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Abstract. Causal effects of a policy change on hazard rates of a duration

outcome variable are not identified from a comparison of spells before and

after the policy change, if there is unobserved heterogeneity in the effects

and no model structure is imposed. We develop a discontinuity approach

that overcomes this by considering spells that include the moment of the

policy change and by exploiting variation in the moment at which different

cohorts are exposed to the policy change. We prove identification of average

treatment effects on hazard rates without model structure. We estimate

these effects by kernel hazard regression. We use the introduction of the

NDYP program for young unemployed individuals in the UK to estimate

average program participation effects on the exit rate to work as well as

anticipation effects.
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1 Introduction

Policy changes are often used to evaluate policy effects. In case of a policy change

at a point of time τ ∗, the idea is that a comparison of observed individual out-

comes just before and just after τ ∗ may provide an estimate of the mean causal

effect of the policy change on the individual outcome.

Empirical researchers have struggled to apply this methodology in studies

where the outcome of interest is a duration variable (like the unemployment

duration or the duration until recovery of a disease) or, more specifically, where

the object of interest is the hazard rate of the duration outcome. Consider the

use of data on individuals flowing into the state of interest before τ ∗ as well as

individuals flowing in after τ ∗, in order to compare spells that occur before τ ∗

to spells that occur after τ ∗.1 A first practical problem with such an approach

is that spells that start before the policy change, i.e. spells that are informative

on the outcome distribution before the policy change, do not all end before the

policy change. The corresponding duration outcomes are then affected by both

policy regimes. This may be dealt with by right-censoring the pre-policy-change

spells (or, to be short, the pre-policy data) at τ ∗. Such an approach is common

in empirical studies.

However, this approach in which the data are split into pre-policy spells and

post-policy spells has some more fundamental problems. To explain these, notice

that the approach effectively translates the policy regime into an explanatory

variable that is constant within any given spell. From the literature on duration

models it follows that effects on the individual hazard rate are only identified un-

der rather strong semi-parametric assumptions. Most prominently, it is assumed

that the duration dependence effect and the effects of the observed and unob-

served explanatory variables on the individual hazard rate are proportional. This

implies a causal policy effect that is constant across individuals. In addition, inde-

pendence between observed and unobserved individual characteristics is assumed

(see e.g. Meyer, 1996, and Abbring and Van den Berg, 2005; we discuss this in

detail in Subsection 2.2 of this paper.) Such semi-parametric assumptions may

be unappealing.

Yet another problem with the above approach is that policy evaluation re-

quires a certain waiting time before the post-policy data can be observed. For

example, if one is interested in the effect on the hazard rate after two years of

1Notice that with a single cohort of individuals flowing in at say τ0 < τ∗, the effect of the

policy change cannot be distinguished from the duration dependence of the hazard at and after

τ∗ − τ0.
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unemployment duration then one has to wait for two years after the policy change

before an estimate can be made. As the time between the policy reform and the

observation of post-policy outcomes increases, it becomes increasingly likely that

the post-policy outcomes are affected by events after the reform, complicating

the evaluation. Clearly, this is at odds with the spirit of the “regression discon-

tinuity” approach in which observations are used that are close to the point in

time at which some policy exposure changes.

In this paper we demonstrate that, in fact, ongoing spells at the moment of the

policy change can be fruitfully used to identify and estimate causal parameters

of interest. Specifically, we prove identification of an average causal treatment

effect on the hazard rate of the duration distribution in the presence of unob-

served heterogeneity, in a fully non-parametric setting without imposing a (mixed)

proportional hazard model structure and without making a “random effects” as-

sumption (i.e. independence of observed explanatory variables from unobserved

heterogeneity). We obtain the same type of results for survival probabilities con-

ditional on survival up to a given duration. The basic insight follows from the fact

that the policy change is an exogenous time-varying binary explanatory variable

whose discontinuity point varies independently across spells that started before

τ ∗. By comparing survivors who share a given elapsed duration t at the moment of

the policy change to survivors at the same elapsed duration t in an earlier cohort,

we effectively compare two cohorts where the dynamic selection of individuals

with favorable unobserved characteristics is the same up to t. So the two cohorts

are identical in terms of their unobserved composition at t. This means that a

cross-cohort comparison of outcomes conditional on survival up to t identifies

average causal effects and is not contaminated by selection effects.

The identification results naturally suggest an empirical implementation. If

the hazard rate is the outcome of interest, this requires estimates of observed

hazard rates, meaning hazard rates as a function of the elapsed duration and

observed covariates. In general, observed hazard rates are selective averages of

individual hazard rates, but by carefully combining different observed hazard

rates we obtain the average causal effect of interest.

These results are novel. As noted above, in models where the policy regime

is a time-invariant covariate, the observed hazards are uninformative on the av-

erage policy effect on the individual hazard rates if one does not impose some

untestable model structure, unless one assumes absence of systematic unobserved

heterogeneity. In our approach, however, the observed hazards are informative on

average policy effects on individual hazard rates, in the presence of unobserved

heterogeneity, and without model structure. This leads to the insight that models
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in which the policy regime is a time-varying covariate and in which unobserved

heterogeneity is assumed absent (and hence effects are assumed to be homoge-

neous) give rise to policy effect estimates that may also be valid as average effects

in the presence of unobserved heterogeneity. In this case, the fact that in linear

regression models orthogonal omitted variables can be subsumed into the residual

term carries over to duration analysis. In the paper we mention examples of em-

pirical studies in which such models are estimated. It follows that the estimates,

obtained under the assumption of no unobserved heterogeneity, may also be valid

without that assumption.

The observed hazard rates can be non-parametrically estimated by using ker-

nel hazard estimation methods. Estimation of the hazard rate at the moment of

the policy change involves estimation at the boundary of the relevant duration

interval. Standard kernel estimators are biased at such boundaries. We deal with

this by using the Müller and Wang (1994) boundary kernel hazard estimation

method with data-adaptive local bandwidths. In addition, we use local linear

kernel smoothing, along the lines of Wang (2005). We also perform discrete-time

analyses with time-aggregated data. The first two non-parametric methods have

been used in demography and biostatistics but they have not yet been widely

used in econometrics.

We also consider estimation of average causal effects on conditional survival

probabilities, that is, the average effect of being exposed to the policy from du-

ration t0 onwards on the probability of leaving the state of interest before some

duration t1 > t0. This requires estimates of the corresponding observed probabil-

ities, for the cohort for which t0 is reached at calendar time τ ∗ and for a cohort

that entered the state of interest before τ ∗− t1 and hence reaches duration t0 be-

fore τ ∗. Here, as well as with estimation of effects on hazard rates, one typically

has a choice between a range of cohorts that may serve as the comparison group

of non-treated on [t0, t1). We develop a “matching” procedure to select the most

appropriate cohort.

At least three branches of literature are connected to the present paper. First,

our estimation approach is connected to the “regression discontinuity” approach

for treatment effects and policy evaluation (see Hahn, Todd and Van der Klaauw,

2001, Porter, 2003, and Frölich, 2007, for econometric contributions in a non-

parametric setting). In “regression discontinuity” terminology, our “forcing” or

“running” variable is calendar time, and the policy reform creates a sharp dis-

continuity. Obvious differences are (a) that right-censoring is an essential feature

of duration data, which our estimators need to be able to handle, and (b) that

we estimate hazard rates instead of densities. Another difference is that the haz-
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ard estimates that we combine to estimate effects are taken from samples from

different cohorts. This does not require that these hazard rates have any deter-

minant in common. As such, we do not assume that the counterfactual hazard

rate in the absence of a policy change is continuous everywhere as a function of

the elapsed duration t. If we do assume continuity of this hazard rate then we

can attempt to make a before-after comparison around the discontinuity point

in a given cohort. A before-after comparison has the advantage that we do not

need to assume absence of selective cohort differences, although as noted above

we could deal with the latter by matching the most appropriate cohort.

The second relevant branch of literature concerns the literature on treatment

evaluation using “dynamic matching”, where the assignment process is such that

treatments can occur at any possible elapsed duration in the state of interest.

Typically, this literature considers survivors at a given elapsed duration t0 and

compares individuals whose treatment is observed to start at t0 to the survivors

at t0 who have not been treated yet at t0. The treatment status among these

individuals at t0 is assumed to be conditionally independent of the potential

outcomes after t0, conditional on a set of covariates X. This is the identifying

conditional independence assumption (CIA). The recent literature takes into ac-

count that those who have not yet been treated at t0 may be treated later, but in

general it is silent on the dynamic selection or unobserved heterogeneity before t0.

Vikström (2014) provides an overview of matching estimators for average effects

of a treatment at t0 on the conditional survival distribution on (t0,∞). Crépon et

al. (2009) show that the underlying assumptions are essentially the same as in our

case, namely “conditional independence” and “no anticipation” (see Section 2 be-

low). The matching estimator is then similar to our estimator for average effects

on conditional survival probabilities. However, our analysis provides a foundation

for the CIA, by relating it to events in the duration interval from zero up to t0.

The analysis carries an important caveat for the application of dynamic matching

estimators, namely that the CIA is unlikely to be satisfied if the treatment and

comparison groups have had systematically different event histories between zero

(say, entry into unemployment) and the moment of treatment t0, even if they

have the same personal characteristics and the same labor market history before

entry into the state of interest. For example, if the treated are from a region

that is equivalent to the comparison region except for an idiosyncratic temporary

business cycle shock at say t0/2, then the composition in terms of unobservables

at t0 is systematically different between treatment and comparison groups, and

hence the CIA at t0 fails.

Thirdly, there is a literature on identification of duration models with un-

5



observed heterogeneity V and time-varying explanatory variables X(t). In par-

ticular, Brinch (2007) shows that certain types of time-varying explanatory vari-

ables enable full identification of a generalized Mixed Proportional Hazard (MPH)

model in which t and X(t) may interact in the individual hazard rate. However,

this requires that the covariates are independent of V and that V acts multi-

plicatively on the individual hazard rate, effectively ruling out cross-individual

heterogeneity in the covariate effects. We do not need to assume either of these

for our results. We discuss the connection to this literature in more detail below.

We apply our novel methodological approach to estimate the average effect

of participation in the New Deal for Young People (NDYP) program for young

unemployed in the UK on the individual transition rate from unemployment to

work. All young unemployed individuals enroll in a job search assistance program

upon reaching 6 months of unemployment. This program was implemented on

April 1, 1998.

Among those unemployed at the implementation date, only those whose elapsed

unemployment duration was an integer multiple of 6 months were allowed in. If

the elapsed duration was not a multiple of 6 months, then in principle the indi-

vidual was only allowed in at the first moment that his or her elapsed duration

equaled a multiple of 6 months. This scheme allows for identification and non-

parametric estimation of some additional causal effects. From the implementation

date onwards, the policy and its enrollment rules are known to the unemployed.

This means that individuals who are unemployed for say 4 months at this date

know that if they stay unemployed for another 2 months then they will receive

intensive job search assistance. Our approach can then be used to identify a

meaningful average causal effect of knowing at an elapsed duration of 4 months

that one will be treated 2 months later. These are effects of anticipation by the

individual of the future job search assistance treatment. This illustrates that the

analysis of effects on hazard rates and conditional exit probabilities provides in-

sights that cannot be obtained when studying effects on unconditional survival

probabilities.

The NDYP has been evaluated before, in a range of studies (see e.g. Blundell

et al., 2004, De Giorgi, 2005, and Costa Dias, Ichimura and Van den Berg, 2008).

In the empirical section we address differences with this literature in terms of

methods and results.

The outline of the paper is as follows. In Section 2 we introduce the duration

variable and the policy change, and we consider which average causal effects

are identified under various assumptions concerning the available data. Section

3 deals with non-parametric kernel-type estimation. We also discuss how the
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method can be used to evaluate the effect of the arrival of information. For

example, a new policy may be announced that affects individuals in the state

of interest once their spell duration reaches a certain length. Our method then

enables inference on anticipation effects. The method can also be used to evaluate

treatments occurring at some point in calendar time that varies across individuals.

Section 4 contains the empirical application. Section 5 concludes.

2 Duration distributions, policy changes, and

identification

2.1 Notation and assumptions

We consider a population of agents or individuals flowing into a state of interest,

and we are interested in the durations that these individuals subsequently spend

in that state. In particular, we are interested in the causal effect of a single

“treatment” that is either assigned to commence at some time s ∈ R+ := [0,∞)

after entering the state or is not assigned at all. We can cast this in the standard

potential outcome framework by recognizing that the dynamically assigned binary

treatment can be reinterpreted as a set of mutually exclusive treatments indexed

by R+ ∪ {∞} which we denote by A. Here, the point ∞ represents the no-

treatment case. To each treatment s ∈ A corresponds a random variable T (s) ≥ 0,

the potential outcome duration in the case that we would intervene and assign

treatment s. For ease of exposition we assume that each T (s) for given s is a

random variable that is continuously distributed.

This framework may look more general than a framework for the evaluation

of a single policy reform or a binary “reform exposure” indicator as sketched in

Section 1. When comparing outcomes in two mutually exclusive policy regimes, a

framework with two mutually exclusive treatment statuses may suffice. However,

the treatment at the elapsed duration s can be interpreted as representing the

exposure to a reform occurring at the individual elapsed duration s. In the stock

of individuals in the state of interest at the moment of the policy reform, the

elapsed duration from the moment of inflow until the moment of exposure to the

reform will be dispersed. We therefore do not restrict the number of elements in

A at this stage.

