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1. Introduction

Although most researchers would agree that the question "What is the effect
of [...] on [...]?" is generally more interesting than "Are [...] and [...] associ-
ated?", traditionally, most statisticians have been reluctant to get into discus-
sions about causality. Still, suppose we really would like to know the causal
effect of an education policy on academic achievement or perhaps the causal
effect of a vaccine on some disease. How should we proceed? A prerequisite
is to have a clear understanding and a formal statistical formulation of what
we mean by causation.

In this thesis causality is defined in terms of potential outcomes, as intro-
duced by Neyman (1923) and extended by Rubin (1974). A potential outcome
can be thought of as what would have happened to an individual if he or she re-
ceived a different treatment than the one actually given. In reality we can only
observe the outcome for that individual under the treatment actually received.
Thus, causality in this context is reduced to thinking of how to observe out-
comes that would have been if the individuals received a different treatment.

Several important consequences may be derived from the idea of potential
outcomes (Holland, 1986). First, instead of becoming entangled in an attempt
to define what the causes of a given effect are, studies of causation should start
with asking what are the effects of causes. Second, a cause always refers to
something relative to another cause. Third, each individual must be poten-
tially exposable to any one of the treatments, or at least we must be able to
imagine possible exposure. Importantly, these aspects are also the core ideas
in the design of randomised experiments. Observing the link between poten-
tial outcomes and randomised experiments, suggests that potential outcomes
can be used in observational studies to resemble an experimental setting as
closely as possible. By doing so, researchers may ask causal questions even in
settings where experimentation is not feasible or ethical. Certain issues when
estimating causal effects in observational studies are the main focus of this
thesis.

The thesis is organised as follows. It starts with a brief introduction to the
framework used in this thesis, as well as a short description of the propensity
score and propensity score-based estimators for average causal effects. This
section is followed by a summary of the four papers included in the thesis.
Paper I and II investigate how propensity score-based estimators for average
causal effects are affected by having correlated covariates. Paper III provides
some guidance regarding the implementation of estimators for the variance
of a propensity score matching estimator for the average causal effect, and
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applies the findings when estimating the effect of right heart catheterisation
(RHC) on the survival of intensive care unit patients. The fourth paper studies
the covariance matrix of estimators of parameters in a logistic model when
having normally distributed random regressors. The fourth paper is related to
the other papers in that logistic regression is commonly used to estimate the
propensity score.

1.1 A framework for causal inference
In the following section we formally introduce the Neyman-Rubin framework
for causal inference (Neyman, 1923; Rubin, 1974). The aim throughout the
thesis is to evaluate the effect of a binary treatment, W , on some outcome, Y .
By convention, those individuals exposed to the treatment, W = 1, are denoted
the treatment group or treated, while those exposed to the control treatment,
W = 0, are denoted the control group or controls. A binary treatment implies
two potential outcomes: Y1 had the individual been exposed to the treatment
and Y0 had the individual been exposed to the control. In a random sample of
N individuals drawn from a large population we define the individual causal
effects of the treatment as the differences of the potential outcomes

Y1i−Y0i, i = 1, . . . ,N.

The fundamental problem of causal inference is that for each individual we
only observe the realised outcome Yi = WiY1i +(1−Wi)Y0i, making identifi-
cation and estimation of individual causal effects impossible (Holland, 1986).
Still, aggregated causal effects may be estimated and the focus of this thesis is
on estimation of the population average causal effect,

τ = E(Y1−Y0).

The average causal effect is probably the most popular estimand (Imbens and
Wooldridge, 2009), but other causal effects might be of interest depending
on the research question. Some examples are the average causal effect of
the treated E(Y1−Y0|W = 1), the relative causal effect E(Y1)/E(Y0) and the
median causal effect Med(Y1 −Y0). A clear definition of what is a causal
effect, without making any parametric assumptions, and with focus on the
estimands, is one of the key benefits of the Neyman-Rubin framework (Imbens
and Wooldridge, 2009).

