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Abstract

Evaluation studies aim to provide answers to important questions
like: How does this program or policy intervention affect the outcome
variables of interest? In order to answer such questions, using the
traditional statistical evaluation (or causal inference) methods, some
conditions must be satisfied. One requirement is that the outcomes of
individuals are not affected by the treatment given to other individuals,
i.e., that the no-interference assumption is satisfied. This assumption
might, in many situations, not be plausible. However, recent progress
in the research field has provided us with statistical methods for causal
inference even under interference. In this paper, we review some of the
most important contributions made. We also discuss how we think
these methods can or cannot be used within the field of policy eval-
uation and if there are some measures to be taken when planning an
evaluation study in order to be able to use a particular method. In
addition, we give examples on how interference has been dealt with
in some evaluation applications including, but not limited to, labor
market evaluations, in the recent past.

Keywords: causal effect, causal inference, contagion effect, direct and in-
direct effects, evaluation studies, neighborhood effect, peer effect, peer in-
fluence effect, policy intervention, spillover effect, SUTVA, treatment effect.
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1 Introduction

Empirical evaluation studies of labor market programs, e.g., education pro-
grams or employment subsidies, aim to estimate the (causal) effect of the
program on some outcome variables of interest, e.g., employment status,
time to employment or future earnings. The effect is often called a treatment
effect since the participation in a program is considered as taking/receiving
a treatment.

Related to labor market program evaluations are evaluation studies of
policy interventions1 within other areas, e.g., evaluation of the effects of
social insurance policy interventions or of education policy interventions.
Hence, most of this paper is applicable also to such evaluations studies and
some examples from these areas will occur in the paper as well.

Increased availability of administrative data on individual level (i.e., mi-
cro data) has been a driving force for development of methods within the
area of empirical labor market program evaluation (van der Klaauw, 2014).

Rubin’s model for causal inference (Rubin, 1974) is one of the most
popular frameworks for program evaluation. An important assumption in
Rubin’s model is the no-interference assumption saying that the outcomes
of individuals are not affected by the treatment given to other individuals.
However, this assumption may, in many situations in practice, not be a plau-
sible assumption; neither in randomized experiments nor in non-randomized
studies. For example, if a labor market program has an effect on one in-
dividual receiving treatment, it could also affect other individuals in the
same local labor market due to congestion (Heckman et al., 1999; Rubin,
2010; Gautier et al., 2015). Also, if many individuals are treated, i.e., that
the number of trained qualified job seekers increases, there may be more
vacancies posted by employers (Ferracci et al., 2014; Gautier et al., 2015).

This means that, even if the treatment would be randomized to individ-
uals, it would not be a good idea to estimate an average treatment effect
by comparing average outcomes of treated with the average outcomes of
untreated individuals, since the outcomes of the untreated are also altered
by the treatment. Instead the direct comparison between treated and un-
treated should be supplemented with measures of indirect effects, which is
also called spillover, peer, contagion, or neighborhood effects, depending on
the context.

It is only in the last few years that the literature on causal inference in
the presence of interference has begun to grow and is now a rapidly growing

1The terms policies and programmes will be used interchangeably in this paper.
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area. In this paper, we review some of the most important contributions
made regarding statistical methods2 for causal inference under interference.
The aim is to provide an accessible description of these methods targeted
at a wider audience, including policy makers and practitioners. Evaluation
of program outcomes is essential for successful policy development and not
taking interference into account could result in incorrect conclusions.

The paper is organized as follows: in Section 2, the concept of interfer-
ence is further described while the suggested methods for causal inference
under interference are presented in Section 3. In Section 4 empirical ex-
amples of recent evaluations studies with interference are given. The paper
concludes with a discussion, where we summarize and discuss how we think
that the reviewed methods for causal inference under interference can or
cannot be used within the field of labor market evaluations and other policy
intervention evaluation studies.

2 Interference

In Rubin’s model for causal inference (Rubin, 1974) an individual has one
potential outcome for each type of treatment available. In a common setting
there are two available treatments, z = 0, 1, (e.g., a control treatment and an
active treatment) and each individual therefore has two potential outcomes,
denoted Yj(0) and Yj(1) for individual j. The causal effect of the active
treatment versus the control treatment is the difference between the two
potential outcomes.

The fundamental problem of causal inference is that only one of the
potential outcomes is observed for each individual and thus the causal effect
cannot be measured at the individual level. On group level the average
causal effect can be estimated by comparing outcomes for the two treatment
groups. If treatment assignment is randomized, the average causal effect can
be estimated by the difference between the mean outcomes in the two groups.

In a non-randomized setting there may be systematic differences in po-
tential outcomes of the groups, e.g, those who choose one of the treatments
may on average have higher potential outcomes than those who choose the
other treatment, which could lead to biased estimates if we naively compare
the observed outcomes of the two groups. Therefore, to make the groups
comparable, it is necessary to adjust for confounding variables in the esti-

2It should be noted that this means that our purpose is not to also review all important
method proposals within related research areas such as econometrics, biometrics, and
psychometrics.
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mation of the causal effect. This can, for example, be done parametrically
through regression methods or non-parametrically through matching meth-
ods.

A crucial assumption in Rubin’s model is SUTVA, the stable unit treat-
ment value assumption (Rubin, 1980), which consists of two parts. First,
a treatment is homogeneous in the sense that there are not different ver-
sions of the treatment. Second, each individual’s outcome depends on the
treatment he/she receives regardless of which treatment any other individual
receives. If the latter is not the case, there is interference between individ-
uals. This paper addresses situations where the second part of SUTVA, the
no-interference assumption, is not plausible.

If the no-interference assumption is not satisfied, an individual does not
have one potential outcome for each type of treatment. Instead an individual
has one potential outcome for each possible combination of treatment sta-
tuses amongst all n individuals, i.e., 2n potential outcomes3, if there are two
treatments available. Comparing the treatment groups as described above
can then result in misleading conclusions about the effect of a treatment.

According to Ogburn and VanderWeele (2014) interference can be di-
vided into “three distinct causal pathways by which one individual’s treat-
ment may affect another’s outcome”. Under direct interference one individ-
ual’s treatment directly influences another individual’s outcome. An exam-
ple of this form of interference could be in an educational situation where
a treated later exposes an untreated to the knowledge acquired during the
course. If we compare those who took the course with those who did not, we
might estimate a very small effect on knowledge from the treatment because
of spillover of knowledge from treated to untreated individuals.