Causal inference is concerned with contrasting potential outcomes correspond-

ing to different treatments. Specifically, we are interested in differences between

the distributions of T (s) and T (s′) corresponding to treatments s, s′ ∈ A. These
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differences are called treatment effects. In social sciences, the exit rate or hazard

rate of a duration distribution is the most interesting feature of this distribution,

as it is directly related to the agent’s behavior and his information set and cir-

cumstances conditional on survival into the state of interest (see Van den Berg,

2001).2 Therefore we focus on average effects of the treatments on the individual

exit rate out of the state of interest and the individual conditional exit probabil-

ities out of this state.

For arbitrary s, let the distribution function of T (s) be denoted by FT (s). This

is a function of the time t since inflow into the state of interest. The corresponding

“integrated hazard” ΘT (s)(t) is defined by ΘT (s)(t) := − log(1 − FT (s)(t)). We

assume that ΘT (s)(t) has a continuous first-derivative on (0,∞) except for a finite

number of points where it is right-continuous. The hazard rate of T (s) denoted

by θT (s) can then be formally introduced as the right-derivative of the integrated

hazard with respect to t. We assume that the hazard rates satisfy regularity

conditions that guarantee existence of all expressions below.

The individual treatment effect of interest is

θT (s′)(t) − θT (s)(t) (1)

for t ≥ 0 and for s′, s ∈ A. This is the additive effect on the hazard rate at t of

replacing one treatment s by another treatment s′, as a function of t. In the case

of a policy reform, this is the additive effect on the hazard rate at t of exposure

to the reform at elapsed duration s′ instead of at the elapsed duration s.

In addition, we consider the treatment effect on the probability of surviving

up to t conditional on survival up to t0,

1− FT (s′)(t)

1− FT (s′)(t0)
−

1− FT (s)(t)

1− FT (s)(t0)
(2)

for t ≥ t0 ≥ 0 and for s′, s ∈ A. At t0 = 0 this captures the effect on the

unconditional survival function. We also consider the multiplicative or relative

treatment effect on the hazard rate at t,

θT (s′)(t)

θT (s)(t)
(3)

for all t ≥ 0 and for all s′, s ∈ A. Below we also consider alternative treatment

effects.

2With T continuous, the hazard rate at elapsed duration t is defined as θ(t) = limdt↓0 Pr(T ∈
[t, t+ dt)|T ≥ t)/dt.
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Because the treatments are mutually exclusive, we can never observe potential

outcomes corresponding to different treatments simultaneously. Treatments are

assigned according to a random variable S with support A. The actual outcome

is T := T (S); all other potential outcomes are counterfactual. Here, we may

simply take S to denote the elapsed duration at the moment at which the agent

is exposed to the reform.

We allow agents to be ex ante heterogeneous in terms of observed character-

istics X and unobserved characteristics V . These characteristics may be exoge-

nously time-varying, but for ease of exposition we abstract from this. For the

same reason, we take V to be a continuous random variable.

The hazard rate, integrated hazard and the distribution function of T (s)

can be defined for individuals with characteristics (X,V ). We denote these by

θT (s) (t | X, V ), ΘT (s) (t | X, V ) and FT (s) (t | X, V ), respectively. The survival func-

tion is F T (s) (t | X,V ) = 1 − FT (s) (t | X, V ). The individual treatment effects

defined above can be defined accordingly as functions of X and V .

Inference is based on a random sample of agents from the population. For

each of these we observe the duration outcome T and the observed covariates X.

If the treatment S captures the exposure to a policy reform then S is effectively

observable to the researcher for all agents (but not necessarily to the agents

themselves; see Assumption 2 below). We allow for random right-censoring of T .3

We assume that treatment assignment is randomized conditional on covariates

X,V , and also that treatment assignment is independent of V given X,

Assumption 1 (Assignment). S⊥⊥{T (s)} | (X,V ), and S⊥⊥V | X.

As we shall see, the assumption is in line with cases in which a comprehensive

policy is rigorously implemented from a specific point in calendar time onwards.

Another example is a randomized experiment with an instantaneous binary treat-

ment status (i.e. A = {0,∞}). As shown in Abbring and Van den Berg (2003,

2005), settings in which the assumption that S⊥⊥V | X is relaxed require a semi-

parametric model framework in order to be able to identify objects of interest.

However, to some extent, the data may be informative on the violation of that

assumption (see Subsection 3.2 and Section 4 below).

Notice that the assumption implies that S⊥⊥{T (s)} | X. The latter is assumed

from the outset in the dynamic matching literature (see e.g. Crépon et al., 2009).4

3This is usually referred to as “simple random right-censoring”. Extensions to more general

forms of independent censoring and filtering are straightforward (see Andersen et al., 1993, and

Fleming and Harrington, 1991).
4In the unrealistic special case where V is degenerate, ΘT (s) can be estimated using standard

hazard regression techniques (see e.g. Fleming and Harrington, 1991).
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Throughout much of the paper, we assume that there is no anticipation by

agents of the moment of future reforms. With this we mean that agents do not

have private information on the moment of realization of a future reform (or that

they do not act on such information). We formalize this by assuming that current

potential integrated hazards do not depend on the moment of future treatment

exposure,

Assumption 2 (No anticipation). For all s ∈ (0,∞) and for all t ≤ s and all

X,V , ΘT (s)(t|X, V ) = ΘT (∞)(t|X, V )

(See Abbring and Van den Berg, 2003, for a detailed discussion.) Recall that

ΘT (∞) is the integrated hazard of the potential duration corresponding to never

enrolling in treatment. In Sections 3 and 4 we discuss the relaxation of this

assumption if the moment of the arrival of information is observed.

2.2 Spells from the steady states before and after the pol-

icy change

In this subsection we consider empirical inference if the data collection leads to

two samples: one in which Pr(S = 0) = 1 and one in which Pr(S = ∞) = 1. In

the context of policy reform evaluation, these samples originate from two sub-

populations. One sample is drawn from the inflow into the state of interest after

the introduction of a policy, whereas the other sample is drawn from the inflow

into the state of interest infinitely5 long before the introduction of the policy.

Figure 1 depicts this setting in a Lexis diagram, where τ denotes calendar time

and τ ∗ denotes the moment at which the reform is implemented. Each diagonal

line represents a single cohort. Notice that we tacitly assume that the reform is

comprehensive.

The main purpose of the present subsection is to demonstrate that this sam-

pling scheme has limited value for inference on the causal effects of interest. Fur-

thermore, the subsection motivates the study of an alternative sampling scheme

and inferential approach in the subsequent subsection.

5Or, at least sufficiently long before the reform to observe outcomes in a sufficiently large

duration interval. In this case, the outcomes are right-censored at the moment of the reform.

Alternatively, one may think of the sample with Pr(S = 0) = 1 as a sample of fully treated

agents and the other sample as a sample of controls. Provided that no ambiguity arises, we use

the terms “pre-reform policy”, “pre-policy”, and “control” interchangeably. The same applies

to “post-reform policy”, “post-policy” and “treatment”, and the same also applies to “moment

of the policy change” “reform” and “introduction of the policy”. A more explicit discussion is

provided in Subsection 3.2.
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duration t

time τ

0

τ*

Figure 1. “Before” sample and “after” sample.

Note that in the current dichotomous setting, S is observable by the agent

from the onset, and Assumption 2 is void. One may say that in this case, an-

ticipation is perfect. Assumption 1 implies that the treatment assignment upon

inflow into the state of interest is not selective, conditional on X. In particular,

the distribution of characteristics V |X at inflow is the same in each policy regime.

Since we allow for unobserved heterogeneity across agents, it is natural to focus

the inference on averages of individual treatment effects like (1) as quantities of

interest. We thus need to average

θT (0)(t|X,V )− θT (∞)(t|X, V )

over the distribution of V |X in the relevant sub-population.

Because of the dynamic selection of survivors, we must be careful about what

constitutes the relevant sub-population over which to aggregate. As is well known,

the distribution of V |X among survivors typically differs from the population

distribution of V |X. Individuals with values of V that give rise to high hazard

rates at durations below t are underrepresented among the survivors at t. This

implies, first of all, that it is not informative to average over V |X in the full

population, since in either policy regime the sub-population of survivors at the

elapsed duration t is systematically different from the full population.

Moreover, as indicated by Meyer (1996), if the treatment has a causal effect

on the duration, then, typically, the distribution of V |X among the survivors at

points in time t > 0 depends on the treatment, so V⊥⊥�S|X,T > t. In other words,

there is no treatment randomization at t > 0 despite the randomization due to

V⊥⊥S|X at t = 0. To illustrate this, let f , F , Θ and F be generic symbols for

a density, a distribution function, an integrated hazard, and a survivor function,

with subscripts denoting the corresponding random variable (note that F = 1−
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F = e−Θ). There holds that

fV (v|X,T > t, S) =
F T (t|X,S, V )fV (v|X)∫∞

0
F T (t|X,S, V )dFV (v|X)

, (4)

which typically varies with S.6

This suggests that using the two sub-populations defined by conditioning on

the observed T ≥ t,X, S does not lead to meaningful average treatment effects,

because the sub-populations are systematically different in terms of their unob-

served characteristics. To proceed, we consider alternative concepts of average

treatment effects. These measures average over sub-populations of individuals

for whom one or more counterfactual duration outcomes exceed t. This follows

Abbring and Van den Berg (2005). Specifically, we consider

E
[
θT (0)(t|X, V )− θT (∞)(t|X,V )

∣∣∣ X,T (0) ≥ t
]
,

E
[
θT (0)(t|X, V )− θT (∞)(t|X,V )

∣∣∣ X,T (0) ≥ t, T (∞) ≥ t
]
,

E
[
θT (0)(t|X, V )− θT (∞)(t|X,V )

∣∣∣ X,T (∞) ≥ t
]

which can be called the Average Treatment effect on the Treated Survivors at t

(ATTS(t|X)), the Average Treatment effect on the Survivors at t (ATS(t|X)), and

the Average Treatment effect on the Non-Treated Survivors at t (ATNTS(t|X)).

ATTS(t|X) averages over the distribution of V |X among the survivors at t if the

agents are assigned to the “treatment” (i.e., are assigned to s = 0, or, in other

words, are exposed to the policy introduced by the reform). Under randomization,

this is equivalent to averaging over the distribution of V among the treated sur-

vivors at t (so with X,T ≥ t, S = 0). ATNTS(t|X) is the counterpart of this for

assignment to the control group. ATS(t|X) averages over the distribution of V |X
among individuals who survive up to t under both possible treatment regimes.

These measures can subsequently be aggregated over some distribution of X.

Analogous additive and multiplicative effects can be defined for the conditional

survival probabilities and the hazard rate, respectively (recall equations (2) and

6In fact it is not difficult to construct examples in which the distribution of V |X among the

treated survivors at t is first-order stochastically dominated by the distribution of V |X among

the non-treated survivors at t, if there is a strong positive interaction between being treated

and V in the individual hazard rates θT (s)(t|X,V ) and if these hazard rates increase in V and

in being treated (see Van den Berg, 2001). In such scenarios, the individual hazard rate at t is

disproportionally large if both S = 0 and V is large, and as a result the treated survivors at t

may contain relatively few treated individuals with a high value of V .
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(3)).7 Note that in general all measures are properties of sub-populations whose

composition depends on the treatment effect in the duration interval [0, t).

The above measures of interest cannot be estimated non-parametrically from

the data design of the present subsection. Non-parametric inference produces

sample equivalents of θT (t|X,S = 0) and θT (t|X,S = ∞) and of F T (t|X,S =

0)/F T (t0|X,S = 0) and F T (t|X,S = ∞)/F T (t0|X,S = ∞). For given t, s,X,

individual and observable hazard rates are connected by

θT (t|X,S = s) = E(θT (t|X,S = s, V ) | X,T ≥ t, S = s) (5)

By definition, therefore,

θT (t|X,S = 0)− θT (t|X,S = ∞) ≡

E[θT (t|X,S = 0, V ) | X,T ≥ t, S = 0]−E[θT (t|X,S = ∞, V ) | X,T ≥ t, S = ∞] =

E[θT (t|X,S = 0, V ) | X,T ≥ t, S = 0]−E[θT (t|X,S = ∞, V ) | X,T ≥ t, S = 0]+

E[θT (t|X,S = ∞, V ) | X,T ≥ t, S = 0]−E[θT (t|X,S = ∞, V ) | X,T ≥ t, S = ∞]

which is the sum of two differences. The first difference is the average treatment

effect ATTS(t|X) (for sake of brevity, we refer to the next subsection for the proof

of this statement). The second difference is the selection effect due to the fact

that at T = t, among the survivors at t, those exposed to the post-reform policy

and those not exposed have systematically different unobserved characteristics

despite the randomization of the regime status at t = 0. A similar decomposition

applies to the other objects of interest. Since the second term on the right-hand

side reflects the selection effect and is unobserved, we conclude that the left-hand

side cannot be used to non-parametrically estimate ATTS(t|X).8

The results are straightforwardly extended to more general A as long as we

only use data on spells in which the treatment status does not change. To identify

average treatment effects in the setting of the current subsection, one needs to

adopt a semi-parametric model structure like an MPH model, or one needs to

assume absence of unobserved heterogeneity.9

7The ATS(t|X) version for the multiplicative effect on the hazard rate basically equals the

survivor average causal effect of Rubin (2000) in case the latter measure is applied to the

duration outcome itself rather than to non-duration outcomes.
8By analogy to the remarks on equation (4), one can construct examples where θT (t|X,S =

0) < θT (t|X,S = ∞) even if θT (0)(t|X,V ) > θT (∞)(t|X,V ) almost surely for all t, V,X.
9The average additive treatment effect on the unconditional survival probability at t, i.e.

