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Abstract 

In observational studies, the estimation of a treatment effect on an outcome of in­

terest is often done by controlling on a set of pre-treatment characteristics (covariates). 

This yields an unbiased estimator of the treatment effect when the assumption of un­

confoundedness holds, that is, there are no unobserved covariates affecting both the 

treatment assignment and the outcome. This is in general not realistically testable. It 

is, therefore, important to conduct an analysis about how sensitive the inference is with 

respect to the unconfoundedness assumption. In this paper we propose a procedure 

to conduct such a Bayesian sensitivity analysis, where the usual parameter uncertainty 

and the uncertainty due to the unconfoundedness assumption can be compared. To 

measure departures from the assumption we use a correlation coefficient which is in­

tuitively comprehensible and ensures that the results of sensitivity analyses made on 

different evaluation studies are comparable. Our procedure is applied to the Lalonde 

data and to a study of the effect of college choice on income in Sweden. 
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1 Introduction 

This paper proposes a standardised procedure to conduct sensitivity analysis of the assump­

tion of unconfoundedness made in observational studies. We particularly focus on evaluation 

studies based on the Rubin model for causal inference, see Rubin (1974) and Holland (1986). 

In such studies the aim is to estimate the effect of a cause (e.g., a medical treatment or a 

labour market program) on an outcome of interest. Based on a model (a set of assumptions) 

a point estimate of the effect (a parameter of the model) is produced with a relevant esti­

mation method. In association to such a point estimate, the following sequence of questions 

should be addressed: 

i) Scientific significance: What is an interesting effect? Is the estimated effect scientifi­

cally relevant? 

ii) Parameter uncertainty: What is the posterior/sampling variation? E.g., is the effect 

statistically significant? 

iii) Model uncertainty: Is the inference made in ii) sensitive to small departures from the 

model assumptions? 

Point ii) is of interest only if the answer to point i) is affirmative, and similarly point iii) 

is of interest only if the answers to point i) and ii) are affirmative. While points i) and 

ii) are often addressed in evaluation studies, point iii) is seldom so. When the estimation 

is performed with small data sets, parameter uncertainty will typically dominate model 

uncertainty and therefore ignoring point iii) is often harmless. However, with large data 

sets, model uncertainty may be comparable or even dominate parameter uncertainty. This 

is an essential issue because effects tend to be statistically significant if you collect enough 

data and ignore model uncertainty. Pawitan (2001, Sec. 1.3), Greenland (2005), Copas and 

Eguchi (2005) have discussed the importance of model uncertainty. 

In this paper, we focus on a major source of model uncertainty in studies evaluating the 

effect of a treatment with observational data. Namely, the uncertainty due to the assumption 

of unconfoundedness of the treatment assignment. In order to formalise this assumption, 

the Rubin model for causal inference is often used, where z is an indicator for treatment 

assignment (zi = 1 when individual i is treated and zi = 0 otherwise). Further, assume that 

the interest lies in studying the effect of the treatment on an outcome denoted y(z), with 

yi(1) the outcome of individual i if she/he is treated and yi(0) if she/he is not. Then, in 

order to estimate the effect of the treatment, say τ = E(y(1)−y(0)), it is most often assumed 

(either implicitly with parametric models or explicitly with non-parametric estimators such 

as matching) that y(1) and y(0) are independent of z when conditioning on a given set of 

covariates x (characteristic of the individuals observed before treatment assignment). This 

is called in the sequel the unconfoundedness assumption (UA) because it holds if there is 

no unobserved confounding covariate u that is dependent of both the treatment assignment 

and the outcomes. Note that because the potential outcomes y(z), z = 0, 1 cannot both 
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be observed for a given individual, there is in general too little information in the data to 

perform a statistical test of the unconfoundedness assumption. Because this assumption is 

essential in an observational study, a sensitivity analysis should be carried out where the 

consequences of the uncertainty attached to the assumption are investigated; see point iii) 

above. 

Different strategies to address point iii) have been developed, see, e.g., Copas and Eguchi 

(2001, 2005), Rosenbaum (2002), Imbens (2003), and Greenland (2005). In this paper, we 

use a Bayesian approach (as advocated by Greenland, 2005) which has the advantage of 

making the two sources of variation ii) and iii)) conceptually easy to compare. We develop 

a sensitivity analysis based on the Rubin model for causal inference, by measuring the 

departure from the unconfoundedness assumption with a scalar measure of dependence −the 

correlation between the potential outcome y(0) and the treatment assignment z given the 

covariates x. The use of a standardised measure of dependence allows us to propose a 

standardised sensitivity analysis. Thus, we may compare the results of such analyses made 

for different evaluation studies −based on, different data, models, effects of interest, etc.− 
and say whether a given study is more or less sensitive than another. A correlation coefficient 

is, moreover, intuitively comprehensible by most empirical scientists, making the results of 

the analysis easy to communicate. Copas and Eguchi (2005) have also advocated the use of a 

scalar measure of dependence to perform a sensitivity analysis. However, while we compare 

parameter and model uncertainty by computing posterior distributions of the parameter of 

interest, Copas and Eguchi quantify analytically the bias due to a certain departure from 

the UA. 