Although the average causal effect is defined without considering how treat-
ments are assigned to individuals (Imbens and Wooldridge, 2009), in order to
identify it assumptions regarding treatment assignment must be made. A per-
fectly conducted completely randomised experiment allows for identification
of the average causal effect by conditioning

τ = E(Y1−Y0) = E(Y1|W = 1)−E(Y0|W = 0) = E(Y |W = 1)−E(Y |W = 0).
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Random assignment of the treatment ensures that (Y1,Y0) ⊥⊥W , where ⊥⊥ de-
notes independence, from which the second equality follows. In this setting
the difference in sample means yields an unbiased estimator of the average
causal effect. Though often implicitly assumed, we also require that the treat-
ments received by one individual do not affect the outcomes for other individ-
uals (Cox, 1958), and that there is only one version of the treatment (Neyman
et al., 1935). Rubin (1980) denotes the combination of these two assump-
tions the stable unit treatment value assumption, an assumption maintained
throughout this thesis.

For ethical and practical reasons, it is often not possible to perform a ran-
domised experiment. Instead, the researcher must rely on observational data
and thus estimate the average causal effect in a setting where the indepen-
dence assumption is not likely to hold. Even so, the average causal effect can
be identified in an observational study (or in a randomised experiment with
imperfections) under certain assumptions. Let X be a vector of pre-treatment
variables, referred to as covariates. The assumptions of unconfoundedness

(Y1,Y0)⊥⊥W | X ,

and overlap
0 < Pr(W = 1|X)< 1, for all x,

are together referred to as the assumption of strong ignorability (Rosenbaum
and Rubin, 1983), which allows for identification of the average causal (treat-
ment) effect:

τ = E(Y1−Y0) = E[E(Y1−Y0|X)] = E[E(Y1|W = 1,X)−E(Y0|W = 0,X)]

= E[E(Y |W = 1,X)−E(Y |W = 0,X)].

We see that the average causal effect can be estimated with the observed
data by comparing treated and controls conditional on X and then taking the
marginal expectation. Without unconfoundedness, we have in general no way
of estimating the average causal effect.

A straightforward and perhaps the oldest way of adjusting for X is to divide
the data into subclasses based on the covariate values, i.e. to perform stan-
dardisation. Although intuitive, this method has two practical caveats. First,
to eliminate the bias several subclasses may be necessary. Second, the number
of subclasses grows dramatically as the number of covariates in X increases.
In both cases, the consequence is subclasses with sparse data with the result
of unreliable estimates.

An alternative estimation strategy is to use matching. In matching each in-
dividual is matched with one or several individuals having similar values on
X but are in the opposite treatment group. By comparing the outcomes in
matched treated and controls we are able to estimate the average causal effect.
An issue is that matching on the covariates is also subject to inherent problems
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of sparse data. If individuals with identical values of X cannot be found, which
is likely the case when X contains a large number of covariates, and certain if
we have at least one continuous covariate, matching will not perfectly control
for X . This results in biased estimation due to incomplete matching. Stuart
(2010) provides a comprehensive overview of matching methods. Closely re-
lated to matching is nonparametric kernel regression, but again, as the number
of continuous covariates increases, the rates of convergence of kernel methods
deteriorate.

One solution to overcome the multidimensionality problem when estimat-
ing the conditional means is to assume some parametric model. For instance,
if the conditional means are functions linear in the parameters, we can sim-
ply use the ordinary least squares estimator. This is also the most common
method used today, but some researchers would argue that such parametric
assumptions are bold.

1.2 Estimators using the propensity score
Instead of comparing treated and controls with the same values on all covari-
ates, Rosenbaum and Rubin (1983) show that it suffices to condition on the
conditional probability of assignment to a particular treatment given a vector
of observed covariates, p(X) ≡ Pr(W = 1 | X). The scalar function p(X) is
called the propensity score, which enables us to reformulate the previously
stated unconfoundedness assumption to (Y1,Y0)⊥⊥W | p(X). Consequently,

τ = E(Y1−Y0) = E(E[Y |W = 1, p(X)]−E[Y |W = 0, p(X)]).