13



2.3 Spells that are ongoing at the moment of the policy

change

In this subsection we consider empirical inference if the data collection is based

on random samples from cohorts flowing into the state of interest before the

introduction of a comprehensive policy at τ ∗. Contrary to the previous subsection,

we track duration outcomes in these cohorts beyond τ ∗. Figure 2 depicts this

setting. As in Figure 1, each diagonal line represents a single cohort.

duration t

time τ

0

τ*

Figure 2. “Before” sample including spells that are ongoing at the moment of

the policy change and that are followed beyond that moment.

We assume that the post-reform policy regime applies to all agents, from cal-

endar time τ ∗ onwards, including to those who enter the state of interest before

τ ∗. Inflow at time τ0 ≤ τ ∗ leads to S := τ ∗ − τ0. Thus, there is a one-to-one

correspondence between the moment of inflow and the duration at which the

treatment starts. However, in this setting, S is not observed by the agent until

calendar time τ ∗, as there is no anticipation of the introduction of the new policy

program (Assumption 2). We rule out that the distributions of T (s)|X,V are dis-

continuous at T (s) = s (though of course the hazard rates may be discontinuous

there).

Assumption 1 again implies that the treatment assignment upon inflow into

the state of interest is not selective, conditional on X. In fact, as we shall see, we

E[FT (0)(t|X,V )− FT (∞)(t|X,V )], is identified under a randomization assumption such as As-

sumption 1, from the observable expression Pr(T > t|X,S = 0) − Pr(T > t|X,S = ∞).

Inference on the two survivor functions in this expression is straightforward; see e.g. Andersen

et al. (1993). We also point out that under the assumption that all individual treatment effects

have the same sign across t and V , this sign is identified from the observed distributions or the

observed hazard rates at t = 0.
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only require Assumption 1 for the cohorts flowing in before τ ∗. The assumption’s

implication that the distribution of characteristics V |X at inflow is constant

over calendar time is therefore only required for inflow dates before τ ∗. This is

attractive because the effect of a policy reform on the decision to enter the state

of interest may vary with unobserved individual characteristics.

Comparing agents who flow out before τ ∗ to those who flow in after τ ∗ is

hampered by the same problems as in the previous subsection. However, we can

now also examine the effect at duration τ ∗ − τ0 of a treatment that starts at

duration S, as compared to the case where at duration τ ∗ − τ0 no treatment is

assigned yet. To this purpose, we may define average treatment effects measures

by analogy to those in the previous subsection. For example,

ATTS(s′, s, t|X) := E
[
θT (s′)(t|X, V )− θT (s)(t|X, V )

∣∣∣ X,T (s′) ≥ t
]

with s′ ≤ t, s.

ATNTS(s′, s, t|X) := E
[
θT (s′)(t|X,V )− θT (s)(t|X,V )

∣∣∣ X,T (s) ≥ t
]

with s′ ≤ t, s.

The following proposition is the key to the main results of the paper.

Proposition 1. Consider a cohort flowing in at calendar time τ0 < τ ∗ and a

cohort flowing in at τ1 < τ0. Let ti := τ ∗ − τi. Under Assumptions 1 and 2,

[V |T ≥ t0, X, S = t0] and [V |T ≥ t0, X, S = t1] have the same distribution,

namely the distribution of [V |T (s) ≥ t0, X] with s ≥ t0. This distribution does

not vary with s for all s ≥ t0.

Proof: Note that t0 < t1. Let Pr be a general symbol for a density as well as a

probability. The density Pr(V |T ≥ t0, X, S = ti) (with i = 0, 1) can be written

as

Pr(T ≥ t0|V,X, S = ti)Pr(V |X,S = ti)

Pr(T ≥ t0|X,S = ti)

In this expression, Pr(T ≥ t0|V,X, S = ti) equals Pr(T (ti) ≥ t0|V,X) due to

the randomized assignment assumption (Assumption 1: S⊥⊥{T (s)} | (X,V )).

Moreover, Pr(V |X,S = ti) equals Pr(V |X) due to the second part of Assumption

1 (S⊥⊥V | X).10 This means that the density Pr(V |T ≥ t0, X, S = ti) as a

10In the setting of this subsection, the assumptions entail that the policy or treatment status

is randomized among the stock of subjects in the state of interest, given X. See e.g. Ridder

(1984) for an extensive discussion of stock samples.
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function of V is proportional to Pr(T (ti) ≥ t0|V,X)Pr(V |X) which is proportional

to Pr(V |T (ti) ≥ t0, X).

Next, we show that Pr(V |T (s) ≥ t0, X) is the same for every s ≥ t0 including

s = t1. By analogy to the previous paragraph, the second part of Assumption 1

implies that the density Pr(V |T (s) ≥ t0, X) as a function of V is proportional to

Pr(T (s) ≥ t0|V,X)Pr(V |X). The term Pr(T (s) ≥ t0|V,X) can be expressed as

exp(−ΘT (s)(t0|X,V )). By Assumption 2, this equals exp(−ΘT (t0)(t0|X, V )) since

s ≥ t0. This implies that the density Pr(V |T (s) ≥ t0, X) as a function of V is

proportional to Pr(T (t0) ≥ t0|V,X)Pr(V |X), where the latter is proportional to

Pr(V |T (t0) ≥ t0, X). Thus, Pr(V |T (s) ≥ t0, X) is the same for every s ≥ t0.�

The significance of this proposition is that it demonstrates that the sub-population

of individuals who are observed to be treated at the elapsed duration t0 and the

sub-population of survivors at t0 who will be treated at a higher elapsed duration

have the same composition. In other words, V⊥⊥S|T ≥ t0, X, S ≥ t0. Clearly,

it is crucial that the sub-populations come from populations that are identical

to each other at their moment of entry into the state of interest. Moreover, it is

crucial that individuals do not act on the future moment of treatment, because

then their hazard rates (and consequently the dynamic selection) would already

differ before t0. Under these two assumptions, the dynamic selection between the

moment of entry and the elapsed duration t0 proceeds identically in both pop-

ulations, so the resulting sub-populations at t0 have an identical distribution of

unobserved characteristics.

We now apply this to the identification of average treatment effects. This gives

the main methodological result of the paper. Recall that ti := τ ∗ − τi. From a

cohort flowing in at τi < τ ∗, we observe the distribution of [T |X,S = ti]. This

entails observation of the conditional duration distribution of [T |T ≥ t0, X, S =

ti] and the hazard rate θT (t0|X,S = ti) evaluated at t0.

Proposition 2. Consider the introduction of a comprehensive policy at a given

point of time. Suppose we have duration data from cohorts that flow in before

this point of time. Under Assumptions 1 and 2, the average treatment effects on

the individual hazard rate ATTS(t0, t1, t0|X) and ATNTS(t0, t1, t0|X) are non-

parametrically identified and equal the observable θT (t0|X,S = t0)− θT (t0|X,S =

t1) with t1 > t0. These do not depend on t1 as long as t1 exceeds t0.

We first present the proof and then discuss the relevance of the result.

Proof:

θT (t0|X,S = t0)− θT (t0|X,S = t1)
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= E[θT (t0|X,V, S = t0) | X,T ≥ t0, S = t0]−E[θT (t0|X,V, S = t1) | X,T ≥ t0, S = t1]

= E[θT (t0)(t0|X, V ) | X,T (t0) ≥ t0]− E[θT (t1)(t0|X,V ) | X,T (t0) ≥ t0]

The first equality follows from the application of equation (5) to each term of the

left-hand side of the first line. By Proposition 1, the distributions over which the

expectations are taken in the second line are the same for any t1 ≥ t0 and are

equal to the distribution of [V |T (s) ≥ t0, X]. This explains the second equality.

As a result,

θT (t0|X,S = t0)− θT (t0|X,S = t1)

= E[θT (t0)(t0|X, V )− θT (t1)(t0|X,V ) | X,T (t0) ≥ t0]

= ATTS(t0, t1, t0|X)

By substituting into the second-to-last expression that the distributions of [V |T (t0) ≥
t0, X] and [V |T (t1) ≥ t0, X] are identical, it also follows that ATTS(t0, t1, t0|X)

equals ATNTS(t0, t1, t0|X). Moreover, in this second-to-last expression, changing

the value of t1 does not have an effect on the value of the expression as long as

t1 > t0, because of Assumption 2. �.

The ATTS(t0, t1, t0|X) and ATNTS(t0, t1, t0|X) capture the instantaneous causal

effect of exposure to the policy (i.e., the instantaneous causal effect of the treat-

ment) at elapsed durations t0, compared to when the assigned moment of exposure

takes place at a higher duration t1. It follows that these measures are identified

without any functional-form restriction on the individual hazard rates and with-

out the need to assume independence of the unobserved explanatory variables V

from the observed covariates X. From the above proof it is also clear that the

results extend to settings where X and/or V are not constant over time, pro-

vided that Assumptions 1 and 2 about the assignment process and the absence

of anticipation are accordingly modified.

Figure 3 visualizes the underlying idea of the proposition. In each cohort,

the dynamic selection between the moment of entry and the elapsed duration

t0 proceeds identically. Therefore, the resulting sub-populations at t0 have an

identical distribution of unobserved characteristics. As a result, any observed

difference in the hazard rates at elapsed duration t0 must be a causal effect of

the policy change.

Since ATTS(t0, t1, t0|X) and ATNTS(t0, t1, t0|X) are equal and do not depend

on t1 as long as t1 > t0, we may replace them by a short-hand measure ATS(t0|X)

giving the average instantaneous effect of the policy reform on the survivors

with elapsed duration t0 at the moment of the reform. The effect is measured

in deviation from the hazard rate among subpopulations who attained elapsed
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elapsed

duration t

time τ

0

τ*

t
0

Figure 3. Identification based on two cohorts.

duration t0 strictly before the reform. The latter individuals may have acted

under the belief that a reform would never take place. Alternatively, they may

have acted under the belief that a reform might take place at a later point in

time without knowing in advance exactly when (if at all) it would take place. By

analogy to the econometric dynamic evaluation literature we may say that this

alternative setting allows for an “ex ante” effect of the reform (see e.g. Abbring

and Van den Berg, 2003, 2005). Ex ante effects should not be confused with

anticipation effects that violate Assumption 2. Ex ante effects are not necessarily

incompatible with Assumption 2. However, whether ex ante effects are present or

not affects the interpretation of the estimated ATS(t0|X). If they are present then

the estimated ATS(t0|X) captures the effect of an instantaneous reform exposure

versus a reform exposure at some unknown later point in time.

If the reform involves the immediate compulsory participation in some scheme

then ATS(t0|X) measures the effect of participation on the hazard rate, in devia-

tion from the hazard rate that applies in absence of the scheme. In case of ex ante
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effects, ATS(t0|X) measures the effect of participation now versus participation

at some unknown later point in time. If the reform does not involve the imme-

diate compulsory participation in some scheme but rather involves the universal

arrival of new information then the interpretation is essentially analogous. If the

arrival of new information concerns the future date of the individual treatment

then ATS(t0|X) can be said to measure anticipation effects of the future treat-

ment. Again, the presence or absence of ex ante effects determines whether the

anticipation is measured in deviation such an ex ante effect.

In the inference, the sub-population over which the average is taken depends

on t0. This is because the composition of the sub-population changes due to dy-

namic selection as the elapsed duration t0 increases. As a result, without further

assumptions, it is not possible to combine the average treatment effects for differ-

ent t0 in order to estimate how the average effect on the hazard changes over time

for a given (sub-)population. Dynamic matching estimators share this limitation

(see Crépon et al., 2009).

Under Assumptions 1 and 2, average treatment effects on conditional survival

probabilities are non-parametrically identified as well. In this case, average effects

on treated survivors are defined as follows,

ATTS(s′, s, t|X) := E
[

Pr(T (s′) > t+ a|T (s′) ≥ t,X, V ) −

Pr(T (s) > t+ a|T (s) ≥ t,X, V )
∣∣∣ X,T (s′) ≥ t

]
with s′ ≤ t, s and a > 0.

These are identified from their empirical counterpart if t ≤ s. For example,

take t = s′ = t0 and a = 1 and s > t0+1. The average causal effect of exposure at

t0 on the probability of exiting before t0 + 1, as compared to when the exposure

commences after t0 + 1, equals the observable Pr(T > t0 + 1|T ≥ t0, X, S =

t0)−Pr(T > t0+1|T ≥ t0, X, S = t0+2), where instead of t0+2 any other number

exceeding t0 + 1 can be substituted. Indeed, the observable expression can be

replaced by Pr(T > t0+1|T ≥ t0, X, S = t0)−Pr(T > t0+1|T ≥ t0, X, S ≥ t0+1).