We have organised the paper as follows. In Section 2 we review how sensitivity analysis 

based on expanded models which parametrise the departure from the unconfoundedness 

assumption can be carried out within a Bayesian framework. We develop in this section our 

main contribution which consists in using a simple and standardised measure of dependence 

between the potential outcome and the treatment assignment to study sensitivity of the 

evaluation to the unconfoundedness assumption. The proposed procedure is then explicitly 

illustrated in Section 3 using linear regression to model the outcome and logistic regression 

to model the treatment assignment. We use for that purpose a toy application based on 

the Lalonde data (Lalonde, 1986). In Section 4, we perform a sensitivity analysis of an 

evaluation study presented in Lundin (2006), where the effect of college choice on income 

was evaluated with Swedish register data. Section 5 concludes the paper. 

2 Sensitivity analysis: Models and methods 

2.1 Modelling bias 

In order to study departures from the UA it has been proposed in the literature to expand 

a null model (i.e. a model where the UA holds) by introducing parameters which model the 

departure from the assumption (Copas and Eguchi, 2001, 2005, Rosenbaum, 2002, Imbens, 
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2003, Greenland, 2005). 

Let us specify a parametric null model in very general terms by denoting 

p(y(0)|x; θ) and p(y(1)|x; θ) (1) 

the density1 functions of the potential outcomes y(0) and y(1) given a set of covariates x, 

and a set of parameters θ. The parameter of interest, the program effect, is then τ(θ) a 

function of θ. A model for program assignment is also needed to study the UA, i.e. 

Pr(z = 1|x; γ) (2) 

must be specified. 

The unconfoundedness assumption would not hold if there was an unobserved variable u 

(not included in x) affecting both y(z) and z. A sensitivity analysis can then be performed 

by considering the existence of such an unobserved confounding variable. This can be done 

with the following expanded model. A conditional model for the outcome is 

p(y(0)|x, u; θ, η1) and p(y(1)|x, u; θ, η1), (3) 

where the parameter η1 describes how u affects y(0) and y(1), with a parametrisation as­

sumed such that η1 = 0 yields (1), and u has a known density function. Moreover, an 

assignment mechanism is specified by 

Pr(z = 1|x, u; γ, η2), (4) 

where the parameter η2 describes how u affects z, and again the parametrisation is such 

that η2 = 0 corresponds to (2). 

We will use the following example throughout the paper to illustrate the different issues 

tackled. 

Example 1 [Normal/logistic model] A simple example for a treatment evaluation model is 

obtained by considering a normal model for the potential outcomes (here θ = (τ, β, σ)) 

y(0)|x; θ ∼ N(β ′ x, σ2) (5) 

and 

y(1)|x; θ ∼ N(β ′ x + τ, σ2) 

Here a constant treatment effect τ is assumed. Further, a logistic regression model for the 

treatment assignment can be written as 

Pr(z = 1|x; γ) = exp(γ ′ x)/(1 + exp(γ ′ x)). 

1While using the terminology “density function”, the approach is not restricted to continuous valued 

outcomes 
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This normal-logistic null model can be expanded as follows2 

y(0)|x, u; θ, η1 ∼ N(β ′ x + η1u, ν2), (6) 

where u is Bernoulli with probability 1/2 and ν = ν(θ, η1), and 

Pr(z = 1|x, u; γ, η2) = exp(γ ′ x + η2u)/(1 + exp(γ ′ x + η2u)). (7) 

Greenland (2005) calls η = (η1, η2)
′ the bias parameters. For η1η2 = 0 the UA holds, 

while otherwise a bias in the estimation of τ will be implied by not conditioning on u. Note 

that typically there is very little information in the data on η1η2 because u is not observed, 

thereby making the hypothesis H0 : η1η2 = 0 difficult to test. Moreover, the result of such 

a test is bound to be very sensitive to the model assumptions made as noted by Imbens 

(2003). Therefore, an alternative often advocated is to perform a sensitivity analysis. 