Interference by contagion is an indirect form of interference which goes
from a treated individuals’s treatment via his/her outcome to another in-
dividual’s outcome. A vaccinated individual may avoid getting a disease
and thereby not passing it on to another individual. If we compare infec-
tion rates between vaccinated and unvaccinated individuals, the effect of
the vaccination might seem small. However, vaccinated individuals avoid
getting the disease and thereby not exposing unvaccinated individuals and

3Note that n2 is the maximum possible number of (unique) potential outcomes under
interference in the scenario with two treatments. The nature of interference determines
how many (unique) potential outcomes there are, e.g., there are situations where only
the number of treated individuals matters (and not which particular individuals that are
treated). Then, the number of (unique) potential outcomes is smaller than n2, since
potential outcomes are the same for several combinations o treatment stuauses amongst
the individuals.
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thus the “true” effect of the treatment could be much larger than what we
have estimated.

The third and most complex form is called Allocational interference un-
der which treatment allocates individuals into groups where the group com-
position affects individual outcomes. An example of where this kind of
interference might be present is allocation of children to classes in schools
or preschools. A child’s achievement in school might be affected by the
composition of his/her class.

3 Methods for causal inference under interference

In recent years, the literature suggesting methods for causal inference in the
presence of interference has begun to grow. Pioneering work include Sobel
(2006), Rosenbaum (2007), and Hudgens and Halloran (2008) and earlier, in
the context of vaccine studies, Halloran and Struchiner (1991) and Halloran
and Struchiner (1995). These, and most of the more recent proposals, are
methods for randomized studies but there are also some suggestions for non-
randomized studies.

In this section, we present an overview of proposals. The overview is
organized based on how the data is structured. The data structures con-
sidered in this overview are clustered data (Section 3.1) and network data
(Section 3.2). Moreover, we distinguish between the methods suggested for
randomized experiments and those suggested for non-randomized studies,
i.e., observational studies.

VanderWeele et al. (2014) also present a review of literature on causal
inference under interference, but most of their summary focuses on methods
for randomized experiments. As a consequence, our overview will partly
overlap with their survey. The most obvious overlap being in Section 3.1.1.

It is also worth noting that there are other proposals, which we do not
cover in this paper, e.g., when data are “paired”, i.e., clusters of size two.
For example, studies where one of two individuals in a household get treated
and the other does not. The interested reader is referred to the following
papers: Chiba (2012), Halloran (2012), Halloran and Hudgens (2012), and
VanderWeele et al. (2012).

3.1 Clustered data

Many of the proposals on causal inference in the presence of interference
are for situations where the individuals under study are clustered and where
one allows interference between individuals within a cluster (or group) but

5



not between clusters. The idea is that the clusters should be separated in
some way so that interference between individuals in different clusters is
impossible. Thus, we have a situation with partial interference.

These methods require that there are multiple groups. They also require
that the groups are fixed, i.e., that individuals belong to one and only one
group during the study period.

There are methods for randomized studies and in the last few years
methods for non-randomized studies have also been suggested.

3.1.1 Randomized studies

Hudgens and Halloran (2008) is one of the first and also one of the most cited
papers suggesting ways to make inference under interference in randomized
studies. Many of the subsequent proposals are continuations on this seminal
paper, which we, therefore, will describe in quite some detail.

Estimating direct, indirect, total, and overall causal effects in two-
stage randomized experiment

Hudgens and Halloran (2008) defined causal estimands which they denote
direct, indirect, total, and overall causal effects in a two-stage randomized
setting. The population of interest consists of N > 1 groups where inter-
ference is possible between individuals in the same group but not between
individuals in different groups. The vector Zi ≡ (Zi1, . . . , Zini) contains in-
formation on the treatment assignment (0 or 1) of each of the ni individuals
in group i, i = 1, · · ·N . The potential outcome of individual j in group i is
denoted by Yij(zi), where zi are possible values of Zi. Thus, the outcome
of individual j depends on the treatment assignment of individual j, Zij , as
well as on the other ni−1 individual’s assignments, Zi(j), but the outcome of
individual j does not depend on the treatment assigments of the individuals
in other groups.

In the first stage of the randomization, the N groups are randomized
to either strategy ψ with a high proportion treated or strategy φ with a
low proportion treated individuals (or even no treated individuals4). In the
second stage, individuals within groups are randomly assigned to be treated
(z = 1) or not treated (z = 0), where individual treatment probabilities
depend only on whether the group is assigned to strategy ψ or φ in the
first stage of randomization. That is, within a group all individuals have

4If φ is a strategy implying no treated individuals then a group randomized to φ is
called a no-intervention group.
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the same treatment probability but that probability is different between the
two group strategies.

Direct causal effects

The individual direct causal effect for individual j in group i is defined as
the difference in potential outcomes for that individual given the treatment
and without the treatment, all else being equal. That is,

CED
ij (zi(j)) ≡ Yij(zi(j), zij = 1)− Yij(zi(j), zij = 0).

The individual average direct causal effect for individual j in group i
under strategy ψ is defined as the difference in average potential outcomes
of treatment compared with no treatment, where the average is over all
possible treatment allocations of the other (ni − 1) individuals. We denote
this

CE
D
ij (ψ) ≡ Y ij(1;ψ)− Y ij(0;ψ).

Averaging over all individuals of the group gives the group average direct
causal effect:

CE
D
i (ψ) ≡ Y i(1;ψ)− Y i(0;ψ) =

ni∑
j=1

CE
D
ij (ψ)/ni.

The population average direct causal effect is defined as the average of the
group average direct causal effect over all groups:

CE
D

(ψ) ≡ Y (1;ψ)− Y (0;ψ) =
N∑
i=1

CE
D
i (ψ)/N.

The two first direct causal effects (individual and individual average)
are not estimable as an individual is only observed under either treatment
(zij = 1) or no treatment (zij = 0). The estimator of the group average
direct effect is just the difference of sample means between the treated an
non-treated individuals of group j. Taking averages of this estimate over all
groups under strategy ψ yields an estimate of the population average direct
causal effect.

The effects are defined and estimated in the same manner under strategy
φ.
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Indirect causal effects

An indirect causal effect on an individual is an effect from the treatment
received by others in the same group, i.e., a spillover effect. The individual
indirect causal effect is defined as the difference between the outcome an un-
treated individual would have in a group under strategy ψ and the outcome
the same individual would have in a group under strategy φ. We write this
as

CEI
ij(zi(j), z

′
i(j)) ≡ Yij(zi(j), zij = 0)− Yij(z′i(j), z

′
ij = 0),

where zi (z′i) is the treatment indicator vector of the ψ (φ) group. Similarly
to direct effects, individual average, group average, and population average
indirect effects are defined as

CE
I
ij(ψ, φ) ≡ Y ij(0, ψ)− Y ij(0, φ),

CE
I
i (ψ, φ) ≡ Y i(0, ψ)− Y i(0, φ) =

ni∑
j=1

CE
I
ij(ψ, φ)/ni

and

CE
I
(ψ, φ) ≡ Y (0, ψ)− Y (0, φ) =

N∑
i=1

CE
I
i (ψ, φ)/N,

respectively.
The individual indirect causal effects are not possible to estimate due to

the fact that an individual belongs to either a group under ψ or a group under
φ. Also at the group level, the indirect causal effect cannot be estimated
due to the fact that a group is only observed under one of the two strategies.
The population average indirect causal effect is estimated by the difference
in average sample means of the untreated in the ψ groups and the untreated
in the φ groups.