Clearly, such results carry over to discrete-time settings (see below).

In the appendix, we consider identification of average multiplicative effects on

individual hazard rates. This requires the additional assumption that the unob-

served individual characteristics V affect all counterfactual hazard rates in the

same proportional way. In other words, the individual multiplicative effects on

the hazard at t are homogeneous across individuals with different V (but not nec-

essarily across X or over time; furthermore, X and V need not be independent).
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The identification results in the appendix are related to identification results for

duration models with unobserved heterogeneity and time-varying explanatory

variables in Honoré (1991) and Brinch (2007).

We end this subsection with a brief discussion of the identification of other

interesting average treatment effects. Clearly, one cannot hope to identify a full

model, that is, the unknown functions θT (s)(t|X, V ) for all s and the distribu-

tion of V |X. Now consider average treatment effects on the individual hazard

rate ATTS(s′, s, t|X) and ATNTS(s′, s, t|X) if s′ is strictly smaller than t and

s. In such cases, inference is subject to the same problem as in Subsection 2.2:

the dynamic selection between s′ and t causes the sub-population with S = s′

among the survivors at t to be systematically different from the sub-population

with S = s among the survivors at t. This also implies that, without additional

exogenous variation in the treatment duration, and without any functional form

assumptions, we can not identify accumulation effects of a prolonged exposure

to the treatment or delayed effects of a treatment, if the object of interest is the

hazard rate. Notice that the latter shortcoming is averted if the conditional sur-

vival probability is the object of interest, by considering effects at time intervals

when accumulation effects or delayed responses may kick in.

3 Non-parametric estimation

3.1 Boundary kernel hazard estimation

From Subsection 2.3, the identification of average causal effects of the policy

change on the individual hazard rates is based on the comparison of observable

hazard rates from different entry cohorts into the state of interest. Each observable

hazard rate is trivially identified from the corresponding cohort-specific duration

data. It is therefore natural to non-parametrically estimate these hazard rates.

Specifically, we are interested in θT (t0|X,S = t0) and θT (t0|X,S = t1) for

some t1 > t0. In Subsection 3.2 below we consider alternative estimators based

on limt↑t0 θT (t|X,S = t0) and θT (t0|X,S ≥ t1) for some t1 > t0. In every case,

the relevant estimate concerns the hazard at the boundary t0. There is no reason

to assume a connection between the shape of the individual hazard rate before

the policy change at t0 and the shape after t0, so estimation of the hazard rate

at one side of the boundary only uses outcomes from that particular side of the

boundary. Standard non-parametric hazard estimators are heavily biased at the

boundary point. We therefore apply methods that deal with this. Specifically, we

use boundary kernel hazard estimators and local linear kernel smoothing estima-
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tors.11 See Andersen et al. (1993) for an introduction to these estimators.

In the remainder of this subsection we discuss the second-order boundary ker-

nel hazard estimator of Müller and Wang (1994) in detail. We use this estimator

in the empirical analysis in Section 4. For expositional convenience we restrict

attention to hazard estimation at t0, and we transform the truncated duration

distribution T |T ≥ t0, X, S to the left such that our ultimate interest is in the

hazard rate at the boundary 0 when evaluating it from above. Similarly, in the

current subsection, we may suppress S in the notation. Since in the empirical

analysis we subsume X into V , we do not consider observed explanatory vari-

ables X in the current subsection either.12

Consider a random sample of n subjects, where the duration outcomes can be

independently right-censored. Let Ti denote the minimum of the actual duration

outcome and the censoring outcome for subject i (i = 1, . . . , n). Note that this

notation deviates from the notation where T denotes the actual duration outcome

of interest. Furthermore, let δi be a binary variable equalling 1 iff the actual

duration outcome is realized before the censoring outcome. Let (T(i), δ(i)) be the

ordered sample with respect to the Ti (so T(1) ≤ T(2) ≤ · · · ≤ T(n)).

We assume that the true hazard rate is twice continuously differentiable in an

interval A starting at 0. To explain the kernel estimator, consider first the case

in which the bandwidth b is global. We distinguish between the boundary region

B = {t : 0 ≤ t < b} and an interior region I which is adjacent to B (we need not

discuss the right boundary of A here). In I, the kernel hazard estimator is the

standard Ramlau-Hansen kernel hazard estimator,13

θ̃(t) =
1

b

n∑
i=1

K

(
t− T(i)

b

)
δ(i)

n− i+ 1

11Most of the literature on the non-parametric estimation of hazard rates imposes strong

smoothness conditions on the true underlying hazard rate as a function of t and the explana-

tory variables (in our case, S and X), and the explanatory variables are often assumed to be

continuous. In cases where smoothness is absent at a boundary of the support, the hazard rate

is often only evaluated at interior points.
12If X is exogenously time-varying on (0, t0) in a specific way across cohorts (e.g., as in a

linear time trend), then this may cause the “treatment” and “control” hazard rates to have

common determinants, but we do not pursue this here.
13This smoothes the increments of the Nelson-Aalen estimator Λn(t) of the integrated hazard

based on a random sample of n subjects,

Λn(t) =
∑

i:T(i)≤t

δ(i)

n− i+ 1
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where K is taken to be the Epanechnikov kernel,

K(z) =
3

4
(1− z2) for |z| ≤ 1 (6)

and K(z) = 0 elsewhere, and where b is understood to decrease with n, as ex-

plained below.

In B, the above estimator needs to be modified to take account of the bias

at the boundary. After all, with the above estimator, it is typically of asymptotic

order O(b). In B, the kernel function K is taken to depend on the distance to

the left boundary 0, so then K has two arguments, say q and z, where q is

the relative distance t/b to the left boundary, and z, as above, attains values

(t− T(i))/b. Specifically,

K(q, z) =
12

(1 + q)4
(z + 1)[z(1− 2q) + (3q2 − 2q + 1)/2]

where q ∈ [0, 1] and z ∈ [−1, q]. The latter implies that the support of the

boundary kernel does not extend beyond the left boundary. Müller and Wang

(1994) plot K(q, z) as a function of z for various values of q. As expected K(1, z)

is again the Epanechnikov kernel. As q decreases, the kernel becomes more and

more skewed, and the weight assigned to values close to the boundary increases

strongly. At the left boundary, q equals zero, so our estimator of θ(0) equals

θ̃(0) =
1

b

n∑
i=1

K

(
0,

t− T(i)

b

)
δ(i)

n− i+ 1

with

K(0, z) = 6(z + 1)(2z + 1)

There is a positive probability that the above θ̃(0) is negative, in which case it is

replaced by zero.

The boundary correction establishes a reduction of the bias. At the same time,

the variance of the estimator increases, because the number of observations used

to estimate the hazard close to 0 becomes smaller. A further variance reduction

can be achieved by choosing a larger bandwidth close to 0 than elsewhere. Müller

and Wang (1994) therefore propose to use local bandwidths b(t). In that case, b in

the above equations is replaced by b(t). As functions of n, the local bandwidths

bn(t) are assumed to satisfy the usual conditions (somewhat loosely, bn(t) →
0, nbn(t) → ∞). Optimal local bandwidths are such that nb5n(t) converges to a

number smaller than infinity, so bn(t) ∼ n− 1
5 . The asymptotic behavior of the
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estimator is not fundamentally different from usual. The convergence rate is n− 2
5 .

Optimal global or local bandwidths can be consistently estimated by a data-

adaptive procedure, along with the estimates of interest (see Müller and Wang,

1994). In Appendix 2 we present the algorithm, slightly modified in response to

our experiences regarding its performance.

Asymptotic normality allows for the estimation of a confidence interval for

θ(0). Following the line of reasoning in e.g. Härdle (1994) and Härdle et al.

(2004), one could ignore the asymptotic bias term to obtain an approximate

95% confidence interval (see Müller et al. (2004) for an application of the idea

of omitting the asymptotic bias in the related case of boundary kernel density

estimation). Conceptually, it is not difficult to include the asymptotic bias term

in the confidence interval, but in practice this involves non-parametric estimation

of the second derivative of the hazard at 0. An alternative that we follow in the

empirical application below is to use bootstrapping to obtain confidence intervals.

Müller and Wang (1994), Hess et al. (1999) and Jiang and Doksum (2003)

provide Monte Carlo simulation results for the estimator. They conclude that it

has an excellent performance in samples sizes n as small as 50 to 250. Hess et al.

(1999) compare the performance to that of other kernel estimators. They show

that the other estimators perform worse, in particular at the left boundary, and

they demonstrate that both the boundary correction and the data-adaptive local

bandwidth are important in this respect.

Instead of boundary kernel approaches, one may use local linear smoothing

(or local linear fitting, or locally weighted least squares) as a non-parametric ap-

proach to deal with estimation at a boundary. Wang (2005) gives an intuitive

overview of local linear hazard rate estimation, while Nielsen and Tanggaard

(2001), Jiang and Doksum (2003) and Bagkavos and Patil (2008) provide de-

tails.14 The asymptotic properties of the estimator are qualitatively identical to

those of the boundary kernel hazard estimator. Jiang and Doksum (2003) com-

pare both methods with data-adaptive local bandwidths, in some Monte-Carlo

simulation experiments. Both methods give similar results and both perform very

well at the boundary, where their relative ranking depends on the shape of the

true hazard rate.

The results of this subsection can be straightforwardly applied for inference

on the difference of two independently estimated hazard rates. In Appendix 1.2

we discuss inference of the ratio of two independently estimated hazard rates.

14Local linear estimation of hazard rates is related to fixed design non-parametric regression.
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3.2 Implementation issues

We consider a number of dimensions in which the econometric inference can be

improved or modified.

(i) The “comparison” cohort(s). In Subsection 3.1, we used a boundary-

corrected estimator for the observed hazard θT (t0|X,S = t1) at t0 in the cohort

that is eventually exposed to the reform at some elapsed duration t1 > t0. Instead,

one may use a standard kernel (or local linear or local constant) hazard estimator,

if one is prepared to assume that this hazard is smooth in an interval around t0,

since then the estimation concerns the interior of an interval on which the hazard

is smooth. Whether this assumption makes sense depends on the setting at hand.

At certain elapsed durations t0 of interest, the eligibility to other policy measures

may change, causing the individual hazard rates θT (s)(t|X, V ) to be discontinuous

at t = t0 for all s. The application in Section 4 is a case in point. To rule out

that this affects the estimated effects, one needs to resort to boundary correction

methods.

Analogously, one may examine the left-hand limit of the observed θT (t|X,S =

t0) at t = t0 in order to estimate the “control” hazard, but this also requires the

assumption that there are no other sources of discontinuities at t0.

Note that one may widen the “control group” and increase the precision of

the estimates of interest, by estimating θT (t0|X, t2 > S ≥ t1) with t0 < t1 <

t2 ≤ ∞, instead of θT (t0|X,S = t1). This does come at a price, namely that

Assumption 1, ruling out the absence of cohort effects, needs to be extended

to multiple comparison cohorts flowing in at or before τ ∗ − t1. Recall that we

require unobserved cohort effects to be absent, since otherwise S⊥⊥�V |X so that

Assumption 1 is violated. Observable cohort indicators may be included in X,

but note that in non-parametric analysis any addition to X adds to the curse of

dimensionality.

Instead of enlarging the “control group”, one may use the availability of mul-

tiple potential comparison cohorts in order to select the most similar cohort (or

set of cohorts) among the cohorts flowing in before τ ∗ − t0. We do not observe

the distribution of V |X in a cohort, but we observe outcomes that are informa-

tive on it, namely the duration distribution on the duration interval [0, τ ∗) in the

corresponding cohort. As a selection mechanism, one may match on the survival

probability in the cohort at duration τ ∗, or, even stronger, on the shape of the

duration distribution in the cohort on the duration interval [0, τ ∗). The more

similar this shape, the more similar the composition of survivors at the duration

τ ∗.
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If one comparison cohort is to be selected, then one may consider a cohort

that flowed in only marginally earlier than the “treated” cohort, following the

line of thought that unobserved changes of the entry composition of the cohorts

are a smooth function of the moment of entry. However, such a choice of t1
being almost equal to t0 has a practical disadvantage. To see this, notice that

θT (t|X,S = t1) may display a discontinuity at t1, so the value θT (t0|X,S = t1)

at the elapsed duration t0 < t1 can only be estimated from observed realized

durations in an interval to the right of t0 that does not stretch beyond t1. Spells

in the comparison cohort with durations exceeding t1 should be treated as right-

censored at t1. Consequently, the measure of realized duration outcomes that is

informative on θT (t0|X,S = t1) is very small if t1 is only marginally larger than

t0.

(ii) Observed covariates. Including many elements in X raises a curse of

dimensionality in the non-parametric estimation. One may therefore choose to

treat the observed covariates X as unobservables and hence subsume them into

V . This involves a strengthening of Assumption 1, in the sense that it requires

S⊥⊥X. The latter can be empirically verified by examining the composition of the

cohorts used to estimate the objects of interest. If S⊥⊥X is satisfied then treating

X as unobservables in the estimation of the objects of interest does not involve a

strengthening of Assumption 1. In practice one may therefore verify that S⊥⊥X

and, if this holds, proceed by ignoring X in the duration analysis.15 The only

remaining disadvantage is that this does not provide estimates by X.