2.2 Bayesian sensitivity analysis 

We describe here a Bayesian approach to sensitivity analysis, advocated recently by Green­

land (2005). This approach allows us to quantify model uncertainty through a distribution 

function for the bias parameters η. The Bayesian sensitivity analysis yields a posterior 

distribution for the treatment effect that combines this model uncertainty with parameter 

uncertainty. For this purpose, we use probability distribution functions to describe our be­

liefs on parameters before and after the data has been observed. We use data observed on 

n individuals to update our prior p(θ, γ, η) (beliefs on the parameters before the data is 

observed) to obtain a posterior distribution 

p(θ, γ, η|y, z,X) ∝ p(y, z|X; θ, γ, η)p(θ, γ, η) 

where y is the vector of n observed potential outcomes, z the vector of n observed treatment 

assignments, and X is the matrix with element X(i, j) being the observed value of covariate 

j for individual i. Moreover, the likelihood p(y, z|X; θ, γ, η) = L(θ, γ, η) is obtained by 

integrating out the missing potential outcomes and u from p(y, z,ymiss,u|X; θ, γ, η), where 

ymiss is a vector containing the n unobserved potential outcomes (for each individual we 

have one observed and one unobserved outcome), and u consists in the n unobserved values 

for u. For the parameter of interest, τ = τ(θ), the posterior distribution is 

p(τ |y, z,X) ∝ L(θ, γ, η)p(θ, γ, η)d(θ, γ, η). (8) 
τ(θ)=τ 

2Here we let the unobserved confounder affect y(0). Alternative choices would have been to let u affect 

only y(1), or both y(0) and y(1). If some knowledge exists on how a potential confounder would affect the 

outcome this should be used in the specification of the expanded model. 
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Example 2 [Normal/logistic cont’d] For the normal/logistic expanded model, we have (Im­

bens, 2003) 

n � � � � � 
1 1 1 

L(θ, γ, η) = √ exp − 
2σ2 (yi − τzi − βxi)

2 

i=1 
2 2πσ2 

(exp (γxi))
zi 

× 
1 + exp (γxi) 

1 1 1 
+ √ exp − (yi − τzi − βxi − η1)

2 

2 2πσ2 2σ2 

(exp (γxi + η2))
zi 

× . (9) 
1 + exp (γxi + η2) 

A sensitivity analysis can then be performed by comparing two posteriors p(τ |y, z,X). 

The first is obtained by using the null model in conjunction with a prior for θ and γ. This 

is equivalent to using the expanded model with a prior p(θ, γ, η) which puts weight one on 

η = 0. The second posterior is obtained with a prior distribution p(θ, γ, η) describing how 

η is allowed to differ from the value zero. In particular, if the two posteriors do not differ 

much, then we may conclude that inference based on the null model is justified, because it 

is not sensitive to small departure from the UA. 

The posterior distribution (8) is generally not straightforward to obtain and Markov 

Chain Monte Carlo Methods must often be used to obtain an empirical estimate (e.g., 

Gelman et al., 1995). A simpler approximate Bayesian sensitivity analysis can be used 

instead, by using asymptotic arguments. For this purpose, write 

p(τ |y, z,X, η) ∝ L(θ, γ, η)p(θ, γ|η)d(θ, γ). 
τ(θ)=τ 

Using the prior p(θ, γ|η) ≈ 1, we obtain 

p(τ |y, z,X, η) ∝ L(θ, γ, η)d(θ, γ). 
τ(θ)=τ 

An asymptotic approximation of the latter is (Gelman et al., 1995, Chap. 4) the den­

sity function of the normal distribution with mean τ̂η, the value maximising the likelihood 

L(θ, γ, η) for η fixed, and variance vη, the usual asymptotic variance of the maximum like­

lihood estimator. 

Greenland (2005) suggests to sample from the posterior distribution p(τ |y, z,X) = 
p(τ |y, z,X, η)p(η|y, z,X)dη ≈ p(τ |y, z,X, η)p(η)dη with Algorithm 1. The latter ap­

proximation is obtained by noting that the data has little information on η. Repeating 

Step 1 to Step 3 of Algorithm 1 many times provides a sample which is used to estimate the 

posterior density p(τ |y, z,X). This density estimate is then compared with the approximate 

posterior N(τ̂0, v0), i.e. the asymptotic distribution of τ̂0, the maximum likelihood estimate 

based on L(θ, γ, η = 0). 
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Algorithm 1 Sampling from p(τ |y, z,X) 

Step 1: Sample ηs from p(η). 

Step 2: Maximising the likelihood L(θ, γ, η = ηs), thereby yielding τ̂ηs and its estimated 
variance vηs . 

Step 3: Generate τ s from a N(τ̂ηs , vηs ). 

2.3 A standardised measure of departure from UA 

2.3.1 Sensitivity analysis at a fixed level 

Our aim is to study the sensitivity of an evaluation study to a small departure from the 

UA. A key issue is, therefore, how to define a small departure from η1η2 = 0. We argue 

that a measure of small departure must have the following characteristics: (i) be intuitively 

comprehensible by empirical scientists, and (ii) be standardised, in the sense that the values 

the measure can take is as far as possible independent from the context studied. Both these 

characteristics are important to make the analysis interpretable −in particular to be able 

to decide what is a small departure−, but also for results of sensitivity analyses of different 

evaluation studies to be comparable. A main purpose is here to make the results of the 

sensitivity analysis easy to interpret and report to third parties. 