The estimation of the average causal effect may still involve estimating con-
ditional means, but recalling that p(X) is a scalar there is no dimensionality
problem. An option is of course to use some parametric regression, but since
we only condition on a scalar, non-parametric methods lend themselves par-
ticularly well to this setting. Hence, we will not discuss parametric estimation
of the conditional means further.

The analogue of subclassification on the covariates is subclassification of
the sample using p(X). Although not considering subclassification in this the-
sis, it is instructive to include it here as an example of the most basic propen-
sity score-based estimator. This estimator creates subclasses with individuals
that are homogenous in the propensity score, and if the propensity score is
constant within each subclass, then the covariates are independent of the treat-
ment indicator. In each subclass the data could be interpreted as coming from
a completely randomised experiment, removing all bias due to differences in
the covariates. In practice the propensity score is not constant within each sub-
class and bias remains. Nonetheless, Rosenbaum and Rubin (1984) show that
five subclasses can often remove over 90% of the bias due to each covariate.
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Instead of subclassification, we may consider matching on the propensity
score. Although several propensity score matching estimators exist (e.g., with
or without replacement, with or without caliper), they all impute missing the
potential outcome using the outcomes of individuals of the opposite treatment
group. Paper I-III include a nearest-neighbour estimator with replacement.
In general there is a trade-off between bias and variance when selecting the
number of matches. A single match results in the least bias, but perhaps at
the cost of losing some precision. A reason for the popularity of the matching
estimators is that they are intuitive to use for practitioners with a smoothing
parameter (i.e. the number of matches) that is easy to interpret. In fact, the
number of matches is similar to bandwidth selection in kernel regression, and
kernel regression can be seen as a special case of matching.

The propensity score is one of several balancing scores (Rosenbaum and
Rubin, 1983), i.e. functions of the observed covariates such that the condi-
tional distribution of X is the same for the treated and controls. However, the
propensity score is also a probability. This leads to a class of estimators based
on propensity score weighting that is similar to sample weighting proposed by
Horvitz and Thompson (1952). It can be shown that the average causal effect
can be identified with

τ = E(Y1−Y0) = E
(

WY
p(X)

)
−E

(
(1−W )Y
1− p(X)

)
.

In this setting the propensity score is used to generate the 1/p(X)− 1 miss-
ing potential outcomes with similar characteristics, which creates a pseudo-
population in which unconfoundedness holds. Thus, the inverse probability
weighting corrects for disproportionality of the observed responses with re-
spect to the potential outcomes in the population. Inverse probability weight-
ing estimators follow from the identification formula above. In this thesis,
Paper I-II study a normalised version suggested by Hirano et al. (2003).

A special case of inverse probability weighting is an augmented inverse
probability weighting estimator also referred to as the doubly robust (DR) es-
timator (see e.g., Robins et al., 1994; Lunceford and Davidian, 2004; Cao
et al., 2009). This estimator combines inverse probability weighting with two
regression models where for each treatment the outcome is regressed on the
covariates. As long as either the propensity score model or the outcome re-
gression models are correctly specified, the average causal effect will be con-
sistently estimated. The DR estimator is examined in Paper II.

Estimation of the propensity score has thus far not been mentioned. Indeed,
since the propensity score is rarely known to researchers, estimation is impor-
tant in practice. Still, if consistently estimated, we can estimate the average
causal effect using the same estimators as described above. The propensity
score may be estimated using non-parametric regression, resulting in a com-
pletely non-parametric estimator of the average causal effect. More common,
however, is to use parametric regression, such as a logit or probit model, and
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the estimator for the average causal effect is then considered semi-parametric.
Depending on the propensity score-based estimator, the parametric specifica-
tion can be more or less crucial for estimation of the average causal effect (e.g.,
Millimet and Tchernis, 2009 and Waernbaum, 2012), but in general propen-
sity score-based estimators show greater robustness compared with entirely
parametric estimators for the average causal effect. In this thesis we confine
our focus to propensity scores estimated with logistic regression. In Paper IV
some properties of logistic regression as such are studied.