With discrete X, non-parametric inference would typically lead to separate

estimations for each value ofX. This would also allow for the selection of the most

similar control cohort for each value of X separately. To aggregate the estimated

average effects over X, one may average the estimated effects given X over the

relevant distribution of X.

(iii) Discrete time. Now let us reconsider the continuous nature of the du-

ration variable. Sometimes a continuous-time analysis may be unfeasible. For

example, the data may be time-aggregated in the sense that events are recorded

in time intervals (e.g. unemployment duration is collected in months even though

individuals may move to work on any given workday). Alternatively, duration

outcomes may be discrete due to institutional constraints (e.g. in certain occu-

pations a job can only start on the first day of a month).

15Such a pre-test affects the precision of the inference on the effect of interest.

25



Accordingly, we distinguish between two frameworks. In one, the model is

in continuous-time and the duration outcomes are in discrete time. In the other,

both are in discrete time. In the first framework, the results of Section 2 apply but

we cannot estimate hazard rates. However, we can estimate conditional survival

probabilities and their differences, as outlined in Section 2. In general, results

obtained in this framework can be viewed as approximations of those for hazard

rates obtained in a genuine continuous-time framework. Because of the ease with

which survival probability outcomes can be estimated, this approach may be

useful from a practical point of view. As for the second framework, the analysis of

Section 2 is straightforwardly modified to such settings by working with a genuine

discrete-time framework. We examine this empirically in Section 4 below.16

(iv) Reduced-form model estimation. In econometric duration analysis it

has been common to view identification results as a justification for the estimation

of parameterized reduced-form model specifications, following the line of thought

that identification that does not rely on functional-form assumptions entails that

the estimates are also not fundamentally driven by functional-form assumptions

(see Van den Berg, 2001). This way of reasoning can also be applied to the

results in Section 2, by specifying parameterized models to estimate the objects

of interest. An obvious choice is to estimate separate Proportional Hazard (PH)

models by whether τ0 + t ≷ τ ∗, using all available cohorts, including in each case

calendar time as a time-varying covariate.

Indeed, one may go one step further and specify a single PH model for the full

distribution of T |X,S with S being reduced to a simple time-varying covariate

I(t ≥ τ ∗ − τ0),

θT (t|X, τ0) = λ(t) exp(X ′β + αI(t ≥ τ ∗ − τ0))

where α is the parameter of interest. Such a model may be regarded as a simple

representation of a distribution that is generated by an underlying model for indi-

vidual hazard rates with unobserved heterogeneity. Clearly, the estimates may be

affected by the PH model structure which may be too restrictive. If we abstract

from that issue then the estimated coefficient of S in this model captures the

policy effect of interest. So, the coefficient in a model without unobserved hetero-

geneity is estimated correctly even if in reality there is unobserved heterogeneity.

16In a discrete-time setting it is possible to identify anticipation effects under certain as-

sumptions if sufficiently rich instrumental variables are available; see Heckman and Navarro

(2007).
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It follows that estimates obtained under the assumption of no unobserved het-

erogeneity may also be valid without this assumption. Obviously, it is essential

that the analysis uses data that include spells that are ongoing at the moment of

the policy change.

Hall and Hartman (2010) provide an example of a study in which a PH model

is estimated using spells interrupted by a policy change. Specifically, they estimate

a PH model for the transition rate from unemployment into sickness absence as

a function of the sickness benefit policy regime, using unemployment spells that

cover a date at which a policy regime change was implemented. They find that

a reduced cap for sickness benefits lowers the transition rate to sickness absence

by about 35% in the treated population. In their study, they also estimate MPH-

type model extensions that allow for unobserved heterogeneity as proportional

fixed effects in the individual hazard rates, exploiting the fact that the data

contain multiple unemployment spells for many subjects. Interestingly, they find

that the estimated policy effect is virtually identical to that in the main analysis,

suggesting that, indeed, this coefficient is estimated correctly even when ignoring

unobserved heterogeneity.17

(v) Dynamic treatment evaluation. The results of Section 2 can be applied

to dynamic treatment evaluation settings. In such settings, the exposure to a

treatment is not necessarily due to some institutional change at a fixed point in

time. Rather, different individuals in the same cohort are exposed to a treatment

at different elapsed durations, where the treatment may affect the individual

hazard from the moment of exposure onwards. Typically, S is only observed if

S ≤ T . It is interesting to reassess Assumptions 1 and 2 in such settings. Abbring

and Van den Berg (2003) demonstrate that Assumptions 1 and 2 are fundamental

in the following sense: any causal model is observationally equivalent to a model

in which these two assumptions are satisfied. If one of the assumptions is relaxed

then point-identification requires additional structure.

Notice that Assumption 1 entails that the treatment is exogenous conditional

on X. Assumption 2 rules out that survivors at T = t who are not yet treated at

t use information on their assigned future treatment date that is unobserved to

the researcher. Recall from Subsection 2.3 that our approach allows for ex ante

effects. If S is varies at the individual level e.g. because of discretionary behavior

of the case worker assigning the treatment then it is likely that ex ante effects

17Such a finding is in marked contrast to the literature on single-spell duration analysis with

time-invariant covariates, where ignoring unobserved heterogeneity typically leads to attenua-

tion of covariate effects (see Van den Berg, 2001, for an overview).
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exist. In that case, if Assumption 2 is satisfied, ATS(t0|X) involves a comparison

of treatment at t0 versus treatment after t0 where the latter treatment date is

unknown in advance but subjects may use a probability distribution of the future

treatment date given X. The ex ante effect of the program then affects the hazard

in the comparison group.

We repeat that the arrival of information about a future treatment date can

be cast as the actual treatment of interest, provided that this information is also

observed by the researcher. This allows for inference on anticipatory effects of the

future treatment (see e.g. Crépon et al., 2013).

4 Empirical application

4.1 The New Deal for Young People: policy regime and

treatment

The New Deal has been the flagship welfare-to-work program in the UK since

the late 1990s. Over the years there were a myriad of New Deals for different

groups and addressing different employment problems, the largest being the New

Deal for the Young People (NDYP). The NDYP was targeted at the young un-

employed, aged 18 to 24, who have claimed unemployment benefits (UB, known

as Job Seekers’ Allowance in the UK) for at least 6 months. Participation was

compulsory upon reaching 6 months in the claimant count. Refusal to participate

was punished by a temporary benefits withdrawal.

Since in the UK the entitlement to UB is neither time-limited nor dependent

on past working history, and since eligibility is constrained only by a means-test,

the NDYP was effectively targeted at all young long-term unemployed. Thus, and

for simplicity, we use “unemployed” to signify those in the UB claiming count in

what follows.

After enrollment,18 the job search assistance treatment was split into three

stages. It comprised a first period of up to 4 months of intensive job search

assistance, with fortnightly meetings between the participant and a personal ad-

viser. This was called the Gateway. For those still unemployed after the Gateway,

the NDYP offered four alternative treatments: (i) subsidized employment, (ii)

full-time education or training, (iii) working in an organization in the voluntary

sector and (iv) working in an environment-focused organization. Participation

18Throughout the section we use “enrollment” to denote actual mandatory participation in

the job search assistance program and subsequent programs. As we shall see, actual participation

may start strictly later than the moment at which the NDYP was introduced.
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in one of these four options was compulsory for individuals having completed 4

months into the NDYP but could be arranged earlier. The options would last for

up to 6 months (or 12 months in the case of education), after which those still

unemployed would go through another period of intensive job search assistance.

The latter was called the Follow Through. If perceived beneficial to the worker,

repeated participation in the four alternative options could be arranged.19

The NDYP treated millions of people before being replaced by another pro-

gram in 2009, the Flexible New Deal. To give an impression of the size of the

NDYP, over 2006, 172,000 new participants entered the NDYP, and the average

number of participants at any month during that year was 93,000. According to

the UK Department for Work and Pensions statistics, the per-year expenditure

of the NDYP during the 2000s was in the order of GBP 200 million, excluding

administrative costs (DWP (Department for Work and Pensions), 2006). How-

ever, a large proportion of this concerns UB that would be due independently of

the program, for as long as individuals remain unemployed.

4.2 The introduction of the policy

The NDYP was released nation-wide on April 1, 1998. This corresponds to the

reform date τ ∗ in the framework of Section 2. The existing stock of those who were

unemployed for at least 6 months at τ ∗ was gradually moved into the program.

At τ ∗, only those whose elapsed unemployment duration was an integer multiple

of 6 months were enrolled. (Enrollment occurred during the intensive job-focused

interviews scheduled every 6 months within unemployment spells.) If the elapsed

duration was not an integer multiple of 6 months, then the individual was enrolled

at the moment that his or her elapsed duration attained an integer multiple of 6

months, provided that he or she was not yet 25 years old at that point in time.

In the empirical analysis we do not exploit the age eligibility criterion except for

robustness checks.

Figure 4 depicts the enrollment scheme in the years around τ ∗. Obviously,

this scheme is somewhat more complicated than the scheme in Subsection 2.3.

However, it allows for the identification and non-parametric estimation of average

causal effects of the arrival of information about the new policy regime, for all

elapsed durations t ≥ 0. For elapsed durations of 6 months as well as integer

multiples of 6 months, this translates into the effects of enrolling in the NDYP.

Similarly, for elapsed durations t < 6, the average causal effect translates into

19More details on the program can be found in White and Knight (2002), Podivinsky and

McVicar (2002), Blundell et al. (2004), Van Reenen (2004), or Dorsett (2006).
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Figure 4. Introduction of NDYP. (Note: in the grey area, individuals are

enrolled in the job search assistance program.)

the effect of learning that program enrollment is scheduled to take place in 6−t

months. For example, individuals who are unemployed for 1 month at τ ∗ learn

that if they stay unemployed for another 5 months they will have to enroll, so they

anticipate future participation and may react in advance. These are anticipation

effects that are identified because we observe the moment of arrival of information.

Thus, we infer the average causal effects of receiving information about the

moment of the future enrollment in the job search assistance program, evaluated

at specific elapsed durations t < 6. Our methodology allows us to measure such

anticipatory responses. In other words, we identify average anticipation effects

of the job search assistance treatment on the individual hazard rate. To avoid

misunderstandings, recall that this approach is not in conflict with Assumption

2, and we still require a no-anticipation assumption. Specifically, individuals are

not allowed to anticipate the moment at which the information arrives.20

20Blundell et al. (2004) study anticipation of the reform (and hence of the moment of the cor-
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Notice that it is not possible to identify effects of the actual participation in

the NDYP at 6 months among those who are unemployed for less than 6 months

at τ ∗. Since such individuals may act upon the information about the future

treatment throughout the time interval between τ ∗ and the moment that t = 6,

the dynamic selection from τ ∗ up to t = 6 will differ from that in any other

cohort.

Two minor institutional features constitute deviations from the above de-

scription of the introduction of the policy. First, individuals with t < 6 at τ ∗ can

try to apply for early enrollment, especially if they are disadvantaged (disabled,

former convict or lacking basic skills). However, such applications seem unlikely

to have been prevalent at the initial stages of the program, when information

about NDYP details was still limited. Secondly, the NDYP was introduced in a

few small pilot areas on January 1, 1998, i.e., three months before the national

release. We use the data from these areas and shift calendar time with 3 months

when combining these data with the data from the rest of the country. Since

the pilot study did not receive massive attention before April 1, and the evalua-

tion of the pilot was not completed on April 1, we feel that the risk of knowledge

spillovers from the pilot areas to the rest of the country (and the ensuing violation

of Assumption 2) is small.

4.3 Data

The data are from the JUVOS longitudinal dataset. This is a random sample

of the register data on all UB claiming spells. JUVOS contains information on

5% of the UK population, recording the entire claiming histories of sampled

individuals since 1982. Information includes the start and ending dates of each

claiming spell as well as the destination upon leaving (only since 1996), and

a small number of demographic variables such as age, gender, marital status,

geographic location, previous occupation and sought occupation. JUVOS contains

no information about what happens while off benefits, except for the destination

upon leaving the UB claimant count, but even this is plagued with missing values.

In total, 5.7% of the spells end in ‘unknown destination’ and almost 25% end in

‘failed to attend’. Subsequent transitions are unobserved if they do not involve a

claim of UB. Therefore, in what follows, the outcome of interest is “all exits from

the claimant count”, independently of destination.

The estimation sample is formed of men who were aged between 20 to 24

responding information arrival) on April 1, 1998, by exploiting spatial and age discontinuities.

No significant anticipatory effects are found.
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upon reaching 6 months in unemployment. We discard observations for younger

individuals to avoid having to deal with education decisions.

4.4 The choice of treatment and comparison groups

Consider the ATS(t0) for t0 equal to 6 months, or more precisely, 182 days. The

estimation relies on comparing the survivors among the cohort attaining the

elapsed duration t0 at τ ∗ (which we call the treatment group, or the treated)

with a similar sample of survivors from earlier cohorts (the comparison groups).