To fulfil these requirements we focus on the real issue of interest, which is the dependence 

between y(0), y(1) and z given x. Indeed, the bias parameters η have been introduced with 

the purpose to induce a dependence between the potential outcomes and the assignment 

mechanism, but η is itself not standardised and difficult to interpret. 

To study the dependence (conditional on x) between y(0) and z in the expanded model3 

(3-4) we consider the correlation ρ(x) = Corr(y(0), z|x). A correlation coefficient is a 

standardised measure, and is intuitively understandable by most empirical scientist, thereby 

fulfilling the requirements stated above. 

Note that for Example 1 ρ(x) = 0,∀x if and only if η1η2 = 0. More generally, the use of 

the correlation coefficient ρ(x) to measure a small departure from the null model is justified 

even if ρ(x) = 0,∀x does not imply UA (η1η2 = 0). Indeed, ρ(x) = 0,∀x implies that the 

average treatment effect can be estimated without bias: 

ρ(x) = 0,∀x ⇒ E(y(0)z|x) = E(y(0)|x)E(z|x) 

⇒ E(y(0)|x, z = 1) = E(y(0)|x, z = 0) = E(y(0)|x). 

The last set of equalities ensures that conditional on x, y(0) observed for the controls are 

representative of the y(0) not observed for the treated. To estimate the average treatment 

effect by conditioning on x we also need that Corr(y(1), z|x) = 0,∀x, see Footnote 3. 

3The dependence between y(1) and z does not need to be considered because the existence of a correlation 

between y(0) and z is sufficient for the UA to be violated; see Footnote 2 however. Note also that if the 

average effect on the treated is of interest then only the dependence between y(0) and z is relevant. 
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Typically ρ(x) will vary with x and, therefore, we work with ρm = ρ(arg max |ρ(x)|). 
That is for a given application the maximum is taken over the observed values for x. 

There are two major issues that must be solved before a sensitivity analysis can be 

carried out. The first one is problem specific: the correlation ρ(x) must be computed for a 

given bias expanded model. A concrete example on the normal/logistic expanded model of 

Example 2 is treated in Section 3. The second issue is of general character: What is a small 

departure from the null model? Or, in other words: What is a small correlation? We believe 

the latter question must be answered in general terms, that is without making reference to 

particular situations: models, sample size, etc. Copas and Eguchi (2005, Sec. 7) discuss 

this issue and list three possible strategies: (a) UA is assumed, (b) ρ(x) �= 0 but are small 

enough that if they would be estimable, they would not have been statistically significant, 

(c) ρ(x) may be large. 

The point of departure of a sensitivity analysis must be that the UA is reasonable 

approximation, and, therefore, potential departures are believed to be small, thereby making 

(c) uninteresting to entertain as pointed out by Copas and Eguchi (2005) as well. 

Solution (b) has the disadvantage that it makes the sensitivity analysis depend on the 

sample size. In particular, an increase of the sample decreases the level of correlation 

that is not significant. However, such an increased sample size provides only little (if not 

at all) information on the UA. Only the observation of new covariates may provide such 

information. 

Instead, we advocate the use of a given correlation coefficient, say ρm = 0.01 or 0.05, 
or both as a standard measure of small departure from the UA implied correlation 0. In 

order to interpret these levels of correlation, let us consider the simple case where there is 

no covariates. Then, we can write y(0) = bz+ν, with E(ν) = 0, and a correlation of 1% and √ 
V ar(bz)

5% corresponds to a R = √ value of 1% and 5% respectively. That is bz explains 
V ar(y(0)) 

1%, respectively 5%, of the variability in y(0). The use of such a standard (say ρm = 0.05 
level sensitivity analysis) would help the evaluation discipline by making sensitivity analyses 

comparable. 

2.3.2 Prior distributions for the bias parameters 

We want to base the sensitivity analysis on ρm, i.e. we need to choose a prior p(ρm). 

Typically, if we want to consider correlations less or equal to r in absolute value, then a 

uniform on the interval (−r, r) may be chosen for p(ρm). We could also have situations where 

the direction of the dependence is known and, e.g., only positive values are considered (0, r). 

We have argued above for r = 0.01 and 0.05 as standards to perform a sensitivity analysis. 

Because ρm is a function of η (and not the contrary), a choice for p(ρm) does not 

correspond to a unique prior for η. In order to obtain a prior p(η) yielding the desired prior 

p(ρm) we need to use a rejection algorithm. This is described in Appendix A.1. 
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3 Normal/logistic expanded model: a toy application 

3.1 Data and evaluation of a program effect 

Dehejia and Wahba (1999) estimate the effect of a labour training program (National Sup­

ported Work Demonstration) on post-treatment earnings. The treatment group used is the 

185 individuals of the Lalonde (1986) sample for which 1974 earnings is available and the 

control group, denoted CPS-3 by Dehejia and Wahba (1999), is 429 individuals that re­

semble the treatment group in terms of some of the pre-treatment variables. We replicate 

Dehejia and Wahba (1999) analysis for the CPS-3 subsample. The outcome variable is 1978 

earnings, the treatment is program participation and the covariates used in the model are 

age, age squared, years of schooling, high school dropout status, race and 1974 earnings. 