One important feature of propensity score-based estimators is that they al-
low for a clear separation between design and analysis. Often neglected in
observational studies, this enables the researcher to focus entirely on mod-
elling the estimated propensity score so that the conditional distributions of X
are similar in both treatment groups. When the researchers are satisfied with
the covariate balance, they may turn their attention to the outcome. This an ap-
pealing trait in that it mimics experimental design and does not require access
to the outcome data (Rubin, 2001).
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2. Summary of papers

2.1 Paper I
Large databases provide researchers with wonderful opportunities when at-
tempting to estimate causal effects of treatments. Large databases also implies
that it is common for researchers to have access to data containing several co-
variates that are correlated. For instance, many covariates could be measuring
health or socio-economic status of an individual. The covariates then describe
the same characteristic of the individual, and the researcher could choose to
include one or more of the correlated variables in the analysis. Another reason
for correlation between variables is when having an index constructed from
other variables as a separate variable (e.g., the sequential organ failure assess-
ment score). A common practice among researchers is to include both the
index itself and some of the variables included in the index in the analysis,
without considering that the variables and the index are correlated.

Paper I, entitled Effects of correlated covariates on the asymptotic efficiency
of matching and inverse probability weighting estimators for causal inference,
is the first study to investigate how correlation between covariates influences
estimators using the propensity score. Although Stuart (2010) conjectures that
for propensity score matching estimators collinearity in a propensity score
model is of no standard concern, this supposition is done without any formal
support.

We study two commonly used propensity score-based estimators: the nor-
malised inverse probability weighting estimator (IPW) suggested by Hirano
et al. (2003),

τ̂IPW =

(
N

∑
i=1

Wi

p(Xi)

)−1 N

∑
i=1

WiYi

p(Xi)
−

(
N

∑
i=1

1−Wi

1− p(Xi)

)−1 N

∑
i=1

(1−Wi)Yi

1− p(Xi)
,

with asymptotic variance σ2
IPW and the simple nearest-neighbour propensity

score matching estimator (Abadie and Imbens, 2006) which is defined as fol-
lows. For individuals i and i′ from opposite treatment groups we denote the
distance dii′ ,

dii′ =| p(Xi)− p(Xi′) |,

where for each i, we denote by Ji a set Ji = {1,2, . . . , i′, . . . ,M} of indices of
the M individuals with the smallest order statistics di(i′), i′ ≤M. The matching
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estimator, matching treated and controls to a fixed number of matches may
then be written

τ̂M =
1
N

N

∑
i=1

Wi(Yi− Ŷ0i)+(1−Wi)(Ŷ1i−Yi).

where Ŷ0i =∑i′∈Ji Yi′/M and Ŷ1i =∑i′∈Ji Yi′/M are the observed response means
for the M individuals with the smallest absolute difference in the propensity
score. We denote the asymptotic variance of the matching estimator σ2

M.
To study the influence of the correlation on the asymptotic variance of the

estimators we assume a data-generating process with potential outcomes and
a logit that are linear in the parameters, constant causal effect, and normally
distributed covariates.

First, if all correlated covariates are positively related to the treatment and
the outcome (or if they are all negatively related), then an increase in the
correlation between the covariates leads to an increase in σ2

IPW, whereas σ2
M

may increase or decrease. Therefore, a main contribution of this paper is that
propensity score-based estimators may respond differently to a change in the
correlation. Second, a study of the asymptotic relative efficiency of the esti-
mators reveals that the matching estimator is less affected by an increase in the
correlation compared with the IPW estimator. In fact, in some cases the IPW
estimator is very sensitive to an increase in the correlation, which occurs if the
correlation increases an already strong treatment assignment. In such a case
increasing the correlation may result in a propensity score distribution with
values close to 0 or 1, inflating the variance of the estimator. Third, numerical
results demonstrate that an increase in the correlation between covariates is
for almost all cases more beneficial for the matching estimator relative to the
IPW estimator. Fourth, we see that the strength of the confounding towards
the outcome and the treatment also plays an important role. This can be seen
as similar to the findings in earlier investigations (Brookhart et al., 2006) that
concluded that including a covariate that is strongly related to the treatment
assignment but only weakly related to the outcome may increase the variance
of a propensity score-based estimator.