Total causal effects

A total causal effect is the difference in outcomes between being treated in
a group under strategy ψ and being untreated in a group under strategy φ.
The individual, individual average, group average, and population average
total causal effects are defined by

CET
ij(zi(j), z

′
i(j)) ≡ Yij(zi(j), zij = 1)− Yij(z′i(j), z

′
ij = 0),
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CE
T
ij(ψ, φ) ≡ Y ij(1, ψ)− Y ij(0, φ),

CE
T
i (ψ, φ) ≡ Y i(1, ψ)− Y i(0, φ) =

ni∑
j=1

CE
T
ij(ψ, φ)/ni

and

CE
T

(ψ, φ) ≡ Y (1, ψ)− Y (0, φ) =
N∑
i=1

CE
T
i (ψ, φ)/N,

respectively. Note that the total effect is the sum of the direct and indirect
effects on each level (i.e., individual, individual average, group average, and
population average levels).

Again, the individual and group-level effects cannot be estimated as indi-
viduals/groups are only observed under one of the two treatments/strategies.
The population average total causal effect can be estimated by taking aver-
ages of the sample means of the treated in the ψ groups to estimate Y (1, ψ)
and by taking averages of the sample means of the untreated in the φ groups
to estimate Y (0, φ).

Overall causal effects

The overall causal effect is the effect of strategy ψ compared to strategy
φ on the outcomes on individual, individual average, group average and
population average level defined by

CEO
ij (zi, z

′
i) ≡ Yij(zi)− Yij(z′i),

CE
O
ij(ψ, φ) ≡ Y ij(ψ)− Y ij(φ),

CE
O
i (ψ, φ) ≡ Y i(ψ)− Y i(φ)

and
CE

O
(ψ, φ) ≡ Y (ψ)− Y (φ).

In practice, only the population average total causal effect can be esti-
mated. This is done by averaging the group means of the ψ and φ groups
and taking the difference between those averages.

The overall causal effect can often be of interest for policy makers. Ex-
amples of research questions that could be answered include ’how would
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infection rates, on average, differ between two vaccination schemes?’ and
’how would the unemployment rate change if a new training program is
implemented?’.

Confidence intervals for the direct, indirect, total, and overall
causal effects

Under the additional assumption of stratified interference, Hudgens and Hal-
loran (2008) suggested estimators of the variance of the direct, indirect,
total, and overall causal effect estimators too. In short, the assumption of
stratified interference can be seen as an assumption that only the proportion
of treated in the group matters for the potential outcomes of an individual
and not which particular individuals in the group that are treated.

For binary outcomes, exact confidence intervals for the four effects de-
fined in Hudgens and Halloran (2008) were derived in Tchetgen Tchetgen
and VanderWeele (2012). However, Rigdon and Hudgens (2015) pointed out
that these intervals are rather conservative and can be very wide. Instead
these authors derived other exact confidence intervals that perform better.

Liu and Hudgens (2014) considered large sample confidence intervals of
Wald-type. These perform well when the number of clusters are large, which,
however, is seldom the case in practice.

The R package interferenceCI (Rigdon, 2015) can be used to compute
all the confidence intervals mentioned above.

3.1.2 Non-randomized studies

For clustered data from non-randomized studies there are also a few sugges-
tions, e.g., Tchetgen Tchetgen and VanderWeele (2012), Lundin and Karls-
son (2014), and Ferracci et al. (2014). Partial interference is assumed, in the
same manner as in Hudgens and Halloran (2008). All three papers also make
additional assumptions similar to those usually made for causal inference
in observational studies, e.g., assuming that all confounders are controlled
for (unconfoundedness assumptions). In the estimations of causal effects,
estimated treatment probabilities (propensity scores), i.e., the conditional
probability for an individual to be treated given his/her charachteristics,
are used to make individuals comparable either by matching methods or by
using propensity scores as weights in inverse probability weighting (IPW)
estimators (e.g., Hirano et al., 2003).

Other, more parametric, methods on how to handle interference in non-
randomized studies with clustered data are found in Hong and Raudenbush
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(2006) and Verbitsky-Savitz and Raudenbush (2012), which both used para-
metric generalized hierarchical linear models to mimic multi-stage random-
ized experiments. These methods are not covered in this review.

Two-stage partly non-randomized studies

Lundin and Karlsson (2014) considered two-stage experiments where the as-
signment of treatment assignment strategies (ψ, φ) to clusters is randomized
(first stage) but the assignment of individuals within clusters to treatment
or control (second stage) is not. Instead they are assigned in some other
manner, e.g., by self-selection or competition to the fixed number of avail-
able positions for treatment, determined by the randomly selected treatment
assignment strategy for their cluster.

Under additional assumptions of unconfoundedness and overlap in the
covariate distributions of treated and untreated individuals within each
group, the authors proposed that individual treatment probabilities should
be estimated using background information on the individuals and that these
estimated probabilities then should be used to construct IPW estimators of
average potential outcomes needed to estimate the direct, indirect, total,
and overall causal effects defined in Hudgens and Halloran (2008).

The method proposed in Lundin and Karlsson (2014) can, for example,
be used when evaluating a labor training program in which some geograph-
ical regions have been randomly selected to administer a program with a
fixed number of training positions, but the participating unemployed within
these regions are selected in a non-random way.

Lundin and Karlsson (2014) illustrated the method by evaluating the
effect on childrens behaviour of implementing a parenting support program,
Triple P, in some preschools in Uppsala, Sweden. The preschools that partic-
ipated in the study were randomized to be “intervention preschools”, i.e., to
make available the Triple P to the parents of children within the preschool,
or to be “control preschools”, i.e., not offering the Triple P to the parents.
Within the intervention preschools parents could themselves choose to par-
ticipate in the program or not.

Two-stage non-randomized studies with a continuous treatment
at the cluster level

In Ferracci et al. (2014) the proportion treated in a market (market being
the word used instead of cluster or group there) is considered as the factor
that besides the individuals own treatment statuses affects the outcomes of
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individuals within that market. The potential outcomes of individual j in
group i can then be written as Yij(zij , qi), i.e., as a function of his/her own
treatment assignment (zij = 0 or zij = 1) and the proportion treated in the
group, qi (0 ≤ qi ≤ 1).