The estimated effect of the program under the null model (5) is an earnings premium of 

τ̂ = 1270 U.S. Dollars with a standard error of 798. Hence, in this example parameter 

uncertainty is too large to be able to conclude that we have evidence for a program effect. 

For instance, a 95% Bayesian credible interval (also a 95% confidence interval here) for τ is 

1270 ± 1596. 

3.2 Sensitivity analysis of the evaluation 

We now conduct a sensitivity analysis of the above evaluation based on the theory pre­

sented in the previous sections. We need first to compute the correlation ρ(x) for the 

Normal/logistic expanded model (3-4). We obtain (see Appendix A.2) 

1 
4 η1 (a − b)

ρ(x) = � , (10) 
1 1(1 a + b) − (a + b)2 · σ2 + η2 

2 4 4 1 

where 
exp(xγ + η2) 

a = 
1 + exp(xγ + η2) 

and 
exp(xγ)

b = . 
1 + exp(xγ) 

Based on this correlation Algorithms 2 and 3 are used. We set p0(η) = p0(η1)p0(η2) with 

p0(η1), the density of a uniform on (−0.52, 0.52) and p0(η2) the density of a normal dis­

tribution function with mean zero and variance equal to nine. A uniform is chosen for η1 

because this parameter is known to be bounded as −0.52 ≤ η1 ≤ 0.52 (see Appendix A.3). 

A normal with large variance is used for η2 to represent lack of information. In Algorithm 

2 0.5 million replicates are drawn in Step 1 and in Step 2 we use the function density 
with parameter kernel="cosine" in R to estimate the density p0(ρm). The large amount 

of replicates was necessary to obtain a good approximation of p0(ρm) on the support of 

p(ρm), which is important in Step 3 of Algorithm 3. The latter algorithm is run until 10’000 
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replicates are obtained. The outputs of both algorithms for ρm uniform on (−0.05, 0.05) 
and on (−0.01, 0.01) are displayed in Figures 3 and 4 respectively (Appendix A.4). 

The sensitivity analysis can then be implemented with Algorithm 1. We run the algo­

rithm 1000 times by sampling η with replacement from the output of Algorithm 3. The 

likelihood was given in Example 2. 

The outputs of Algorithm 1 are displayed in Figure 1 together with the inference under 

the null model, i.e. a normal density with mean τ̂ = 1270 and variance 7982 . We note 

that the posteriors taking into account model uncertainty (plain lines) are not dramatically 

different from the inference under UA (dashed). We therefore conclude that at the 1% 

and 5% correlation level (as defined in Section 2.3) the inference in this evaluation is not 

sensitive to small departures from UA. Because parameter uncertainty was large (see above), 

it would have not have been necessary to look at model uncertainty in a practical situation. 

However, this exercise allows us to show a situation where sensitivity is low, which we can 

put in contrast with the next application. 
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Figure 1: Posteriors for τ under the null model (dashed) and the expanded model (plain) 
with |ρm| ≤ 0.01 (left panel) and |ρm| ≤ 0.05 (right panel). 

4	 Application to a study of the effect of college choice on in-
come 

Lundin (2006) presented an evaluation of the effect of college choice on income performed 

with Swedish register data. In the evaluation, graduates in business/economics from old and 

new Swedish universities are compared. The universities classified as old are the Universities 

of Stockholm, Gothenburg, Lund, Uppsala, and Umeå as well as the Stockholm School 

of Economics. The new universities/colleges are those installed after 1965. The cohorts 

included in the sample are the ones that graduated from senior high school between the 

years 1990-1996 and then graduated from university with a degree in business or economics 
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before 2001. The old university group (z = 1) consists of 3343 individuals and the new 

university group (z = 0) consists of 3413 individuals. 

A generalised additive model approach (Hastie and Tibshirani, 1990), controlling for 

the propensity score, Pr(z = 1|x), was used to estimate the effect on income of graduating 

from an old university (z = 1) instead of a new university (z = 0). The estimated earnings 

premium (log scale) 3 years after graduation was estimated to 0.061 with a standard error 

of 0.01. In order to perform a sensitivity analysis based on the Normal/logistic expanded 

model, we approximate the non-parametric functions in the generalised additive models used 

in Lundin (2006) with polynomial functions. The covariates included in the logistic model 

are gender, country of birth (Sweden/abroad), parents country of birth (Sweden/abroad), 

parents level of education (7 levels from elementary school to graduate education), whether 

the individual lived in a county with an old university prior to college choice, age at college 

start, duration of college studies, average grade in senior high school (polynomial of order 2) 

and the family’s disposable income (polynomial of order 2). The covariates are introduced 

in the normal model through a polynomial of order 3 of the estimated propensity score. 