However, even though we show how correlation is present in components
of the asymptotic variances, the effect of the correlation depends on how the
covariates are related to the potential outcomes and the treatment. The effect
can therefore be difficult to predict in a given dataset. The findings in Paper
I are mainly theoretical rather than practical. Thus, to provide guidance to
how data analysts should treat correlated covariates in practise further studies
are needed. Paper I provides motivation for further scrutiny of the impact of
correlation on estimators of causal effects to assist empirical scientists to use
strategies that improve efficiency.
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2.2 Paper II
The second paper, Correlation and efficiency of propensity score-based esti-
mators for average causal effects, is an extension of Paper I but containing
several important additions. We investigate the behaviour under the more re-
alistic setting of using the estimated propensity score, p̂(X). We also include
a third estimator, the DR estimator, in the analysis. Furthermore, we study
the effect of correlation on the behaviour of the estimators under less restric-
tive assumptions, considering several data-generating processes (including the
omission of a confounder and the inclusion of an irrelevant covariate).

The IPW and matching estimators in Paper I remain the same, except that
we replace p(X) with p̂(X). The DR estimator is defined as follows (Lunce-
ford and Davidian, 2004). Let mw(X ,βw) = E(Y |W = w,X) be the regression
of Y on X in group w and let β̂w be an estimator for the regression parameter
βw using only subjects within group w. The DR estimator is

τ̂DR =
1
N

N

∑
i=1

WiYi− (Wi− p̂(Xi)) m̂1

(
Xi, β̂1

)
p̂(Xi)

− 1
N

N

∑
i=1

(1−Wi)Yi +(Wi− p̂(Xi)) m̂0

(
Xi, β̂0

)
1− p̂(Xi)

.

The asymptotic variances of the estimators using the estimated propensity
score are

σ
2
IPW,p̂ = σ

2
IPW−a′I−1a, σ

2
DR = σ

2
IPW−b, σ

2
M,p̂ = σ

2
M− c′I−1c,

where a and c are vectors, I is the Fisher information matrix of the logistic
regression, and b is a positive scalar. For the IPW and matching estimator,
the second term of the variance is a correction due to the estimation of the
propensity score.

Using the same data-generating process as in Paper I, but with the estimated
propensity score instead, the findings are comparable to those in Paper I. If the
correlated covariates are all positively related to the treatment and the out-
come (or if they are all negatively related), then an increase in the correlation
between the covariates leads to an increase in σ2

IPW,p̂, an increase in σ2
DR,p̂, and

an increase or a decrease in σ2
M, p̂. We also observe that, in comparison with

the matching estimator, the variance of the IPW estimator is more extremely
affected by a change in correlation. The DR estimator, however, is similar
to the matching estimator regarding the sensitivity to a change in correlation,
albeit in different directions.

When extending the analysis we find that in a setting with non-constant
treatment effect, we have cases in which an increase in the correlation may in
fact decrease the asymptotic variances of the IPW and DR estimator. Also,
when studying how the mean squared error (MSE) is affected by correlation
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when omitting a confounder we conclude for the DR and matching estimator
that all confounders should always be included in the propensity score model,
regardless of the correlation. As for the IPW estimator, we observe that in
some cases, when the treatment assignment is strong, it is beneficial in terms
of the MSE to omit a confounder from the propensity score model. However,
in most cases all covariates should be included for the IPW estimator as well.