Their proposal can also, similar to Lundin and Karlsson (2014), be seen
as an extension of the proposal in Hudgens and Halloran (2008). However,
the group level treatment assignment strategies, i.e, the proportion treated
in a group, is no longer limited to a fixed number (ψ or φ) as in Hudgens
and Halloran (2008) (and Lundin and Karlsson, 2014) but considered as
a continuous “group level treatment” variable. Also, neither the propor-
tion treated in a group nor which individuals within a group that receive
treatment are decided by randomization.

Still, the aim in Ferracci et al. (2014) is to estimate population average
potential outcomes, Y (1, q) and Y (0, q) for all q. Then, by taking different
contrasts between these estimated population average potential outcomes,
population average direct causal effects (differences between estimated av-
erage potential outcome under treatment and estimated average potential
outcome under control for the same values of q) and population average indi-
rect causal effects (differences between estimated average potential outcomes
under control for different values of q) can be calculated.

The population average potential outcomes are suggested to be estimated
with a two-step procedure5, which is described in great detail and illustrated
with a labour market evaluation study in Ferracci et al. (2014). In short,
they suggest to first consider the proportion treated in each group as fixed,
and to use weighted regression with estimated propensity scores as weights to
estimate the group average potential outcomes within each group separately.
Then, considering the groups as the units of observation, the group average
potential outcomes as the units’ potential outcomes, and the proportion
treated as the continuous treatment variable, they suggest using a flexible
regression of the group average potential outcome on the proportion treated
and an estimated generalized propensity score (Hirano and Imbens, 2004) to
get estimates of the population average potential outcomes.

5The required identifying assumptions are also formed in two steps. The identifying
assumptions basically say that: i) there exists, within each group, observable individual
covariates that, if conditioned upon, make the treatment assignment independent of the
potential (individual) outcomes and ii) there exists observable group covariates that, if
conditioned upon, make the “group level treatment”, i.e., the assignment of proportion
treated in the groups, independent of the group average potential outcome.
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“One-stage” non-randomized studies

Tchetgen Tchetgen and VanderWeele (2012) also extended the estimators of
Hudgens and Halloran (2008) by proposing IPW estimators in observational
studies. However, they do not assume that treatment allocation is made in
two steps. Instead they assume that each individual’s probability of being
treated is a function of a covariate vector, which includes both individual
level and cluster level covariates.

To estimate the direct, indirect, total, and overall causal effects using an
IPW estimator, Tchetgen Tchetgen and VanderWeele (2012) assume that
conditional on the covariates, the treatment allocation is independent of the
potential outcomes and that all possible treatment allocations for a group
has a strictly positive probability of occurring. Thus, Tchetgen Tchetgen
and VanderWeele (2012) make group-level versions of the unconfoundedness
and overlap assumptions.

Note that they do not consider the treatment assignment strategy as
a continuous variable as in Ferracci et al. (2014); at least they do not
model and estimate the causal effects as (smooth) functions of the pro-
portion treated.

3.2 Network data

In many practical situations it is not possible to consider individuals as
belonging to separated groups as in the previous section, e.g., when all
individuals belong to a single cluster or if the clusters are not separated
enough. In these situations, there is risk for “global interference” instead of
partial interference.

If the relations or social connections between individuals are known, we
can consider each individual as a vertex in a graph or network and each
connection as an edge in the same network. In this section, we review some
of the proposals made for causal inference in such social networks but first
we describe the process of experiments in networks.

The description of the process of experiments in networks closely follow
the description in Eckles et al. (2014), which we think is very explicatory.
Let G = (V,E), where V is the vertex set and E is the edge set, denote the
network.

The process of experiments in networks consists of four phases:

1) initialization,

2) treatment assignment,
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3) outcome generation, and

4) analysis.

1 2
●

●

Treated
Control

3

● ● ● ●

Obs. outcomes

4
●

●

Tr. weight
Contr. weight

Figure 1: The process of experiments in networks consists of 1) initialization,
2) treatment assignment, 3) outcome generation, and 4) analysis. Adapted
from Figure 1 in Eckles et al. (2014).

The initialization phase consists of defining the graph and collecting in-
formation about the vertices, i.e., the individuals’ covariates and behaviour
prior to the experiment. After the initialization phase we have a particular
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network G = (V,E) and, possibly, a collection of vertex characteristics, X.
In the treatment assignment phase treatments are assigned to each vertex
according to some experimental design. Given the network and treatment
assignment, some data generating process produces the observed outcomes
in the outcome generation phase. Finally, in the analysis phase an estimator
is constructed, assigning different weights to the observations, in order to es-
timate the effects of interest, i.e., the estimands. The process of experiments
in networks is illustrated in Figure 1.

3.2.1 Estimating the average treatment effect of global treatment
vs global control

When considering if an intervention would be beneficial if applied to all
individuals, a natural choice would be to look at the average treatment
effect of ”applying the treatment to all units [in the network] compared
with applying the control treatment to all units” (Eckles et al., 2014, p.
2). We henceforth call this estimand the average treatment effect of global
treatment (ATEGT).

Eckles et al. (2014) focused on how experimental design choices and/or
analysis decisions might reduce the bias of the estimator of ATEGT. They
provide sufficient conditions for bias reduction by using graph cluster ran-
domization (experimental design) and by using estimators that define effec-
tive treatments (analysis method) under potential global interference.

In short, graph cluster randomization means that the vertices are par-
titioned into clusters. Then, by a Bernoulli trial, each cluster is assigned
to be either a “treatment cluster” or a “control cluster”. All the vertices
in the “treatment clusters” are treated while all the vertices in the “control
clusters” are given the control treatment. Hence, when a vertex is assigned
treatment (or control) by graph cluster randomization so are also the ver-
tices close to it in the network, by design. The intuition is that graph cluster
randomization results in a situation closer to the situation of interest (i.e.,
all vertices under treatment or all vertices under control) than, e.g., the
independent random assignment of units (Zj ∼ Bernoulli(p)), which is the
most commonly used assignment design (cf. Figure 2).

Using estimation methods that define effective treatments are, in Eckles
et al. (2014), described as using only data from vertices that are effectively
in global treatment or effectively in global control to estimate ATEGT. For
example, an estimator of ATEGT might only compare vertices in treatment
that are surrounded by vertices in treatment with vertices in control that are
surrounded by vertices in control. Again, the intuition is that this results in
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●

Treated
Control

●

●

Treated
Control

Figure 2: Examples of treatment assignment designs: graph cluster random-
ization (left panel) and independent random assignment (right panel).

a situation closer to the situation of interest.
Eckles et al. (2014) investigated the performance of the aforementioned

methods by means of simulation for different networks and different out-
come generating processes, which are based on treatment assignments, ver-
tex covariates, and neighboring vertices’ covariates. The simulation results
indicate that using graph cluster randomization can reduce the bias substan-
tially compared to independent random assignment. Moreover, simulation
results indicate that using specific estimators can reduce bias even if they
are based on incorrect definitions of effective treatments. Reduction in bias
usually comes at the cost of increased variance but in many of the situa-
tions in their paper the bias reduction is large enough to reduce root mean
squared error (RMSE), which is a function of both bias and variance of the
estimator.

