perform inference conditionally on the wait-
ing time, when the proportion of treated individuals at each waiting time
of interest is large enough. Otherwise, one can average over waiting times.
In the latter case, the estimated treatment effect does not keep necessarily
its interpretation of a difference of survival functions, although one may
still test the hypothesis of no treatment effect. The variance estimator
we provide is in general conservative unless there is zero constant additive
treatment effect. This allows us to test such a no treatment effect hypo-
thesis. In our simulations, the empirical size of the test was close to the
nominal, except when averaging over waiting times in situations where the
percentage of treated individuals was large. The test was also shown to
have power, although, it is essential to observe enough treated individuals
at a given waiting time, when conditioning the inference on the latter.

An application on an employment subsidy to shorten unemployment
duration is used to illustrate the applicability of the proposed matching
estimator. Although our applications did not include time-dependent cov-
ariates, such situations are straighforward to handle since such covariates
are not time-dependent anymore when conditioning the inference on wait-
ing time. We also suggest and use an alternative evaluation method to
matching, where Cox regression models are fitted on treated and con-
trols separately with Pr(D(W ) = 1|X) as unique covariate. Conditioning
solely on this covariate is justified by the results of Rosenbaum and Ru-
bin (1983). However, because Pr(D(W ) = 1|X) is unknown and must
be fitted, it is not straightforward how inference on the resulting survival
functions should be performed. This is an interesting direction of future
research. Note, finally, that the matching estimators introduced herein
could also make use of Rosenbaum and Rubin’s results, by matching on
Pr(D(W ) = 1|X) instead of X. This is often advocated in the matching
literature, for instance, when X includes many continuous covariates in
order to diminish the bias due to poor matches.
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Appendix: Sampling properties of ∆̂h(t;W )

Sampling scheme

We adapt the sampling model of Neyman (1990) to our context. Let us
consider two urns representing each one of the two potential outcomes.
For a given time W , urn k, k = 0, 1, contains the potential outcomes
(possibly censored) T ki (W ) for i = 1, . . . , 2n1, the n1 matched pairs that
have survived up to time W . At a given time t > W , the elements in the
urns are of three different types: (×) those who have died or have been
censored before time t (T ki (W ) < t or censored before t, k = 0, 1), (0) those
who have not been censored until time t and die at time t (T ki (W ) = t,
k = 0, 1) and (1) those who have survived and have not been censored
up to time t (T ki (W ) ≥ t, k = 0, 1). Denote by mk

×(t), m
k
0(t), and mk

1(t),
respectively, the number of elements in the three categories for the two
urns k = 0, 1.

These two urns describe the population in the inferential framework
adopted in this paper. From this population, at the beginning of the sub-
study conditional on waiting time W , we sample without replacement n1
individuals from one of the urn. Each time one individual is sampled, say
from the urn with the treated potential outcome, the non-treated potential
outcome corresponding to the same unit is also removed from the other
urn.

Assume that n1 individuals are drawn without replacement from urn
k, and define by

Y k : the number of individuals (out of the n1 sampled) which are of type
(1);

Xk : the number of individuals among the Y k above which are of type
(0).

Then, Y k is a hypergeometric random variable with parameters (2n1, n1,
mk
1(t)
2n1

).

Similarly,Xk|Y k = y is also hypergeometric with parameters (mk
1(t), y,

mk
0(t)

mk
1(t)
).

Unbiasedness

We show here the unbiasedness of ∆̂h(t;W ) for∆h(t;W ), i.e. E
(
∆̂h(t;W )

)
=

∆h(t;W ), where the expectation operator is defined by the sampling
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scheme described above. Note that ĥk(t;W ) = Xk

Y k
, k = 0, 1. Then,

using the distribution identified above we have

E(ĥ1(t;W )) = E(X1/Y 1)

= E(E(X1/Y 1|Y 1)) = E

(
1

Y 1
E(X1|Y 1)

)

= E

(
1

Y 1
Y 1m

1
0(t)

m1
1(t)

)
=

m1
0(t)

m1
1(t)

= h1(t;W ).

Similarly, for the urn with the controls, we have

E(ĥ0(t;W )) =
m0
0(t)

m0
1(t)

= h0(t;W ).

Hence, E
(
∆̂h(t;W )

)
= ∆h(t;W ).

Variance

We want to estimate V ar(ĥ1(t;W )− ĥ0(t;W )). We have

V ar(ĥ1(t;W )− ĥ0(t;W )) = V ar(X1/Y 1 −X0/Y 0)

= E(V ar(X1/Y 1 −X0/Y 0|Y 1, Y 0))

+V ar(E(X1/Y 1 −X0/Y 0|Y 1, Y 0))

= E(V ar(X1/Y 1 −X0/Y 0|Y 1, Y 0)).

The last equality follows because E(X1/Y 1−X0/Y 0|Y 1, Y 0) is constant;
see previous section. By the same arguments used in Neyman (1990) −see
also Rubin (1990a, Eq. 2)− we can write

V ar(X1/Y 1 −X0/Y 0|Y 1, Y 0)

= E

(
ĥ1(t;W )(1− ĥ1(t;W ))

Y 1 − 1
+

ĥ0(t;W )(1− ĥ0(t;W ))

Y 0 − 1

∣∣∣∣∣Y
1, Y 0

)

−
1

Y 1 + Y 0
S2,
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where

S2 =
1

Y 1 + Y 0 − 1

Y 1+Y 0∑

i=1

[
I(T 1i (W ) = t)− I(T 0i (W ) = t)−D

]2
,

D =
1

Y 1 + Y 0

Y 1+Y 0∑

i=1

[
I(T 1i (W ) = t)− I(T 0i (W ) = t)

]
.