Using these polynomial regression models we obtain an earnings premium of 0.062 with 0.01 

as standard error. Here parameter uncertainty is low and there is strong evidence of college 

choice effect under UA. 

We perform a sensitivity analysis of Lundin’s (2006) evaluation using the same setting 

as in Section 3.2, with the differences that a uniform on the interval (−0.66, 0.66) is used 

for p0(η1) and 300 replicates are computed in Algorithm 1. The outputs of Algorithms 2 

and 3 for ρm uniform on (−0.05, 0.05) and on (−0.01, 0.01) are displayed in Figures 6 and 

5 respectively (Appendix A.4). 

The outputs of Algorithm 1 are displayed in Figure 2 together with the inference under 

the null model, i.e. a normal density with mean τ̂ = 0.06 and variance 0.012 . We can see that 

this evaluation is sensitive to departures from the UA. The sensitivity is most obvious at the 

5% correlation level, where, for instance, Pr(τ ≤ 0|y, z,X) = 0.01 when p(ρm) is uniform on 

(−0.05, 0.05), while the same probability is equal to 3.8e-9 under UA. The larger sensitivity 

in this application is not surprising since we have a much larger sample compared to the toy 

application, thereby increasing the importance of model uncertainty compared to parameter 

uncertainty. Note, however, that the observed sensitivity of the posterior distribution does 

not seem to invalidate the conclusion that there is evidence for a college choice effect on 

income. In other words, there is sensitivity if the inference of interest is to measure the size 

of the effect, while the decision about whether there is effect or not is not that sensitive. 

5 Discussion 

We have argued in this paper for a standardised sensitivity analysis to the unconfoundedness 

assumption. A purpose is to make comparable the results of sensitivity analyses made on 

different evaluation studies. Obviously our approach stands on several arbitrary model 

choices, such as, for instance, the distribution assumption on the confounder u. However, 
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Figure 2: Posteriors for τ under the null model (dashed) and the expanded model (plain) 
with |ρm| ≤ 0.01 (left panel) and |ρm| ≤ 0.05 (right panel). 

we do not believe that these choices have a large impact on the conclusions of the analysis 

because we focus the analysis on the correlation between the potential outcome and the 

treatment assignment. The modelling process is there only to induce such a correlation. In 

any case, if sensitivity is observed then the inference made under the null model should be 

questioned, this independently of the arbitrary choices made to conduct the analysis. 

Sometimes model uncertainty can be incorporated in the final inference through Bayesian 

model averaging (Draper, 1995). However, this is reasonable only if you have grounds to 

specify prior probabilities on all alternative models. If you cannot, you may use a uniform 

prior on all alternative. When the outcome variable has finite support, the choice of a 

uniform prior for the bias parameters would yield an analysis similar to Manski’s (1990), 

where bounds on the estimated effect are computed by not using the UA. In this paper, we 

instead argue that when the unconfoundedness assumption is a reasonable approximation a 

sensitivity analysis should be carried. For this purpose, we propose the use of an informative 

prior to measure small departures from the assumption. However, the information contained 

in the prior is arbitrary and is used only for the sake of the sensitivity analysis, and not 

to perform inference on the effect of interest. If the analysis shows no sensitivity, then the 

inference in point ii) (see Introduction) is performed conditional on the unconfoundedness 

assumption. On the other hand, if sensitivity to the UA is observed then we have no means 

to obtain a correct inference, otherwise than using a pessimistic totally uninformative prior 

on η. 
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A Implementation details 

A.1 Prior distributions for the bias parameters: rejection algorithm 

Because ρm is a function of η (and not the contrary), a choice for p(ρm) does not correspond 

to a unique prior for η. In order to obtain a prior p(η) yielding the desired prior p(ρm) we 

need to use a rejection algorithm. We operate in two stages. In a first stage (Algorithm 2) 

we choose an non-informative prior for η, p0(η). The latter implies a prior for ρm, p0(ρm) 
which we obtain by simulation. 

Algorithm 2 Density function of p0(ρm) 

Step 1: Generate many η values from p0(η) and compute their corresponding ρm value.
 

Step 2: Estimate the density function p0(ρm) based on the simulated values in Step 1.
 

The output of Algorithm 2 is a set of replicates of the vector (η1, η2, ρm) and a corre­

sponding empirical density function p0(ρm). Both are used in a second stage (Algorithm 3) 

which consists of a rejection algorithm (Morgan, 1984, p. 100) with envelope p0(ρm). 

Algorithm 3 Replicates from p(η) for a given p(ρm) 

Step 1: Sample (η1, η2, ρm) with replacement from the output of Algorithm 2. (i.e. generate 
ρm from p0(ρm)) 

Step 2: Generate a uniform number, v, on the interval (0, p0(ρm)). 