Following Subsection 3.2 we do not pursue estimation of ATS conditional on

covariates X.

The continuous-time framework must be reconciled with the requirement of

a positive sample size. In practice, we need samples of cohorts flowing into un-

employment within time intervals rather than at two singular points in time. To

proceed, instead of restricting attention to those individuals reaching 6 months

of unemployment on a particular calendar day, we consider a full monthly cohort.

For instance, the treated sample includes all spells starting in October 1997 (or

July 1997 in pilot areas), lasting for at least 6 months.

It is important to realize that the usage of such a fixed inflow time interval

may not be innocuous. In particular, those who started a spell towards the end of

October 1997 will have had some weeks to react to the new information becom-

ing available on April 1st, 1998, before they actually enroll. By analogy to the

discussion in Subsection 4.2 on the effect of receiving information at an elapsed

duration of say 1 month about enrollment at 6 months, such information may

have an immediate impact on job search behavior before t0 in the treated sample.

This may lead to biased inference. The bias should be negligible if anticipatory

effects within intervals of at most a few weeks are much smaller than the effect of

actual participation in the NDYP. We argue below that the distortion may lead

to an under-estimation of ATS(t0) at 6 months.21

We define comparison groups in an analogous way, selecting individuals reach-

ing 182 days in unemployment over an entire calendar month prior to April 1998.

As candidate groups we consider the cohorts flowing in during June 1997 (pilot

areas) and September 1997 (non-pilot areas), or May 1997 and August 1997, or

July 1996 and October 1996, or the combination of June and September 1997

with July and October 1996. For simplicity, we designate each cohort by the

21Clearly, it is preferable to apply an estimator in which the inflow time interval shrinks as

the sample size increases, such that observations from cohorts close to the inflow date of interest

are given more weight. Given our modest sample sizes we do not pursue such an approach, and

we leave this as a topic fur further research.
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month of inflow in non-pilot areas as these represent a larger proportion of the

population. However, we include data on both pilot and non-pilot regions in all

that follows. In accordance to Subsection 3.2, different candidate groups are as-

sessed based on two types of outcomes: the distribution of T on days 1 to 181,

and the distribution of observed characteristics X among survivors at 182 days.

Figure 5 displays the survival functions for the treatment and comparison

groups up to 181 days into unemployment, prior to the release of NDYP at

τ ∗. For the combined cohort, the matching is so close that the curve is hardly

distinguishable from the curve for the treatment group. The survival function for

the September 1997 cohort diverges from that for the treatment group during

the December/January period but quickly returns to match it over the final 2

months of the interval. For our purposes, the most important issue is whether

treatment and comparison groups are similar at the time of enrollment. We cannot

reject such hypothesis for the September 1997 cohort. The August 1997 cohort

curve also converges towards the treatment cohort curve in the last month before

enrollment, but the match is not as close as for the September 1997 cohort. The

exception to this pattern is the October 1996 cohort. The survival function for this

cohort is systematically above that for the treatment group for the whole interval,

suggesting that aggregate conditions in the market changed in the intervening

year.

Table 1 compares the empirical distributions of observed covariates among the

survivors in the treatment and comparison groups. The September 1997 cohort

displays no discernible differences to the treatment group (column 1 in the table).

The combined cohort does not perform as well, with systematic differences in the

history of unemployment up to three years prior to inflow (column 4 in the table).

We conclude from this that it is useful to match treatment and comparison

cohorts by using both the survival function on (0, t0) and the distribution of

observed characteristics X among survivors at t0. Furthermore, the application

of this recommendation favors the September 1997 cohort as the comparison

cohort. Henceforth we discard the other candidate comparison groups and we

proceed with the September 1997 cohort as the comparison cohort. In any case,

it turns out that the estimation results are robust to the choice of the comparison

group (estimates available upon request). In total, the sample size of individuals

completing 182 days in unemployment during March and April 1998 while aged

20 to 24 is 902. This is almost equally split between the treatment (April 1998)

and comparison (March 1998) groups.

Individuals in the September 1997 comparison cohort do not enroll before an

elapsed duration of 12 months, as they are past the 6 months threshold at the
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Figure 5. Treatment vs. comparison groups – empirical survival functions between

0 and 6 months after inflow.

time of the reform τ ∗. Shortly after τ ∗, at elapsed durations exceeding 6 months,

the behavior of some members of this group may be affected by the information

becoming available at τ ∗, possibly confounding the estimate of ATS(t0). This

source of bias can be simply eliminated by right-censoring spells in the comparison

group at τ ∗. In our case, the instantaneous effect of the new information is likely

to be small, particularly as the NDYP is in its early days and the prospect of

participation in the comparison group is a long distance away. We check the

sensitivity of the results, and it turns out that they are robust to whether right-

censoring is adopted or not (estimates available upon request). The robustness

to the choice of the comparison group also suggests that this source of bias may

be irrelevant in the analysis.

As noted above, we also consider anticipatory effects of the actual arrival of

information about the NDYP reform among those approaching enrollment. These

are interesting per se. But they are also informative on the accuracy of estimates

of the impact of program participation that ignore anticipation, by exposing the

extent to which anticipation affects the composition of the treatment group prior
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Table 1: Treatment vs. comparison groups – p-values for Hotelling statistics com-

paring the distribution of covariates conditional on survival up to 181 days of

unemployment.

Comparison cohort

September 97 August 97 October 96 Sep97 + Oct96

(1) (2) (3) (4)

Nr observations 456 368 557 1013

(1) marital status 0.997 0.643 0.114 0.509

(2) age 0.307 0.299 0.916 0.942

(3) region 0.276 0.095 0.112 0.083

(4) occupation 0.767 0.575 0.302 0.532

(5) time U in the past 0.363 0.846 0.021 0.046

(6) U spells in the past 0.801 0.454 0.000 0.006

(7) Zero U spells in the past 0.353 0.747 0.020 0.164

Notes: The treatment group is the October 1997 cohort. The variables in rows 5 to 7 describe the UB claiming history

in the 3 years preceding inflow into current unemployment spells. Numbers in bold highlight statistically significant

differences in the distribution of the covariate, at the 5% level.

to participation.

We may estimate the anticipatory effects of future enrollment evaluated at

each duration t0 shorter than 6 months (182 days). We take individuals who

are aged 20 to 24 at the moment they reach 6 months of unemployment. One

should be careful with the terminology, since now “treatment” means exposure

to information about future enrollment while “comparison” means the absence

of such exposure. Thus, the treatment and comparison groups are now defined

in reference to whether they are exposed to the information arrival at the reform

date τ ∗. For a given t0 <6 months, the treatment group consists of individuals

who reach t0 during April 1998.

Like above, we need to select appropriate comparison groups. Clearly, each

duration t0 requires its own comparison group. Adopting the selection procedure

used above would then involve a very large number of comparisons. We therefore

follow a slightly simpler procedure. Recall that the procedure used above for the

enrollment effects led to the choice of a comparison group that flowed in one

month before the treatment group. In accordance to this, we choose comparison

groups of individuals who flowed in one month before τ ∗ − t0 and who hence

reach the duration t0 <6 during March 1998. It remains to be seen whether these
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comparison groups meet the checks for aligned dynamic selection up to t0.

Figure 6 displays the survival functions up to t0 for the treatment and com-

parison groups for each of four values of t0 (namely, 2, 3, 4 and 5 months).

There are some signs of differential selection, apparently due to conditions in De-

cember/January. In later cohorts, which cross December/January earlier in their

spells (panels B and C), the survival functions diverge throughout the duration

interval (0, t0), especially at the end of the period, when approaching April (treat-

ment) or March (comparison groups). Post December/January cohorts (panel A),

unaffected by conditions in those months, exhibit very similar survival functions.

Earlier cohorts (panel D) are also affected but return quickly to a common path.

The latter finding echoes the observed patterns for the October and September

cohorts in Figure 5.
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Figure 6. Empirical survival functions among cohorts reaching durations of 2

(panel A) to 5 (panel D) months in April 1998 (treatment group) or March 1998

(comparison group).

Note: Dashed lines represent 95% confidence intervals.

Table 2 compares the empirical distributions of observed covariates among
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the survivors in the treatment and comparison groups. Column 2 shows that

the December 1997 and January 1998 cohorts are compositionally different upon

having reached 3 months in unemployment. For earlier cohorts, the absence of

statistically significant differences further supports their comparability (columns

3 and 4). In the light of these findings, our analysis of anticipatory effects focuses

on durations from 4 up to and including 5 months. Note that one may expect

anticipatory effects to be larger at durations close to enrollment at 6 months than

at lower durations.

Table 2: Treatment vs. comparison groups – p-values for Hotelling statistics com-

paring the distribution of covariates conditional on survival up to 2 to 5 months

of unemployment

Month of inflow

(1) treatment group Feb 98 Jan 98 Dec 97 Nov 97

(2) comparison group Jan 98 Dec 97 Nov 97 Oct 97

(3) elapsed duration t0 2 months 3 months 4 months 5 months

(1) (2) (3) (4)

(4) marital status 0.471 0.339 0.790 0.656

(5) age 0.120 0.263 0.366 0.318

(6) region 0.425 0.304 0.671 0.858

(7) occupation 0.338 0.234 0.410 0.603

(8) time U in the past 0.188 0.015 0.439 0.921

(9) U spells in the past 0.303 0.021 0.242 0.387

(10) Zero U spells in the past 0.626 0.167 0.271 0.589

Notes: Row 1 (2) details the inflow date of the treatment (comparison) group for the evaluation of the

effect at the elapsed duration in row 3. The variables in rows 8 to 10 describe the UB claiming history in

the 3 years preceding inflow into current unemployment spells. Numbers in bold highlight statistically

significant differences in the distribution of the covariate, at the 5% level.

In contrast to our earlier discussion on the estimation of enrollment effects,

right-censoring shortly at calendar time τ ∗ is expected to be important for the

estimation results of anticipatory effects. First, the comparison group will itself

be subject to the information arrival on April 1st, 1998 (i.e., shortly after the

moment at which the treatment group receives the information), and they may

react to this in-between t0 + 1 and 6 months. This may be particularly relevant

if t0 itself is close to 6 months. Secondly, the treatment group will enroll into job

search assistance upon 6 months of unemployment, with potential causal effects

on their hazard rate from that moment onwards. We examine these two issues in
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Subsection 4.6.

In all cases, we estimate effects in discrete as well as in continuous time, by

varying the length of the time unit. Estimates in discrete time capture effects on

aggregate monthly conditional transition probabilities while estimates in contin-

uous time do the same for daily hazard rates. Both sets of estimates are based

on the same treated and comparison samples.

4.5 Results for the average causal effect of NDYP pro-

gram enrollment

Table 3 presents the main estimates in the discrete-time setting. In particular,

the estimate in column (1) is the estimated ATS(t0) capturing the average causal

additive effect of enrolling into the NDYP program at an elapsed unemployment

duration of t0 =6 months on the conditional probability of leaving unemployment

within one month. We find that the latter probability increases by 4.5 percent-

age points in the first month after enrollment, which is quite substantial. This

estimate is significantly positive at the 5% level. The corresponding relative in-

crease in the conditional probability is about 35%. The fact that the enrollment

in NDYP has a positive effect on employment is in line with the results in Blun-

dell et al. (2004) who use conditional difference-in-differences and before-after

observations to evaluate the NDYP.

The entry in column (2) of Table 3 is the ATS(t0) estimate obtained as if the

policy reform had taken place on April 1, 1997 instead of April 1, 1998, using

treatment and comparison groups based on cohorts flowing into unemployment

one year before those used for the actual ATS(t0). Similarly, the entry in col-

umn (3) is the ATS(t0) estimate obtained as if the NDYP reform on April 1,

1998 was designed for 25-29 year olds, using treatment and comparison groups

based on the corresponding contemporaneous age cohorts. These two exercises

can be interpreted as placebo analyses. If the methodology is appropriate then

the estimates in columns (2) and (3) should be insignificantly different from zero.

Alternatively, in the presence of seasonal effects in the inflow composition, the

entry in column (2) reflects this. Similarly, in the presence of macro-economic la-

bor market changes around April 1998, the entry in column (3) reflects this. The

same applies in case of substitution or crowding out effects across age categories

in response to the NDYP. Note that this involves the use of the age discontinuity

in eligibility. As it turns out, neither of the two estimates is statistically signifi-

cant. This confirms the validity of our approach and facilitates the interpretation

of our main estimates.

38



Table 3: Non-parametric discrete-time estimation of the average causal effect

ATS(t0) of enrolling into the NDYP program at the elapsed unemployment du-

ration of t0 =6 months on the conditional probability of leaving unemployment

within one month.

Treatment effect Placebo effects

age 20-24 years 20-24 years 25-29 years

τ∗ April 1, 1998 April 1, 1997 April 1, 1998

(1) (2) (3)

estimate .045 .014 -.009

standard error (.023) (.022) .021

# individuals 911 1118 1365

Note: Estimates in bold are statistically significant at the 5% level.