It is worth mentioning that the authors’ purpose with this paper, in
contrary with many others papers by other authors, was to evaluate the
methods under realistic conditions rather than deriving those (maybe unre-
alistic) conditions that would make the methods unbiased.
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3.2.2 Estimating effects of peer’s treatment assignment by expo-
sure mapping

In Aronow and Samii (2015) it is suggested that instead of trying to estimate
causal effects of treatment one could estimate causal effects of treatment
exposure. Individuals have a potential outcome per each possible treatment
exposure (level) instead of one per each treatment, which is what is assumed
under the no-interference assumption. The causal effects of interest could,
for example, be the difference between average outcomes under two different
treatment exposure levels.

Treatment exposure levels are defined (mapped) from the treatment as-
signment and from the constitution of the network at hand. Every vertex
is potentially exposed by its own assigned treatment and by the assigned
treatments to the other vertices in the network. Which of the other ver-
tices’ treatments that do affect its outcome depends on the social structure
described by the network and how the particular treatment effect can trans-
mit through it. The latter is an issue for the researcher to decide about;
some judgement has to be made about how peripheral social connections
between individuals have to be in order to not contribute with treatment
exposure to each other. Perhaps it is plausible to assume that only a ver-
tex’s closest neighbors may effect it and not its neighbors’ neighbors for
example. Perhaps the exposure level can be decided based on the number
of treated neighbors without having to consider which of the neighbors that
are treated, i.e., that all neighboring vertices are on equal footing regarding
transmitting treatment exposure.

Not just looking at treatments assigned by the randomization, but also
at treatment exposures received, means that the process of experiments
in networks consists of an additional phase compared to the process illus-
trated in Figure 1. In the exposure mapping phase, indirect exposure of
the treatments, which have been randomly assigned in the treatment as-
sighment phase, are transmitted through the network. Given the exposure
level, some data generating process produces the observed outcomes in the
outcome generation phase. Thus, the exposure mapping phase takes place
between phase 2 and 3 in Figure 1.

In Figure 3, where the process of experiments with exposure mapping in
networks is illustrated, we let the exposure mapping phase be denoted 21⁄2
to emphasize that it takes place between phase 2 and 3 in Figure 1.

In order to illustrate this we consider an example, where indirect expo-
sure transmits to a vertex’s neighbors and the amount of indirect exposure
is the same regardless of how many of a vertexs neighbors that are assigned
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to treatment. This means that each vertex falls into exactly one of four
exposure conditions (levels):

I Direct and indirect exposure: the vertex has been assigned to treat-
ment and at least one of its neighbors has also been assigned to treat-
ment.

II Isolated direct exposure: the vertex has been assigned to treatment
but all its neighbors have been assigned to control.

III Indirect exposure: the vertex has been assigned to control but at least
one of its neighbors has been assigned to treatment.

IV No exposure: neither the vertex nor its neighbors have been assigned
to treatment.

1 2
●

●

Treated
Control

2 1/2
●

●

●

●

I
II
III
IV

3

● ● ● ●

Obs. outcomes

4

●

●

●

●

Expos. weight  

I
II
III
IV

Figure 3: The process of experiments with exposure mapping in networks
consists of 1) initialization, 2) treatment assignment, 21⁄2) exposure mapping,
3) outcome generation, and 4) analysis. In the exposure mapping phase
treatment exposure transmits through the network, which (for this example)
yields four exposure levels: I) Direct and indirect exposure, II) isolated direct
exposure, III) indirect exposure, and IV) no exposure.
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The example above is similar to the simulation study set up in Aronow
and Samii (2015), but they also describes other situations that yields differ-
ent exposure levels. In Hellman and Lindberg (2015) [bachelors thesis] yet
other examples are given.

When the network, the randomization design, and the principles of the
exposure mapping are known exactly, the probabilities of being exposed to
one or another level are also, for each vertex, known. For the example above,
the probabilities that vertex j belongs to exposure class I, II, III, and IV
respectively are known. These are called the individual exposure probabili-
ties. Also the joint exposure probabilities, i.e., probabilities that the pair of
vertices j and j′ belongs to specific exposure levels, are known. If the net-
work is too large to be able to compute the exposure probabilities exactly, it
is possible to approximate them by simulation; taking the relative frequen-
cies of the vertex belonging to an exposure class in repeated assignments of
treatments according to the randomization design.

In the example, each individual j has four potential outcomes and we
want to estimate the average potential outcome in the population for each
of these four exposure levels and then look at interesting contrasts among
them. However, we can not calculate these averages directly, since we only
observe the potential outcome of the exposure level that the individual ac-
tually is exposed to and not the other three outcomes. Suppose all units
have non-zero probabilities of being exposed by exposure level, l, for all l
(l =I, II, III, IV in the example). Then, by design6, the set of individ-
uals for which we observe the potential outcome of exposure level l is an
unequal-probability without-replacement sample from the set of all indi-
viduals potential outcomes of exposure level l. Thus, a Horvitz-Thomson
(HT) estimator7 (Horvitz and Thompson, 1952) can be used to estimate the
average potential outcome.

However, as Aronow and Samii (2015) points out, even if treatment
assignment can be manipulated arbitrarily with the experimental design,
treatment exposure levels may be constrained by the characteristics of the
network, i.e., the social relations amongst individuals. For example, in the
example above, a vertex without neighbors can never be exposed to level I
and III and a vertex with many neighbors may have very low probability
of being exposed to level II or IV. In these cases, the method will run into
problems.

6Phases 1 and 2 in the process of experiments in networks, see Figure 1.
7In causal inference the term IPW estimator is a more commonly used term than the

HT estimator (cf. Hirano et al., 2003).
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3.2.3 Estimating k-level peer influence effects

Toulis and Kao (2013) also considers experiments in networks and introduce
new estimands that they think are of interest when considering peer influence
effects. These estimands are based on the number of neighbors, k, that
an individual (vertex) has. In order to describe these estimands, we first
introduce some notation from their paper.

For vertex j ∈ V , let Nj denote its neighborhood (with the vertex j itself
excluded), i.e., the set of all vertices that are neighbors to j (have an edge
between them and vertex j). Let ZNj be the treatment assignment vector
of the neighbors of j. Assume that, for all j, Yj(Z) = Yj(Zj ,ZNj ), i.e., that
a vertex outcome can be affected only by the treatment it receives itself and
by the treatments its neighbors receive.

