






1 Introduction

Unobserved heterogeneity is prevalent in modern economics, both in reduced-form and struc-

tural work, and accounting for it often makes large quantitative di�erences. In nonlinear panel

data models �xed-e�ects approaches are conceptually attractive as they do not require restrict-

ing the form of unobserved heterogeneity. However, while these approaches are well understood

from a theoretical perspective,1 nonlinear �xed-e�ects estimators have not yet found wide ap-

plicability in empirical work. These methods raise computational di�culties due to the large

number of parameters involved in estimation. Fixed-e�ects methods may also be infeasible in

panels with insu�cient variation, and they face challenges in the presence of multiple individual

unobservables such as time-varying heterogeneity.

Discrete approaches to unobserved heterogeneity o�er tractable alternatives. Consider as

an example the literature on structural dynamic discrete choice models. Following Keane and

Wolpin (1997), numerous papers have modeled individual heterogeneity as a small number of

unobserved types. In this context, discreteness is appealing for estimation as it leads to a �nite

number of unobserved state variables and reduces the number of parameters to estimate. How-

ever, the properties of discrete estimators have so far been studied under particular restrictions

on the form of heterogeneity, typically under the assumption that heterogeneity is discrete in

the population. In this paper we consider a class of easy-to-implement discrete estimators,

and we study their properties in general nonlinear models while leaving the form of individual

unobserved heterogeneity unspeci�ed; that is, under \�xed-e�ects" assumptions.

We focus on two-step grouped �xed-e�ects estimation, which consists of a classi�cation and

an estimation steps. In a �rst step, individuals are classi�ed based on a set of individual-speci�c

moments using the kmeans clustering algorithm. Then, in a second step the model is estimated

by allowing for group-speci�c heterogeneity. The kmeans algorithm is a popular tool which

has been extensively used and studied in machine learning and computer science, and fast

and reliable implementations are available. Classifying individuals into types using kmeans is

related to the grouped �xed-e�ects estimators recently introduced by Hahn and Moon (2010)

and Bonhomme and Manresa (2015). However, unlike those methods, and unlike random-

e�ects methods such as �nite mixtures, here the individual types and the model’s parameters

are estimated sequentially, as opposed to jointly.

When the number of groups is substantially smaller than the number of observations, two-

1Recent theoretical developments in the literature include general treatments of asymptotic properties of

�xed-e�ects estimators as both dimensions of the panel increase, and methods for bias reduction and inference.

See among others Arellano and Honor�e (2001), Hahn and Newey (2004), and Arellano and Hahn (2007).
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Figure 1: K-means clustering

Data 3 groups 10 groups
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Notes: Source NLSY79. The sample is described in Section 6. The kmeans partitions are indicated in

dashed.

step discrete estimators can improve computational tractability relative to existing methods.

Figure 1 provides an illustration in a migration setting. According to the dynamic location

choice model that we will describe in detail in Section 6, log-wages are informative about

unobserved individual returns in locations A and B. Individuals are classi�ed into groups based

on location-speci�c means of log-wages. Depending on the number of groups K, the kmeans

algorithm will deliver di�erent partitions of individuals. Taking K = 3 will result in a drastic

dimension reduction, however the approximation to the latent heterogeneity may be inaccurate.

Taking a larger K, such as K = 10, may reduce approximation error while still substantially

reducing the number of parameters relative to �xed-e�ects.

We characterize the statistical properties of two-step grouped �xed-e�ects estimators in

settings where individual-speci�c unobservables are unrestricted. In other words, we use discrete

heterogeneity as a dimension reduction device, instead of viewing discreteness as a substantive

assumption about population unobservables. We show that grouped �xed-e�ects estimators

generally su�er from an approximation bias that remains sizable unless the number of groups

grows with the sample size. However, as the number of groups increases, estimating group

membership becomes harder, and we show that this gives rise to an incidental parameter bias

which has a similar order of magnitude as the one of conventional �xed-e�ects estimators.

Importantly, our results show that estimation error in group membership has a non-negligible

asymptotic impact on the performance of grouped �xed-e�ects estimators, which contrasts with

existing results obtained under the assumption that heterogeneity is discrete in the population.
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Our asymptotic characterization motivates the use of bias reduction and inference methods

from the literature on �xed-e�ects nonlinear panel data estimation. Speci�cally, we use the

half-panel jackknife method of Dhaene and Jochmans (2015) to reduce bias.