2.3 Paper III
When analysing data to estimate the average causal effect researchers are faced
with several decisions, for example, a model must be chosen, an estimator
must be selected and those covariates to be included in the model have to
be determined. In the third paper, Estimating the variance of a propensity
score matching estimator: A new look at right heart catheterisation data, we
address one particular aspect of the decision process for researchers deciding
to use a propensity score matching estimator with replacement, namely how
to efficiently estimate the variance.

Recall from the summary of Paper II that the asymptotic variance of the
matching estimator can be written

V = σ
2− c′I−1c

when matching is based on the estimated propensity score. For ease of expo-
sition, view σ2 as a weighted average of conditional variances V (Y |W, p(X))
and the vector c as a weighted average of conditional covariances between
the outcome and covariates, cov(X ,Y |W, p(X)). The weights in σ2 and c are
different, but both in both cases the weights are constructed from the propen-
sity score. Because the Fisher information matrix, I, and the weights are al-
ready given from the estimation of the average causal effect, what is left for
the researcher to decide on when estimating the variance is how to estimate
V (Y |W, p(X)) and cov(X ,Y |W, p(X)).

Abadie and Imbens (2012) suggest that the conditional variances and co-
variances are estimated using matching with replacement. We denote the esti-
mator

V̂LL′L′′ = σ̂
2
L − ĉ′L′L′′ Î

−1ĉL′L′′ ,

where L is the number of matches used to estimate V (Y |W, p(X)). To be more
specific, L is the number matches selected (including the unit being matched
on) in the same treatment group as the unit itself. Depending on the treat-
ment group, cov(X ,Y |W, p(X)) is estimated with either L′ matches selected
from the same treatment group (including the unit being matched on), or L′′

number of matches selected from the opposite treatment group. The guidance
given by Abadie and Imbens (2012), and suggested without further motiva-
tion, is that typically L = 2, L′ = 2, and L′′ = 2 which results in V̂222. Abadie
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and Imbens (2008) studied the choice of L when estimating conditional vari-
ances in paired experiments, but in a restricted setting and without considering
propensity score matching.

Therefore, a main contribution of this paper is the investigation of how to
select the number of matches when estimating the variance. Furthermore, we
study the alternative residual-based estimator,

V̂r = σ̂
2
r − ĉ′rI

−1ĉr,

which uses non-parametric local linear estimation for the conditional variances
and covariances.

The performance of the estimators with respect to bias and MSE is evalu-
ated via a simulation study under 240 scenarios (five propensity score designs,
16 outcome models and three sample sizes).

When estimating σ2, the simulations show that in terms of MSE, L should
be larger than 2, and preferably in the neighbourhood of 5 to 15 matches.
Regarding bias, the finite sample performance of the estimators is poor for
the sample size N = 250, and considerable bias remains for the sample size
N = 1000. Focusing on the largest sample size, N = 5000, we suggest that the
best choice in terms of bias and MSE is L = 9. The residual-based estimator
performs in general well, but displays a large bias in settings with extreme
propensity scores. However, this is not necessarily a negative trait since it
forces the practitioners to pay special attention to the overlap assumption.

The performance of the estimators for c′I−1c is for small sample sizes poor
regarding bias, particularly when c′I−1c is small. Even for the largest sample
size substantial bias remain for most estimators. The estimator with the lowest
MSE and least bias is the residual-based estimator, but in larger samples an
option is to use the estimator proposed by Abadie and Imbens (2012) letting
L′ = L′′ = 9.

Two other estimators were included in the study, one assuming a constant
variance of the error term of the outcome and one other local linear estimator.
Both of these estimators were unreliable in several settings, however.