Let Vk be the set of vertices that have at least k neighbors. Also, let
Mjk be the set of neighbors of j ∈ Vk, who are also neighbors to at least
one other vertex in Vk. We call Mjk for shared neighbors of j. Neighbors
not shared with others is called insulated neighbors.

Let Z(Nj ; k) denote the set of all assignments on Nj with exactly k
neighbors of j being treated. Vertex j is then said to be k-level exposed.
There are

(|Ni|
k

)
such possible assignments, where |Ni| denotes the cardinality

(i.e., the number of elements) of the set Ni. Let Z1(Nj ; k) denote the set
of all assignments in Z(Nj ; k), where at least one of the shared neighbors of
j is treated, while Z0(Nj ; k) denotes the set of all assignments in Z(Nj ; k),
where j is k-level exposed but all of its shared neighbors receives the control
treatment, i.e., Z0(Nj ; k) = Z(Nj ; k) \ Z1(Nj ; k).

The first estimand introduced in Toulis and Kao (2013) is the estimand
for primary effects

ξ ≡ 1

|V |
∑
j

Yj(1,ZNj = 0)− Yj(0,ZNj = 0),

i.e., the primary effect is the average effect of treatment vs control when all
other vertices in the neighborhood are assigned to control. Thus, the average
treatment effect when there is no peer influence at all, since no peers are
treated.

They also introduces estimands for peer influence effects, both main
estimands (δk) and additional estimands (δk,1, δk,0). The (main) estimand
for k-level peer influence effects is defined as

δk ≡
1

|Vk|
∑
j∈Vk

(|Nj |
k

)−1 ∑
z∈Z(Nj ;k)

Yj(0, z)− Yj(0,0)

 ,
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i.e., for the untreated, the effect of being k-level exposed compared to not
being exposed to peer influence at all (all neighbors being untreated).

The (additional) estimands for k-level peer influence effects of insulated
neighbors are defined as

δk,0 ≡ 1

|V |
∑
j

(
|Nj | − |Mjk|

k

)−1
×

∑
z∈Z0(Nj ;k)

Yj(0, z)− Yj(0,0), (1)

and for k-level peer influence effects of non-insulated neighbors as

δk,1 ≡ 1

|V |
∑
j

((
|Nj |
k

)
−
(
|Nj | − |Mjk|

k

))−1
×

∑
z∈Z1(Nj ;k)

Yj(0, z)− Yj(0,0). (2)

Thus, in (1), for the untreated, the effect of being k-level exposed by its
insulated neighbors (neighbors not shared with others) compared to not
being exposed to peer influence at all. In (2), also for the untreated, the
effect of being k-level exposed by non-insulated neighbors (at least one of
the treated neighbors is a shared neighbor) compared to not being exposed
to peer influence at all.

Toulis and Kao (2013) also propose ways to estimate their suggested es-
timands. Their proposals are rather complicated and therefore, a detailed
description of them is beyond the scope of this paper. Their first proposal is
a randomization based inference approach and they argue that a sequential
randomization design should be used when conducting the experiment in
order to get enough vertices in the “status of interest”, e.g., non-exposed or
k-level exposed (by insulated or non-insulated neigbours) and so on. This
requires that the network is known but also it depends heavily on the net-
work topology, i.e., the how the social relations amongst individuals are
composed. For example, consider, as an extreme case, a network where all
vertices are connected with all the other vertices, then as soon as a ver-
tex get k-level exposed no other vertex can be non-exposed. Their second
proposal is a model-based approach, viz. a linear model which relies on an
assumption of additivity of the primary effects and peer influence effects to
the response mean. In the model, they allow for network uncertainty by
considering weighted random networks. We refer our readers to their paper
for further details.
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4 Empirical examples of interference

In this section we portray a number of evaluation studies where the investi-
gators have found indirect effects. The examples include both labor market
program evaluations and evaluations of other interventions, e.g., in schools,
neighborhoods or workplaces. The purpose of this section is to show that
the problem of interference is present in many situations and that it should
not be neglected in evaluation studies.

4.1 Displacement effects from labor market policies in France

Crépon et al. (2013) found that the significant and positive treatment effect
of “job placement assistance” for young, educated job seekers on finding a
stable job, that was seen (assuming no-interference) in a two-step random-
ized experiment in France was actually not as good as it first seemed. The
job seekers that were randomly selected to get job placement assistance were
indeed employed to a greater extent than the ones without the treatment,
but it was not only due to that the individuals under treatment got a big-
ger chance to get employed but rather that the untreated individuals got a
smaller chance when other job seekers in their region got treatment.

In the experiment, 235 regions participated, and the treatment was dis-
tributed to the job seekers through a two-step procedure. The regions were
randomly assigned to offer 0%,25%, 50% or 100% of the job seekers in the re-
gion the job placement assistance. Then, based on the result of the first step
of the experiment, a proportion of job seekers in each region were randomly
selected to be offered the job placement assistance.

Crépon et al. (2013) reported that, after eight months, the job seekers
assigned to job placement assistance were 2.5 percentage points more likely
to have a stable job than unassigned job seekers in treatment areas. Hence,
the program seemed to have a positive effect. At the same time, untreated
job seekers in a treated area were 2.1 percentage points less likely to find
any stable job than untreated job seekers in control areas, i.e., areas with
0% treated individuals. This so called displacement effect8 is reported to be
significant at the 10% level. Thus, the job placement assistance program had
little net benefits. However, they could not find enough empirical evidence
to say that the effect on untreated job seekers was different in areas with
different proportion of treated individuals; the displacement effect was about
the same size in areas with 25% treated and areas with 75% treated.

8Or indirect effect, if using the terminology introduced in Section 3.1.1 .
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Ferracci et al. (2014) also analyzed data from regions in France. They
considered “participation in a training program” as the treatment and used
register data on the proportions treated in different markets (defined by
region, occupation, and time period) over several years. They assumed that
there is no spillover between markets and that the individuals potential
outcomes can be written as a function of its own treatment status and the
proportion of treated individuals in the market it belongs to. The method
used to analyze the data is the method suggested in the same paper (cf.
Section 3.1.2).

The authors argue that SUTVA violations are to be expected in this situ-
ation, since if many individuals are treated there may be crowding out among
workers but also that if many individuals are treated (i.e., that the number
of qualified job seekers increases) there may be more vacancies posted by
the firms. Indeed, Ferracci et al. (2014) report that the estimated average
potential outcomes do not remain constant when the proportion of treated
changes. The estimated average probability of getting a job within a year if
treated, decreases when the proportion of treated increases. The estimated
average probability of getting av job within a year if untreated, first de-
creases when the proportion of treated increases, but then starts increasing
when the proportion treated is high enough (5.5%), i.e., it follows a convex
pattern.