Step 3: Accept (η1, η2, ρm) if ρm ∈ S(p(ρm)) and v < Kp(ρm), where S(p(ρm)) is the 
support of p(ρm), and K is a constant such that Kp(ρm) < p0(ρm) on S(p(ρm)). 

Step 4: Repeat Steps 1-3 until the desired number of triplets (η1, η2, ρm) has been accepted. 

The output of Algorithm 3 is a set of replicates of the vector (η1, η2, ρm) such that the 

ρm’s are from the desired prior p(ρm), and thereby the η from a density p(η) actually yielding 

p(ρm). In our applications we use p(ρm) = 1/(2r) on the support S(p(ρm)) = (−r, r) with 

r = 0.01 and 0.05. 

A.2 Correlation for the normal/logistic model 

We give here the details of the computation of ρ(x) = Corr(y(0), z|x) for the model of 

Example 1 and 2. 

Cov(z, y(0)|x)
ρ(x) = � 

V ar(z|x)V ar(y(0)|x) 

E(zy(0)|x) − E(z|X)E(y(0)|x) 
= � , 

V ar(z|x)V ar(y(0)|x) 
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� � 

� � 

� � � � 

� � � � 

� � 

� � � � 

� � 

where 

1 exp(xγ + η2u) exp(xγ)
E(z|x) = + ,

2 1 + exp(xγ + η2u) 1 + exp(xγ) 

1 
E(y(0)|x) = E (E (y(0)|x, u) |x) = E (xβ + η1u|x) = xβ + η1,

2 

E(zy(0)|x) = E(E(zy(0)|x, u)|x) 

= E(E(z|x, u)E(y(0)|x, u)|x) 
exp(xγ + η2u) 

= E (xβ + η1u)|x 
1 + exp(xγ + η2u) 

1 exp(xγ + η2) 1 exp(xγ) 
= (xβ + η1) + xβ ,

2 1 + exp(xγ + η2) 2 1 + exp(xγ) 

1 exp(xγ + η2) 1 exp(xγ)
Cov(z, y(0)|x) = (xβ + η1) + xβ 

2 1 + exp(xγ + η2) 2 1 + exp(xγ) 

1 exp(xγ + η2) exp(xγ) 1 − + (xβ + η1)
2 1 + exp(xγ + η2) 1 + exp(xγ) 2 

1 exp(xγ + η2) 1 exp(xγ + η2) exp(xγ) 
= η1 − η1 + 

2 1 + exp(xγ + η2) 4 1 + exp(xγ + η2) 1 + exp(xγ) 

1 exp(xγ + η2) exp(xγ) 
= η1 − . 

4 1 + exp(xγ + η2) 1 + exp(xγ) 

V ar(y(0)|x) = E(V ar(y(0)|x, u)|x) + V ar(E(y(0)|x, u)|x) 
1 

= σ2 + V ar(xβ + η1u|x) = σ + η1,
4 
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� � 

� � 

� � 

� � 

� 

and 

V ar(z|x) = E(V ar(z|x, u)|x) + V ar(E(z|x, u)|x) 

1 exp(xγ + η2) 
� 

exp(xγ + η2) 
�2 

= − 
2 1 + exp(xγ + η2) 1 + exp(xγ + η2) 

1 exp(xγ) 
� 

exp(xγ) 
�2 

+ − 
2 1 + exp(xγ) 1 + exp(xγ) 
� �2 � �21 exp(xγ + η2) exp(xγ)

+ + 
2 1 + exp(xγ + η2) 1 + exp(xγ) 

1 
� 

exp(xγ + η2) exp(xγ) 
�2 

− + 
4 1 + exp(xγ + η2) 1 + exp(xγ) 

1 exp(xγ + η2) exp(xγ) 
= + 

2 1 + exp(xγ + η2) 1 + exp(xγ) 

1 
� 

exp(xγ + η2) exp(xγ) 
�2 

− + . 
4 1 + exp(xγ + η2) 1 + exp(xγ) 

The resulting value for ρ(x) was given in (10). This correlation has to be computed many 

times (in our applications 0.5 million) using Algorithm 2 in order to obtain a good estimate 

of p(ρm) as needed in Algorithm 3. The optimal option would have been to estimate the 

vector γ for a given value of η with the likelihood (9); see below on the maximisation of 

the likelihood. However, this would have been extremely computer intensive and we chose 

to compute approximate values for γ as follows. For η1 ≈ 0 we have that γ maximise the 

likelihood: 
n � � 

1 (exp (γxi))
zi 1 (exp (γxi + η2))

zi 

L(γ; η2) = + . 
2 1 + exp (γxi) 2 1 + exp (γxi + η2)

i=1 

Instead of maximising this likelihood 0.5 million times we retrieve γ(η2) from γ̂ the 

maximum likelihood estimator of L(γ; η2 = 0). Integrating out u from (7) we have 

1 
Pr(z = 1|x; γ, η2) = exp(γ ′ x)/(1 + exp(γ ′ x)) 

2 
1 

+ exp(γ ′ x + η2)/(1 + exp(γ ′ x + η2)). (11) 
2 

Denote X = x1 + γ2/γ1x2 + s + γq/γ1xq, where x1, . . . , xq are the q covariates of the q 

dimensional x vector. Then, (11) is a cumulative distribution function F (x) (mixture of two 

logistic) and can be rewritten 

1 exp((x − m)b) 1 exp((x − m − η1/b)b)
F (x) = + ,

2 1 + exp((x − m)b) 2 1 + exp((x − m − η1/b)b) 

where m = −γ0/γ1 and b = γ1. 