Figure 7 displays the continuous-time counterparts of the estimated treatment

effect ATS(t0) of Table 3, using the Müller and Wang estimator with optimal local

bandwidths. We display both average additive and average multiplicative effects,

together with 95% confidence intervals based on the analytic asymptotic variance

without bias correction.22 Although t0 = 182 days is the minimum elapsed un-

employment duration for enrollment into job search assistance, it is conceivable

that program participation requires a positive amount of time to act and exert

any effect, due to the administrative procedures involved in enrolling individuals

and passing on the information about the treatment. For this reason, Figure 7

shows estimates at elapsed durations from 182 to 212 days. A zero effect in the

early stage of the enrollment period implies that the dynamic selection process

does not differ between the treatment and comparison groups in this stage, so

that the ATS(t0) is also identified at the value of t0 at the end of this early stage.

The patterns in the estimation results are almost identical whether these

concern average additive or average multiplicative effects.23 We therefore discuss

the former only. The main interest is in the result at the first duration beyond

182 days at which the additive effect is significant. Any features after that may

be due to duration dependence of the treatment effect or to differential dynamic

selection, or both. We find significant effects of enrollment only after about a

22With bootstrapping we obtain virtually the same intervals. The estimated optimal local

bandwidth for the additive effect at the boundary of 182 days is 80 days with a standard error

of 30 days.
23Recall that inference on the multiplicative effect warrants an additional assumption (As-

sumption 3 in Appendix 1.1) whereas inference on the additive effect does not.
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Figure 7. Non-parametric continuous-time estimation of the average causal ef-

fect ATS(t0) of enrolling into the NDYP program at the elapsed unemployment

duration of t0 =6 months on the hazard rate of leaving unemployment.

Note: Dashed lines represent 95% confidence intervals.

week into the program. At that moment, the estimated effect as a function of

the elapsed duration jumps rather abruptly to a positive level of about 0.006

per day. This amounts to more than doubling the hazard rate in the absence of

NDYP, as can be seen from the figure for the multiplicative effect. The estimated

effect then drops to a lower positive level that just misses the 95% significance

level. However, at that stage we can no longer separate causal and confounding

compositional effects. We conclude that among those who enter the new policy

regime at 6 months of unemployment duration, the program has a significant and

sizeable positive average causal effect on the hazard rate at 6 months.

4.6 Results for the average causal effect of receiving in-

formation about future enrollment

By analogy to the previous subsection, Table 4 presents the discrete-time effects

ATS(t0) of receiving information at durations t0 <6 months about enrollment at
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6 months. In particular, the estimates in column (1) capture the average causal

additive effects at 4 months and 5 months. Both are negative, but none is signifi-

cantly different from zero. This suggests that individuals do not react in advance

to the prospect of future job search assistance in the NDYP – the information

does not induce them to modify their behavior, and in that sense they do not

anticipate the future enrollment. At first sight this looks like a useful finding. It

seems to shed insights into the behavior of the unemployed individuals. More-

over, it suggests that estimates of the impact of job search assistance that use

methodologies that ignore anticipation are not subject to bias due to anticipation

effects. However, notice that the estimated effects of receiving the information are

averages over potentially heterogeneous effects. An average effect of zero does not

rule out that some individuals anticipate the job search assistance and hence that

Assumption 2 is violated. Moreover, it remains to be seen whether the results are

confirmed in the continuous-time analysis later in this subsection.

The estimates in columns (2) and (3) are obtained using the same approach

as for the corresponding columns of Table 3. The estimates are also statistically

zero, except for the 20–24 year olds 5 months after inflow in the case in which no

actual reform had taken place. The latter estimate is based on a comparison of

those who flowed in in November 1996 to those who flowed in in October 1996.

This might reflect a seasonal effect in the composition of the inflow of the 20–24

year olds, in the following specific sense: the inflow in November contains more

individuals who return to work in April of the subsequent year than the inflow in

October contains individuals who return to work in March. Recall from Figure

6 that we did not find a differential survival probability between the October

and November cohorts upon reaching 5 months of unemployment, so any effect

of the month of inflow can only become visible during the fifth month. Under

this scenario, the estimate of ATS(t0) at t0 =5 months is the net result of a

positive seasonal effect and a negative anticipatory effect. The latter suggests

that individuals in the month before enrollment in job search assistance prefer

to hold out until enrollment. However, it is rather odd that a seasonal effect

only occurs when going from October to November and not when going from

September to October or from November to December. Moreover, we do not find

any evidence of seasonal effects for the 25–29 year olds.

As explained in Subsection 4.4, the estimates in Table 4 may be biased due

to the fact that the one-month time interval used to estimate the conditional

outflow probability for the comparison group crosses April 1, 1998. In effect,

part of the comparison group is exposed to the information about the NDYP for

part of the evaluation period. In these circumstances, one would expect a bias
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Table 4: Non-parametric discrete-time estimation of the average causal effect

ATS(t0) of receiving information at elapsed durations t0 =4 or 5 months about

enrollment at 6 months, on the conditional probability of leaving unemployment

within one month.

Treatment effect Placebo effects

age 20-24 years 20-24 years 25-29 years

τ∗ April 1, 1998 April 1, 1997 April 1, 1998

(1) (2) (3)

4 months after inflow -.015 .006 -.022

(.021) (.022) (.020)

1328 1365 1826

5 months after inflow -.017 .057 .033

(.021) (.021) (.020)

1098 1228 1571

Notes: Estimates, standard errors and numbers of observations are in the first, second and third line, respectively.

Estimates in bold are statistically significant at the 5% level.

towards zero if treatment and comparison groups react similarly to the prospect

of future enrollment. Therefore it makes sense to artificially right-censor spells in

the comparison group once they cross April 1, 1998. In addition, we right-censor

spells in the treatment group once they enter enrollment, in order to prevent

that the estimate is affected by the causal effect of enrollment. As we have seen

in Subsection 4.4, the latter causal effect kicks in at an elapsed duration of 189

days, so we use this as the right-censoring value. Recall that we aim to estimate

effects conditional on durations of 4 or 5 months, i.e., of 123 to 181 days. For

each elapsed duration we require a sufficiently large number of informative spells,

and for this reason we restrict the continuous-time analysis to durations below

172 days.

Figure 8 shows the continuous-time estimates of the causal ATS(t0) effects

of the information arrival. For convenience we only display the average additive

effects. Notice that the computational burden to produce Figure 8 is much higher

than for Figure 7. Figure 7 is based on the estimation of two non-parametric

hazard rates. In contrast, in Figure 8, every day in the interval (123, 172) of

elapsed durations on the horizontal axis requires a separate estimation of two

non-parametric hazard rates. Thus, Figure 8 does not visualize the difference of

two hazard rates but rather the values of the differences of two hazard rates each

evaluated at the boundary t0 for a range of values of t0. In accordance to previous
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subsections, each value t0 gives rise to a monthly cohort.

Clearly, the results provide evidence of anticipatory behavior. This behavior

leads to a drop of the hazard rate after the beginning of the 5th month and gains

importance within 15 days before enrollment into job search assistance. Despite

the wide 95% confidence intervals towards the end of the period (due to the bias

corrections discussed above), the anticipatory effect is statistically significant at

high durations. Such a finding may not be (and, indeed, was not) detected in a

discrete-time analysis with a monthly time unit.
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Figure 8. Non-parametric continuous-time estimation of the average causal effect

ATS(t0) of receiving information at elapsed durations t0 between 123 and 172

days about enrollment at 6 months, on the hazard rate of leaving unemployment.

Note: Dashed lines represent 95% confidence intervals.

This evidence of anticipatory behavior is new. Previous NDYP studies did

not consider changes in behavior closely before the moment of enrollment.24

24De Giorgi (2005) estimates Pr(T < 6|X, inflow after Apr98) − Pr(T <

6|X, inflow before Oct97). This method is only applicable to unconditional survival prob-

abilities. The study reports no significant anticipatory effects. The pivotal study of Black

et al. (2003) provides evidence that many unemployed workers in the U.S. dislike being an

unemployment insurance claimant if it involves mandatory participation in programs of job
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The result has implications for other types of evaluation approaches. It is likely

that those who postpone job search until after the enrollment into intensified job

search assistance at 6 months are on average more work-prone than those who

remain unemployed for 6 months in the absence of the NDYP regime. In that case,

a before-after comparison of spells with elapsed durations of 6 months (censoring

any spells crossing the reform date) would lead to an upward bias of the effect of

the job search assistance.

5 Conclusions

In this paper we have merged regression discontinuity analysis and duration anal-

ysis. We have shown that, to study causal policy effects on hazard rates, one may

usefully exploit spells crossing the moment of the introduction of the policy, even

if the individual hazard rates depend on unobserved covariates. The approach

does not need any functional form assumption on the hazard rate or its deter-

minants. This stands in marked contrast to standard duration analysis which

has been plagued by proportionality assumptions on the hazard rate, functional

form assumptions on the duration dependence and the unobserved heterogeneity

distribution, and a “random effects” assumption for observed and unobserved

covariates. An additional advantage of the new approach is that it enables policy

evaluation shortly after introduction of a new policy. If the outcome of interest is

a duration variable then a comparison of pre and post reform outcomes requires

an observation window stretching far beyond the reform date.

Our analysis shows that implementation details of the introduction of a new

policy for subjects in a certain state have important consequences for the quality

and timing of evaluation exercises regarding the hazard rate out of the state. A

policy that applies to all subjects in the state at the time of the reform alleviates

the need for strong identifying assumptions and supports the early production

of evaluation results on the hazard rate. Conversely, a policy reform that applies

only to new entrants into the state will have to deal with differential dynamic

selection and possibly with differential selection at inflow once the new regime is

search counselling. This dislike causes increased exits out of unemployment in the initial weeks

of the spells. In our analysis, those who are unemployed for 5.5 months prefer to wait until the

enrollment into the program at 6 months. This suggests that the response to the prospect of

future job search assistance differs between short-term unemployed in the U.S. and long-term

unemployed youth in the UK. Indeed, it is conceivable that this is the result of a dynamic

selection where those who find a job relatively fast anyway leave unemployment very fast and

hence are underrepresented in the sub-populations over which our estimated ATS are defined.
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announced, and wait for at least t periods before the impact at duration t can be

evaluated. An example could be the introduction of a new active labor market

policy for the unemployed with the objective to increase the reemployment rate.

In the interest of evidence-based policy design, it is recommended to include the

current unemployed in the target population exposed to the new policy.

Policy reforms in which subjects may choose between staying in the old regime

and switching to the new regime cannot be evaluated with our approach. One

may envisage an extension that incorporates this type of setting without having to

compromise on the above-mentioned advantages of our approach. It is an obvious

topic for further research to pursue this.

Our approach is also suitable to study the causal effect of the arrival of in-

formation on the hazard rate in a certain state. If the information captures the

future moment at which the subject will be exposed to a certain treatment then

the approach provides estimates of the anticipatory effect of the treatment with-

out having to rule out unobserved heterogeneity. In our empirical application, one

of the effects we study concerns the causal effect effect of the receiving information

at elapsed unemployment durations below 6 months about an intensive job search

assistance treatment at 6 months, on the hazard rate of leaving unemployment.

Using fully non-parametric inference allowing for unobserved heterogeneity, we

conclude that anticipatory effects on the hazard rate are present in the weeks

before the onset of the treatment. In those weeks, individuals reduce their search

effort.

Our study provides some suggestions and implications for existing methods

of policy evaluation. First, consider semiparametric estimation of simple models

for the observed hazard rate (i.e., without unobserved heterogeneity) in which

exposure to the new policy is a time-varying covariate and in which the data

include spells crossing the reform date. Such simple models may be regarded as a

representation of the distribution of observables that is generated by an underly-

ing model for individual hazard rates with unobserved heterogeneity. Recall that

in our approach, observed hazards are informative on average policy effects on

individual hazard rates, in the presence of unobserved heterogeneity, and with-

out any identified model structure. This leads to the insight that the estimated

policy exposure coefficient in the simple model can be informative on the causal

policy effect. In this sense, estimates obtained under the assumption of no un-

observed heterogeneity are also informative without this assumption. This is an

improvement over the conventional state of affairs in hazard rate analysis.

Secondly, consider “dynamic matching” approaches. These make a conditional

independence assumption (CIA) on the treatment status at some elapsed dura-
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tion t0 but they are silent on how this assumption depends on dynamic selection

due to unobserved heterogeneity in the interval between inflow and t0. Our anal-

ysis carries an important caveat, namely that the CIA is unlikely to be satisfied if

the treatment and comparison groups have had systematically different event his-

tories between inflow and t0, even if they have the same personal characteristics

and the same labor market history before inflow. To phrase this more construc-

tively, it is useful to ensure that, after propensity score matching, the treatment

and comparison groups are identical in terms of (i) the duration distribution be-

tween inflow and t0, and (ii) the distribution of observed characteristics X among

survivors at t0. Somewhat loosely, satisfaction of these conditions means that one

matches on the distribution of unobservable characteristics among survivors as

well as on the propensity score.
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Honoré, B.E. (1991), “Identification results for duration models with multiple

spells or time-varying covariates”, Working paper, Northwestern University,

Evanston.

Jiang, J. and K. Doksum (2003), “On local polynomial estimation of hazard

rates and their derivatives under random censoring”, in: M. Moore et al., eds.,

Mathematical statistics and applications, Institute of Mathematical Statistics,

Beachwood, OH.