4.2 Indirect effects of foreign ownership on firm productivity
in China

Girma et al. (2015) analyzed firm level data from the Chinese manufactur-
ing industry, and the effect of having foreign ownership instead of being a
domestic firm on firm productivity.

The firms were divided into 127 clusters, based on geographic areas and
industry classification, and it was assumed that the no-interference assump-
tion holds across clusters, but not within cluster.

The potential outcomes under the two treatments (foreign or domestic
ownership) were expressed as functions of the individual firms treatment sta-
tus and the proportion of treated firms in the cluster that the firm belonged
to. For details about the estimation procedure, which involves measures
taken to deal with the treatment not being randomized (e.g., estimating the
propensity of a firm being foreign owned), see Girma et al. (2015).

The results show that the potential outcomes vary systematically with
the proportion of treated in the cluster. The estimated direct effect was
positive and higher the more foreign-owned firms there were in a cluster.
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The estimated indirect effects of foreign-owned firms in the cluster on the
domestic firms were negative and differed with the proportion of foreign own-
ership in the cluster. Spillover was more negative with increasing proportion
of foreign ownership up to a threshold when spillover became less negative.
The authors argue that their work provides important inputs into the policy
debate on the benefits from agglomerations of foreign owned firms.

4.3 Work absence influenced by peers behaviour in Sweden

In Sweden, workers receive temporary benefits for sickness absence from the
workplace up to seven days without being required to present a doctor’s
certificate. In a randomized field experiment, conducted in 1998 in Gothen-
burg, Sweden, individuals assigned to treatment were allowed to be absent
up to fourteen days without presenting a doctor’s certificate while the indi-
viduals assigned to the control still had to show a doctors certificate on the
8th day of a sickness absence spell in order to continue to receive temporary
benefits. The effect of the revised rules on the length of the non-monitored
sickness absence spells was of interest to study.

Johansson et al. (2014) analyzed the results of the experiment and found
that the decreased monitoring of absenteeism increased non-monitored ab-
sence among the treated workers. They also found a positive peer effect in
absenteeism, i.e., the higher the proportion treated individuals in a work-
place, the more non-monitored absence increased among untreated individ-
uals. Hesselius et al. (2009) and Hesselius et al. (2013) also analysed the
same data and draw similar conclusions about the existence of peer effects
in the experiment.

4.4 Peer influence in an anti-conflict intervention in schools
in New Jersey, USA

Paluck et al. (2016) report results from an experiment in 56 schools in New
Jersey, USA, investigating the effect of an anti-conflict (anti-bullying) inter-
vention performed by individual students on the whole schools’ behavioral
climate, measured with social norm questions regarding conflict behaviors
asked before and at the end of the experiment and with schools’ administra-
tive records of student conflict-related disciplinary events. At the beginning
of the study, each school’s social network were mapped by asking all students
to report up to 10 students at their school whom they choosed to spend time
with (in school, out or school, or online) during the last few weeks.
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Half of the schools were randomized to receive an anti-conflict interven-
tion (henceforth called treatment schools) and there rest were assigned to
be control schools. At each treatment school, a group of students (so called
“seed-eligibles”) were selected by a deterministic algorithm based on gender
and grades (see details in Paluck et al., 2016). By randomization, half of
the seed-eligibles were invited to participate in the anti-conflict intervention,
i.e., to be “seeds”. If a seed was in the top 10% of their school when it came
to number of connections to other students (measured as number of reported
connections by other students) it was called a “social referent seed”. The
proportion of social referent seeds varied between treatment schools, from
0-37%. During the anti-conflict intervention, the seeds were encouraged by
a trained research assistant (with whom they met every other week) to take
public stance against different types of conflicts, which they had identified
at their own school. For example, seed students created hashtag slogans and
posted them online together with their own photos to link the statements
to their identities.

Due to the randomization of schools and seeds (from the group of seed
eligibles) the evaluation of school-level outcomes were straight forward us-
ing linear regression, see details in Paluck et al. (2016). The average levels
of disciplinary reports of student conflicts in treatment schools were signif-
icantly lower than in control schools. In control schools every student was
disciplined for student conflicts on average 0.2 times during the year and in
treatment schools on average 0.14 times. Schools with the highest propor-
tion of social referents seeds assigned to treatment had the greatest decline
in number of disciplinary reports, e.g., with 20% of the seeds in treatment
schools being social referent seeds each student was disciplined for student
conflicts on average 0.08 times during the year.

Paluck et al. (2016) also considered how seed students (i.e., the students
who participated in the anti-conflict intervention by taking public stance
against conflicts) affected other students in their social network in terms of
how they answered the social norm questions about conflict behavior at the
end of the experiment. Since the network was known before the randomiza-
tion of seeds and schools it was possible to calculate, for each student in a
school network, the probability of being exposed to a social referent seed, to
a non-referent seed, or to no seed at all. The authors consider four exposure
levels (see details in Paluck et al., 2016) and restrict their analysis on the
sub-population of students which had a positive probability of falling into
all four exposure levels. They use a IPW estimator to estimate the average
potential outcome under these four different exposure levels, cf. Aronow
and Samii (2015), and found “a significant social effect attributable to seed
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students, and particularly as a result of social referent” (Paluck et al., 2016,
p. 569).

The authors therefore conclude that their study shows that it is possible
to reduce student conflict with a student-driven intervention but that it
matters which kind of students that get involved in the intervention; social
referent students have bigger influence over social norms and behaviour in
the school than other students have.

4.5 Spillover effects in neighborhoods and schools

In many other situations, there is also risk of interference between individu-
als. For example, interventions in schools might affect the pupils not directly
receiving the treatment but being exposed to it through their classmates.
Interventions in neighborhoods might affect residents not directly treated
but influenced by their neighbors behaviour or decisions.

Hong and Raudenbush (2006) studied the effect of retaining low-achieving
children in kindergarten instead of promoting them to first grade, on reading
and math scale scores. If low-achieving children are retained it might affect
the first grade class they otherwise would be in by facilitating teacher work
when the first grade class is more homogeneous. Using the terminology by
Ogburn and VanderWeele (2014), this is a typical example of allocational
interference (see also Section 2).

As mentioned before, Lundin and Karlsson (2014) illustrated their pro-
posed method, which is described in 3.1.2, using data on the effect of parent
participation in a parenting program on their child’s behaviour. The be-
haviour of untreated children might also change since they play together
with treated children all day long in their preschool. This could be seen as
an example of interference by contagion (cf. Section 2).

In one of the pioneering papers on causal inference under interference,
Sobel (2006), the so called “Moving to Opportunity” (MTO) demonstration
is given as an example of a situation when the no-interference assumption
was not likely to hold but where many researchers have analyzed the data
as if it did hold.