To illustrate the importance of variance estimation we evaluate the effect
of RHC during the first 24 hours in an intensive care unit on 30-day survival.
The analysis is based on the SUPPORT study which collected data from 5735
patients who received intensive care at five US teaching hospitals between
1989 and 1994. The estimated average causal effect is −0.0343 or −0.0388
depending on the propensity score specification, but we observe a large varia-
tion in the estimates of σ2 and c′I−1c. Therefore, we show either a significant
negative effect on survival or no effect depending on how the variances are
estimated. Still, when selecting an estimator for the variance based on the
simulation results, i.e. putting L = L′ = L′′ = 9 or choosing V̂r, we find that
RHC has no effect on survival. This result is in accord with Tan (2006) and
a meta-analysis of randomised studies by Shah et al. (2005), but is contrary
to the conclusions in Connors et al. (1996), Hirano and Imbens (2001), Li
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et al. (2008), and Crump et al. (2009), who all find small to moderate, though
significant, negative effects of RHC on patient survival.

2.4 Paper IV
The main contribution of the fourth and final paper of the thesis, Some ap-
proximations of the logistic distribution with application to the covariance
matrix of logistic regression, is that we provide an analytic expression of
the covariance matrix of a logistic regression with normally distributed ran-
dom regressors. More specifically, we show that the asymptotic covariance
matrix of the maximum likelihood estimators µ̂ and γ̂ of the logistic model
logit[p(Z)] = µ +X ′γ = Z, where X is a random vector from a multivariate
normal distribution with zero mean and covariance matrix Σ, can be formu-
lated

Λ =

(
Λ11 Λ12

Λ21 Λ22

)
, where

Λ
11 =

E[ f (Z)Z2 ]−2E[ f (Z)Z]µ +E[ f (Z)]µ2

E[ f (Z)]E[ f (Z)Z2]− (E[ f (Z)Z])2 ,

Λ
21 =−γ

E[ f (Z)Z]−E[ f (Z)]µ
E[ f (Z)]E[ f (Z)Z2]− (E[ f (Z)Z])2 , (Λ

12 is the transpose of Λ
21)

Λ
22 =

Σ−1

E [ f (Z)]
− γγ ′

E [ f (Z)]σ2 +
γγ ′E [ f (Z)]

E [ f (Z)]E [ f (Z)Z2]− (E [ f (Z)Z])2 ,

where f (·) is the standard logistic density function. Although beyond the
scope of the present thesis, this result may be of potential use for sample size
calculations (such as Hsieh et al., 1998), or when investigating the properties
of logistic regression and comparing it with other methods (such as Efron,
1975 and Courvoisier et al., 2011).

In general, however, the expectations in Λ cannot be solved without resort-
ing to numerical methods. To increase the applicability of Λ, we substitute f (·)
with a two-component normal mixture density that closely resembles f (·). We
are then able to provide an approximate closed form expression for the asymp-
totic covariance matrix Λ. Numerical results show that the approximation of Λ

generally works well when considering the relative error between the true and
approximative covariance matrix. Further, a simulation study demonstrates
that in most cases the coverage rate when using the approximative covariance
matrix to calculate standard errors is close to the nominal level of 0.95.

The choice of a two-component normal mixture density function is mo-
tivated by a numerical comparison of some approximations of the standard
logistic distribution, and its density. It is well-known that the normal distri-
bution approximates the logistic distribution fairly well (Haley, 1952), but it
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is also known that the heavier-tailed t-distribution improves the approxima-
tion (Mudholkar and George, 1978) and that a normal mixture distribution can
be constructed to approximate any distribution arbitrary well (Sorenson and
Alspach, 1971). We extend previous results by considering approximations
of both the distribution and density function and by regarding both the maxi-
mum absolute deviation between the functions and the square root of the sum
of all squared deviations. The conclusion is that the two-component mixture
model is comparable to using the t-distribution as an approximate distribution
in terms of the approximation errors.

By using a more sophisticated optimisation method than the one used in
this study, the unpublished work by Monahan and Stefanski (1989) reaches a
somewhat smaller maximum absolute deviation error between the logistic dis-
tribution and the normal mixture distribution (i.e. 0.0005 vs. 0.0007). How-
ever, the authors do not consider approximation of the density, which is needed
for the expectations in Λ, nor do they consider minimisation with respect to
the square root of the sum of all squared deviations.
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