When we are assuming that η2 = 0, we are considering instead the logistic cumulative 

distribution function 
exp((x − n)c)

G(x) = ,
1 + exp((x − n)c) 
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�	 � 

� 

In the case η2 is actually equal to zero then n = m and c = b. However, if η2 � 0= 
(misspecification) then we can retrieve n and c be equating the two first moments implied 

by F (x) and G(x). We have 

µ̃ =	 EF (X) = m + η1/2b, 

1 π 
Ef (X)	 = 2 + m/2 + (m + η1/b)/2 ,

2 3b 
π m (m + η1/b) (2m + η1/b)

σ̃ = V arF (X) = + + − . 
3b 2 2 4 

The expectation of X2 is obtained by noting that F (x) is a mixture of two density functions. 

Moreover, 

µ = EG(X) = n, 
π 

σ =	 V arG(X) = . 
3c 

Equating µ̃ = µ and σ̃ = σ yields 

m =	 n − η1/2b, 

1 3 π m (m + η1/b) (2m + η1/b) 
= − − + ,

b	 π 3c 2 2 4 

which we solve for m and b: 

η1 
m =	 n − ,

cα
cα 

b = ,
2 

α = 4π + 3η1/π. 

Thus, assuming η2 = 0 we obtain estimates of 

cγ2 cγp
γ ′ = cn, γ ′ = c, γ ′ = , . . . , γ ′ = ,0 1 2 pb b 

by maximising the likelihood L(γ; η2 = 0) given above, thereby yielding the estimates 

γ ′ ĉ = ˆ1, 

n̂ =	 γ̂0
′ /c, ˆ

m̂ = n̂ − η1/(ĉα), 

b̂ = cα/2.ˆ

Finally, we retrieve estimates of the correctly specified model 

ˆγ̂0 =	 m̂b, 

ˆγ̂1 =	 b, 

γ′ ̂b 
γ̂j = j 

, j = 2, . . . , p. 
c 
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As noted above, this heuristic holds for η1 ≈ 0. When η1 is “large” then η2 will tend to 

be small for the small correlations of interest and therefore the calibration made above will 

typically be of little effect. 

A.3 Bound for η1 

Fitting the null model (5) to the data provides estimates of β and σ2 . The latter estimated 

residual variance defines bounds for η1 in the expanded model (3) because of the constraint 

ν2 > 0. We have 

η2 
1σ2 = V ar(y0|x) = η1

2V ar(u) + V ar(y0|x, u) = + ν2 ,
4 

where we have used the fact that u is assumed independent of x. Hence, ν > 0 implies 

|η1| < 2σ. 
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A.4 More figures 

Density plot of p0 (ρm)	 Histogram of ρm 
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Figure 3: Outputs of Algorithms 2 and 3 for |ρm| ≤ 0.05. From left to right and top to 
bottom: the estimated density p0(ρm) (Algorithm 2); the histogram of the replicates of ρm, 
η1 and η2 from Algorithm 3; a scatter plot of the latter η1 and η2 against each others. 
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Density plot of p0 (ρm) Histogram of ρm 
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Figure 4: Outputs of Algorithms 2 and 3 (|ρm| ≤ 0.01) for the toy application of Section 
3. From left to right and top to bottom: the estimated density p0(ρm) (Algorithm 2); the 
histogram of the replicates of ρm, η1 and η2 from Algorithm 3; a scatter plot of the latter 
η1 and η2 against each others. 
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Density plot of p0 (ρm) Histogram of ρm 
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Figure 5: Outputs of Algorithms 2 and 3 (|ρm| ≤ 0.01) for the application of Section 4. From 
left to right and top to bottom: the estimated density p0(ρm) (Algorithm 2); the histogram 
of the replicates of ρm, η1 and η2 from Algorithm 3; a scatter plot of the latter η1 and η2 

against each others. 
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Density plot of p0 (ρm) Histogram of ρm 
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Figure 6: Outputs of Algorithms 2 and 3 for |ρm| ≤ 0.05. From left to right and top to 
bottom: the estimated density p0(ρm) (Algorithm 2); the histogram of the replicates of ρm, 
η1 and η2 from Algorithm 3; a scatter plot of the latter η1 and η2 against each others. 
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