The MTO demonstration was a housing mobility experiment in five cities
in the U.S., where volunteers living in high-poverty neighborhoods were
randomly assigned to receive counseling and housing vouchers to move to
low-poverty neighborhoods, or assigned to receive housing vouchers to move
to any neighborhood, or assigned to a control group (for more details, see
Sobel (2006) and references therein).

Due to the recruitment of MTO volunteers, by group meetings, it is very

26



likely that many participants knew other participants. If assigned to receive
a treatment, an individual might more be likely to move if his/her friends
and neighbors are also assigned to treatment and move than if he/she is
the only one amongst the friends assigned to treatment. If this is the case,
the no-interference assumption does not hold. Moreover, the no-interference
assumption will not hold if, due to a tight rental market, the possibility to
move is different if many individuals are assigned to treatment compared to
if few individuals are assigned to treatment.

5 Discussion

In this paper we have reviewed a subset of statistical methods for causal
inference under interference. These methods are important contributions
to the field of causal inference, since the no-interference assumption (or
SUTVA) is not plausible in many situations. It is only from 2012 and on-
wards the literature has begun to grow rapidly. There is also pioneering
work from a few years earlier. Hudgens and Halloran (2008) is the most
cited of these earlier papers and, in one way or the other, the starting point
of a majority of the subsequent proposals.

We label the methods we included in the review as either methods for
clustered data (Section 3.1) or methods for network data (Section 3.2).
For clustered data there are suggestions for both randomized and non-
randomized studies, while all proposals for network data, so far, are for
randomized studies.

This paper does not give an absolute comprehensive summary of the field
of causal inference under interference. As mentioned in Section 3, there are
for example methods suggested for situations where data are paired. There
are also papers arguing that there is a relation between interference and the
seemingly unrelated area causal interaction which can be utilized so that the
many existing empirical tests for causal interaction can be used to test for
specific forms of interference (see VanderWeele et al. (2012)). Other papers
suggesting tests for interference include Rosenbaum (2007), Aronow (2012),
and Bowers et al. (2013). These papers were not included in our review
since our focus was on estimation and not hypothesis testing. Moreover,
the focus in this paper was on statistical methods suitable for labor market
evaluations, which, in our eyes, disqualified, e.g., the methods for paired
data.

It is difficult to evaluate the pros and cons of the suggested methods by
comparing their performance with each other since they all are very situa-
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tional, e.g., the estimands of interest are (very) different. The estimand in
one study could be the ATEGT, which is the natural choice when consider-
ing if an intervention would be beneficial or not if applied to all individuals,
in another study the natural choice of an estimand could be the k-level peer
influence effect (Toulis and Kao, 2013) and in yet another study the popu-
lation overall causal effect (Hudgens and Halloran, 2008) could be of main
interest. Thus, there is no use in comparing properties such as the size of
bias and variance of the estimators.

Worth noting is that all, but one, of “real world” examples covered in
Section 4 assume partial interference, i.e., that all individuals in the study
belongs to a group (cluster) and that there is no interference or spillover ef-
fects between individuals belonging to different groups. Moreover, of these
examples, all but one (work absence) assume that the treatment assign-
ment, regardless if it is randomized or not, is accomplished in two steps;
first assigning “treatment strategies” to groups and then, conditional on the
treatment strategy, assigning individuals within each group to treatment or
control.

One drawback with these methods for causal inference under interference
is the assumption of multiple and fixed groups; there are many situations
where there are not enough groups (maybe there is just one group) or where
the groups are not separated enough for partial interference to be a plausible
assumption.

As far as we know, there are fewer examples of evaluations studies where
any of the methods presented in Section 3.2 has been used. Among the ex-
amples in Section 4, only one (anti-conflict) concerns network data. This
might of course be because these methods have not reached out to the prac-
titioners yet, but it is probably because of lack of information about the
network, i.e., which individuals in the study that socialize with each other.
This information is typically not found in registers and is not, traditionally,
asked for in questionnaires either. On the other hand, massive amount of
information about peoples’ online social networks are available to compa-
nies such as Facebook, Inc. and others. Many experiments on how, e.g.,
information and behavior spread within online networks have been done
(see Centola, 2010; Bond et al., 2012). How such data could be used in the
future is still unclear.

Conditionally on that it is possible to get information about how the
network between individuals in the study is structured we think that all of
the suggested methods presented in Section 3.2 have potential to be useful
in evaluation studies, especially when indirect (spillover) effects are of main
interest to measure. But the usefulness of the methods suggested by Toulis
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and Kao (2013) and Aronow and Samii (2015) depend heavily on network
topology of the network at hand. For example, due to network topology
there might be very low probability for certain exposure classes making
the variance of the IPW estimators very large (Aronow and Samii, 2015;
Hellman and Lindberg, 2015). Thus, even if treatment assignment can be
manipulated arbitrarily by the experimental design, the treatment exposure
is constrained by the network topology.

Using the method suggested by Aronow and Samii (2015), i.e., estimat-
ing effects of treatment exposure instead of treatment effect, requires that
the researcher has an idea about how the treatment is transmitted through
the network. Is it only the direct neighbors that get exposed or is the treat-
ment transmitted even further through the network? Is the exposure the
same regardless of the number of treated neighbors and neighbors’ neigh-
bors and so on? This is a challenge of course, but also a possibility for the
researcher; he/she can use several competing models for the treatment ex-
posure mapping and maybe report estimates of treatment exposure effects
from all of these.

All of the methods suggested for networks, so far, are for randomized
studies. Since many evaluation studies of labor market programs are based
on register data where program participation is not randomized to the un-
employed, methods for non-randomized studies are much needed also for
network data.

At a first glance, one could think that it should be possible to generalize
the proposal of Aronow and Samii (2015) to non-randomized studies by us-
ing a set of observable covariates to estimate the probability to be assigned
to treatment and then, from these estimated treatment probabilities and
knowledge about the network, deduce the probability to be exposed to the
different treatment exposure levels. For this to work, however, the set of
covariates has to be such that conditional on them the potential outcomes
should be independent of the treatment exposure level. This is different from
the usual unconfoundedness assumption, i.e., that the potential outcomes
are independent of the treatment assignment conditionally on the covariates.
Thus, on a second thought, it might not be a simple task to generalize it to
non-randomized studies, since this new type of unconfoundedness assump-
tion might be difficult to assess.

We conclude this discussion with a quote from the last section in Van-
derWeele et al. (2014); “Much more exciting research is left to be done on
causal inference under general forms of interference.” In addition to this
we want to point out that the remaining research is not only exciting but
also very important. Ignoring interference can lead to seriously misleading
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conclusions from evaluation studies. Methods that are viable in practise and
with plausible assumptions are highly needed.
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