This is, in particular, due to the fact that ĥj(t;W )(1 − ĥj(t;W )) is the
usual variance estimator based on a sample of size Yj , j = 0, 1. Note that
for us to be able to use the results of Neyman we have to condition on Y 1

and Y 0. Putting the two previous results together we have

V ar(ĥ1(t;W )− ĥ0(t;W ))

= E

(
ĥ1(t;W )(1− ĥ1(t;W ))

Y 1 − 1
+

ĥ0(t;W )(1− ĥ0(t;W ))

Y 0 − 1

)

−E

(
1

Y 1 + Y 0
S2
)

.

This tells us that ĥ
1(t;W )(1−ĥ1(t;W ))

Y 1−1
+ ĥ0(t;W )(1−ĥ0(t;W ))

Y 0−1
is an unbiased

estimator of V ar(ĥ1(t;W ) − ĥ0(t;W )) when S2=0, that is, for instance,
when T 1i (W ) = T 0i (W ), for i = 1, . . . , 2n1. In general, the estimator of
the variance is positively biased.
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Figure 1: The x-axis represents calender time and the y-axis represents
time with origin when the patients are treated (Panel A) or enter the study
(Panel B). Treatments are represented by an open circle. The diagonal
lines represent the history of each patient. Exits (deaths) are denoted with
a filled circle, and W denotes the first treated patient waiting time.
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Figure 2: Estimated (by matching) treatment effect ∆̂s(t) (plain line) and
the difference in survival functions resulting from the Cox proportional
hazard model (9).

IFAU - Matching estimators for the effect of a treatment on survival times 29



0 9 18 27 36 45 54

Duration (days)

-0.2
0.0
0.2

-0.2
0.0
0.2

-0.2
0.0
0.2

W = 1 W = 11

W = 21 W = 31

Average Matching estimate
95% c.i.
Cox estimate

Figure 3: Estimates (including approximate 95 % confidence intervals) of
the effect ∆̂s(t;W ) of employment subsidy on the duration in unemploy-

ment for W = 1, 11, 21, 31 and the average ∆̂s(t).
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Figure 4: The treatment effects ∆̃s(t;W ) for W = 1, 5, 10 and 15. The

average ∆̃s(t;W ) is computed analytically over the observed W .

IFAU - Matching estimators for the effect of a treatment on survival times 31



0 15 30 45 0 15 30 45

0 15 30 45

DURATION

-0.1

0.0

0.1
-0.1

0.0

0.1
-0.1

0.0

0.1
-0.1

0.0

0.1
-0.1

0.0

0.1

B
ia

s

Average & n = 500 Average & n = 1,500 Average & n = 6,000

w = 1 & n = 500 w = 1 & n = 1,500 w = 1 & n = 6,000

w = 5 & n = 500 w = 5 & n = 1,500 w = 5 & n = 6,000

w = 10 & n = 500 w = 10 & n = 1,500 w = 10 & n = 6,000

w = 15 & n = 500 w = 15 & n = 1,500 w = 15 & n = 6,000

Figure 5: Bias for the matching estimator in the heterogeneous treatment
setting (i.e. a1 = b1 = 1 and aw �= 0) with proportion of treated equal to
2.9%.
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Figure 6: Empirical size (nominal size 5 %) for the matching estimator in
the heterogeneous treatment setting (i.e. a1 = b1 = 1 and aw �= 0) with
proportion of treated equal to 2.9%. Empirical sizes above the horizontal
dotted line (6.4%) are significantly higher (at a 2.5% level of significance)
than the nominal size of 5%.
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Figure 7: Power for the matching estimator in the heterogeneous treat-
ment setting (i.e. a1 = b1 = 1and aw �= 0) with proportion of treated
equal to 2.9%. The dotted line shows the nominal size 5%.
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Figure 8: Bias for the matching estimator in the heterogeneous treatment
setting (i.e. a1 = b1 = 1 and aw �= 0) with proportion of treated equal to
49%.
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Figure 9: Empirical size (nominal size 5%) for the matching estimator in
the heterogeneous treatment setting (i.e. a1 = b1 = 1 and aw �= 0) with
proportion of treated equal to 49%. Empirical sizes above the horizontal
dotted line (6.4%) are significantly higher (at a 2.5% level of significance)
than the nominal size of 5%.

36 IFAU - Matching estimators for the effect of a treatment on survival times



0 15 30 45 0 15 30 45

0 15 30 45

DURATION

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

P
ow

er

Average & n = 500 Average & n = 1,500 Average & n = 6,000

w = 1 & n = 500 w = 1 & n = 1,500 w = 1 & n = 6,000

w = 5 & n = 500 w = 5 & n = 1,500 w = 5 & n = 6,000

w = 10 & n = 500 w = 10 & n = 1,500 w = 10 & n = 6,000

w = 15 & n = 500 w = 15 & n = 1,500 w = 15 & n = 6,000

Figure 10: Power for the matching estimator in the heterogeneous treat-
ment setting (i.e. a1 = b1 = 1 and aw �= 0) with proportion of treated
equal to 49%. The dotted line shows the nominal size 5%.
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