Meyer, B.D. (1996), “What have we learned from the Illinois reemployment bonus

experiment?”, Journal of Labor Economics, 14, 26–51.

Muller, H.G. and Wang, J.L. (1990). “Locally adaptive hazard smoothing”, Prob-

ability Theory and Related Fields, 85, 523–38.

Müller, H.G. and J.L. Wang (1994), “Hazard rate estimation under random cen-

soring with varying kernels and bandwidths”, Biometrics, 50, 61–76.

Müller, H.G., J.L. Wang, J.R. Carey, E.P. Caswell-Chen, C. Chen, N. Papadopou-

los et al. (2004), “Demographic window to aging in the wild: constructing life

tables and estimating survival functions from marked individuals of unknown

age”, Aging Cell, 3, 125–131.

Nielsen, J.P. and C. Tanggaard (2001), “Boundary and bias correction in kernel

hazard estimation”, Scandinavian Journal of Statistics, 28, 675–698.

48



Podivinsky, J.M. and D. McVicar (2002), “Unemployment duration before and

after New Deal”, Working paper, Northern Ireland Economic Research Centre.

Porter, J. (2003), “Estimation in the regression discontinuity model”, Working

paper, Harvard University.

Ridder, G. (1984), “The distribution of single-spell duration data”, in: G.R.

Neumann and N. Westerg̊ard-Nielsen, eds., Studies in labor market analysis,

Springer Verlag, Berlin.

Rubin, D. (2000), “Discussion of causal inference without counterfactuals”, Jour-

nal of the American Statistical Association, 95, 435–438.

Tu, D. (2007), “Longitudinal data and survival analysis under-smoothed kernel

confidence intervals for the hazard ratio based on censored data”, Biometrical

Journal, 49,474–483.

Van den Berg, G.J. (2001), “Duration models: Specification, identification, and

multiple durations”, in J.J. Heckman and E. Leamer, editors, Handbook of

Econometrics, Volume V, North Holland, Amsterdam.

Van Reenen, J. (2004), “Active labour market policies and the British New Deal

for Unemployed Youth in context”, in R. Blundell et al., eds., Seeking a Pre-

mier Economy, University of Chicago Press.

Vikström, J. (2014), “IPW estimation and related estimators for evaluation of

active labor market policies in a dynamic setting”, Working paper, IFAU,

Uppsala.

Wang, J.L. (2005), “Smoothing hazard rates”, in: P. Armitage and T. Colton,

eds., Encyclopedia of Biostatistics, Wiley, Chichester.

White, M.and G. Knight (2002), “Benchmarking the effectiveness of NDYP”,

Working paper, National Audit Office, London.

49



Appendix 1. Average multiplicative effects on individual

hazard rates

A1.1 Identification

By analogy to the proof of Proposition 2, it follows that

θT (t0|X,S = t0)

θT (t0|X,S = t1)
=

E[θT (t0|X, V, S = t0) | X,T ≥ t0, S = t0]

E[θT (t0|X, V, S = t1) | X,T ≥ t0, S = t1]
=

(7)

=
E[θT (t0)(t0|X, V ) | X,T (t0) ≥ t0]

E[θT (t1)(t0|X, V ) | X,T (t0) ≥ t0]

with t1 > t0. Thus, the ratio of the observable average hazard rates equals the

ratio of the average counterfactual hazard rate (averaged over the same sub-

population). This does not necessarily equal an average multiplicative effect (i.e.

an average of the ratio). For this we make the additional assumption,

Assumption 3 (Multiplicative unobserved heterogeneity).

θT (s)(t|X, V ) = θ0T (s)(t|X)V (8)

This imposes that the unobserved individual characteristics V affect the counter-

factual hazard rates in the same proportional way. Note that this is weaker than

adopting an MPH model framework for T (s)|X, V or T |X,S, V . First, it does

not rule out that t and X and the treatment status interact in the hazard rates

of T (s)|X, V or T |X,S, V . And secondly, it does not make the MPH assumption

that V⊥⊥X. But it does imply that individual treatment effects on the hazard

at t can be expressed as θ0T (s′)(t|X)/θ0T (s)(t|X), so they are homogeneous across

individuals with different V (but not necessarily across X or over time). Indeed,

the individual effects at t equal the average multiplicative effects on the hazard

rate given X, as defined by versions of ATTS(s′, s, t|X) and ATNTS(s′, s, t|X).

By substituting Assumption 3 into (7), we obtain that θT (t0|X,S = t0)/θT (t0|X,S =

t1) for t1 > t0 identifies the average multiplicative effects ATNTS(t0, t1, t0|X) and

thus ATTS(t0, t1, t0|X). In sum,

Proposition 3. Consider the introduction of a comprehensive policy at a given

point of time. Suppose we have duration data from cohorts that flow in before this

point of time. Under Assumptions 1, 2, and 3, the multiplicative treatment effect

on the individual hazard rate at t0 given X is non-parametrically identified and

equals θT (t0|X,S = t0)/θT (t0|X,S = t1) with t1 > t0. This does not depend on t1
as long as t1 exceeds t0.
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This result can be related to identification results for duration models with

unobserved heterogeneity and time-varying explanatory variables. Honoré (1991)

considers an MPH model with a time-varying explanatory variable that is equal

across individuals at short durations but different for some individuals at high

durations (notice that our variable S can be re-expressed like that if we only

use one value t1 > t0). He shows that the MPH model is fully identified without

assumptions on the tail of the distribution of V . He identifies the effect of the

time-varying covariate on the individual hazard rate by considering the ratio of

the observable hazard rates at point in time where the covariate value changes

for a subset of individuals. Clearly, this resembles the approach in the proof of

Proposition 3. Brinch (2007) considers a hazard rate model whereX is absent and

S is replaced by a time-varying explanatory variable x̃(t) that is different across

individuals at short durations but equal for some individuals at high durations.

His model is more general than an MPH model because t and x̃(t) may interact in

the individual hazard rate, like in our Assumption 3. However, it does not allow for

covariates X that are dependent on V , and it requires a monotonicity assumption

on the over-all effect of the past path of x̃(t) on the observed survival probability,

which we do not need. Brinch (2007) shows that his model is fully identified.

His proof is a mirror-image of the proof of Proposition 3: he exploits variation

in the value of x̃(t) at short durations in order to gather information on the

unobserved heterogeneity distribution, whereas we exploit the lack of variation

in the dynamic selection up to t0 in order to gather information on the causal

effect of S.

A1.2 Inference

We start out by pointing out that if Assumption 3 applies, T |X,S has a survival

function that is a Laplace transform of a monotone function of the duration

variable. We do not exploit this restriction in the estimation procedure.

We are interested in estimating the ratio of two hazard rates, based on dif-

ferent independent samples, and each evaluated at the left boundary. In obvious

notation, we denote this ratio by

r(0) =
θ1(0)

θ2(0)

and we denote its estimator by r̃(0) := θ̃1(0)/θ̃2(0), where θ̃i(0) is the boundary

kernel hazard estimator of Section 3 (or, alternatively, a local linear hazard rate

estimator). We may distinguish between three different methods to obtain a con-

fidence interval for r(0). All three of these methods are more generally applicable
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to ratio estimators. First, we may perform bootstrapping simultaneously on both

samples. Secondly, we may apply the delta method. If, following Tu (2007), we

again ignore the asymptotic biases, then we obtain that the estimator r̃(0) has

an asymptotically normal distribution with mean r(0) and variance

AVar(θ̃1(0)) + r2(0)AVar(θ̃2(0))

θ22(0)

For this, we need to assume that, in obvious notation, the fraction n1b1,n/(n2b2,n)

converges to a finite number. The confidence interval follows immediately (see

Müller et al., 2004, which also contains an empirical example in the related case

of boundary kernel estimation of a ratio of densities). Also, a local bandwidth may

be used. The approach can be straightforwardly extended to allow for asymptotic

biases (see e.g. Porter, 2003, for the relevant delta method result).

The third approach is to use Fieller type confidence intervals (see Tu, 2007).

The basic idea is to make a confidence interval for θ̃1(0)−r(0)θ̃2(0) and to convert

this into a confidence interval for r̃(0). This again requires that n1b1,n/(n2b2,n)

converges to a finite number.

52



Appendix 2. Algorithm for the data-adaptive boundary

kernel estimator with local bandwidths

Müller and Wang’s (1994) optimal local bandwidths minimize the asymptotic

mean squared error (MSE). However, this objective function is impractical since

it depends on unknown quantities, like the hazard rates themselves. Instead,

the optimal local bandwidths can be consistently estimated by minimizing an

estimate of the local mean squared error (see Müller and Wang, 1990 and 1994 for

a discussion). The following algorithm details the computational implementation

stages of the local data-adaptive kernel hazard estimator:

Step 1 Choose initial value of bandwidth and construct grids

1. The initial value of the bandwidth, b0, is to be used as global band-

width to start off the estimation. Müller and Wang (1994) propose

b0 = R
/(

8n
1/5
u

)
if data is available in the time interval [0, R], where

nu is the number of uncensored observations.

2. Construct an equidistant grid for duration variable T in the domain

A = [0, R], call it T̃ =
{
t̃1, . . . , t̃M

}
. Computation time depends cru-

cially on the size of this grid, so one may start with a parsimonious

choice of M .

3. If computation time is important and, as a consequence, T̃ is sparse,

construct a second, finer, equidistant grid for duration variable T in

the domain A = [0, R] to estimate the hazard functions. Call it
˜̃
T ={̃

t̃1, . . . ,
˜̃tP}, where P > M .

4. Construct an equidistant grid for bandwidth b in
[
b, b
]
, call it B̃ ={

b̃1, . . . , b̃L

}
. Müller and Wang (1994) propose using b = 2b0/3 and

b = 4b0. In the empirical analysis in Section 4, this interval is too tight

as the optimal choice often coincides with its boundaries. Therefore

we use
[
b, b
]
= [b0/6, 6b0].

Step 2 Obtain an initial estimate of the hazard rates in all points of the grid
˜̃
T

using the initial global bandwidth b0:

θ̂0

(̃
t̃p

)
=

1

b0

n∑
i=1

K˜̃tp
(˜̃tp − t(i)

b0

)
δ(i)

n− i+ 1

for p = 1, . . . P .
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Step 3 For each point t̃m ∈ T̃ (m = 1, . . . ,M), estimate the optimal local band-

width by minimizing the local MSE:

1. Compute the MSE at t̃m for each bandwidth b̃l ∈ B̃ (l = 1, . . . , L).

This is

MSE
(
t̃m, b̃l

)
= Var

(
t̃m, b̃l

)
+ bias2

(
t̃m, b̃l

)
where the Var

(
t̃m, b̃l

)
and bias

(
t̃m, b̃l

)
are, respectively, the asymp-

totic variance and bias of the hazard estimator at duration t̃m when

using bandwidth b̃l. The following are consistent estimators of these

two quantities,

V̂ar
(
t̃m, b̃l

)
=

1

nb̃l

∫ R

0

K2
t̃m

(
t̃m − t

b̃l

)
θ̂0(t)

F n(t)
dt

b̂ias
(
t̃m, b̃l

)
=

∫ R

0

Kt̃m

(
t̃m − t

b̃l

)
θ̂0(t) dt− θ̂0

(
t̃m
)

where the function F is the empirical survival function of the uncen-

sored observations. F can be estimated at each grid point ˜̃tp as follows:
F
(̃
t̃p

)
= 1− 1

n+ 1

n∑
i=1

1
(
ti ≤ ˜̃tp, δi = 1

)
.

The integrals can be approximated numerically. For a generic function

g(t), a simple numerical approximation over a grid
˜̃
T including the

lower and upper boundaries of the integrating interval (in this case 0

and R) is

∫ R

0

g (t) dt ≃ R

P − 1


P−1∑
p=2

g
(̃
t̃p

)
+

g
(̃
t̃1

)
+ g

(̃
t̃P

)
2

 .

An alternative is to estimate the variance and bias by varying t (the

integrating variable) over the observations instead of over the grid.

2. Select the bandwidth that minimizes the estimated MSE at point t̃m
over the grid B̃:

b∗
(
t̃m
)

= argminb̃l

{
M̂SE

(
t̃m, b̃l

)
, b̃l ∈ B̃

}
.
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Step 4 Smooth the bandwidths b∗ to obtain the bandwidths b̂ over the grid on

which the hazard rates are to be estimated,
˜̃
T . The optimal data-adaptive

local bandwidths (using the initial bandwidth b0 to smooth the original

estimates) are

b̂
(̃
t̃p

)
=

[
M∑

m=1

K˜̃tp
(˜̃tp − t̃m

b0

)]−1
M∑

m=1

K˜̃tp
(˜̃tp − t̃m

b0

)
b∗
(
t̃m
)

Step 5 Estimate the data-adaptive kernel hazard rates for points in
˜̃
T using the

bandwidths b̂
(̃
t̃p

)
for p = 1, . . . , P

θ̂
(̃
t̃p

)
=

1

b̂
(̃
t̃p

) n∑
i=1

K˜̃tp
˜̃tp − t(i)

b̂
(̃
t̃p

)
 δ(i)

n− i+ 1
.

See also Hess et al. (1999) for useful details on the implementation of the

estimator.
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