Two-step grouped �xed-e�ects relies on two main inputs: the number of groups K, and the

moments used for classi�cation. We propose a simple data-driven choice of K which aims at

controlling the approximation bias. We describe a generic approach to select moments based on

individual-speci�c empirical distributions. Alternatively, moments such as individual means of

outcomes or covariates can be used provided they are informative about unobserved heterogene-

ity. In addition, we propose a model-based iteration where individuals are re-classi�ed based

on the values of the group-speci�c objective function. We show in simulations that iterating

may provide �nite-sample improvements compared to the baseline two-step approach.

Implementation of our recommended two-step grouped �xed-e�ects procedure is straight-

forward. Given moments such as means or other characteristics of individual data, the kmeans

algorithm is used to estimate the number of groups and the partition of individuals into groups.

Given those, the model’s parameters are estimated while allowing for group-speci�c �xed-e�ects.

Bias-reduced estimates are then readily obtained by repeating the same procedure on two halves

of the sample. Standard errors of bias-reduced estimators can be recovered using standard tech-

niques. Finally, the model can be used to update the classi�cation and compute an iterated

estimator.

An appealing feature of grouped �xed-e�ects is its ability to exploit commonalities between

di�erent dimensions of heterogeneity. This can be seen in Figure 2, where in this example

log-wages in the two locations are closely related to each other (that is, they approximately

lie on a curve). Such a structure could arise from the presence of a one-dimensional ability

factor, for example. The kmeans-based partition e�ciently adapts to the data structure in

a way that guarantees low approximation error. Consistently with this idea, we show that

kmeans has fast rates of convergence even in cases where heterogeneity is high-dimensional,

provided the underlying dimensionality of heterogeneity is low. In many economic models,

agents’ heterogeneity in preferences and technology is driven by low-dimensional economic

types, which manifest themselves in potentially complex ways in the data. Through the use

of kmeans, grouped �xed-e�ects provides a tool to exploit such underlying nonlinear factor

structures.2

2Hence, though related to principal component analysis (PCA), kmeans di�ers from PCA as it allows the

latent components to enter the model nonlinearly. See Hastie and Stuetzle (1989) and Chen, Hansen and

Scheinkman (2009) for di�erent approaches to nonlinear PCA.
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Figure 2: K-means in the presence of a low underlying dimension

Data 3 groups 5 groups
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Notes: Sample with the same conditional mean as in Figure 1, and one third of the conditional standard

deviation. The kmeans partitions are indicated in dashed.

We consider two extensions of the grouped �xed-e�ects approach where �xed-e�ects esti-

mators are either infeasible or poorly behaved, and exploiting the presence of a low underlying

dimension is key. In the �rst, the researcher’s goal is to estimate a model on cross-sectional

data or a short panel, while also having access to outside data (e.g., measurements of individual

skills or �rm productivity) which are informative about unobserved heterogeneity. We show

that grouped �xed-e�ects estimators which use external measurements for classi�cation have a

similar asymptotic structure as in the baseline analysis, with the important di�erence that a

statistical trade-o� arises since setting K too large may worsen statistical performance. Hence,

in this setting discretizing heterogeneity plays the role of a regularization scheme that reduces

incidental parameter bias, in addition to alleviating the computational burden.

In the second extension we consider models where unobserved heterogeneity varies over

time (that is, \time-varying �xed-e�ects"). Such models have applications in a variety of con-

texts, such as demand analysis in the presence of unobserved product attributes that vary

across markets. We show that grouped �xed-e�ects estimators may enjoy fast rates of conver-

gence depending on the underlying dimensionality of unobserved heterogeneity. For example,

time-varying paths of unobservables have a low underlying dimension when they follow a low-

dimensional linear or nonlinear factor structure, the interactive �xed-e�ects model of Bai (2009)

being a special case. Our results provide a justi�cation for using discrete estimators in settings

where unobserved heterogeneity is high-dimensional, provided its underlying dimension is not

too large.
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We illustrate the properties of grouped �xed-e�ects method in two di�erent economic set-

tings. First, we consider structural dynamic discrete choice models, where two-step methods

provide alternatives to �nite mixtures and related approaches.3 We set up a simulation exercise

based on estimates from a simple dynamic model of location choice in the spirit of Kennan

and Walker (2011), estimated on NLSY data. Using a data generating process with continuous

heterogeneity, we assess the magnitude of the biases of grouped �xed-e�ects estimators and the

performance of bias reduction.

In a second illustration, we revisit the estimation of workers’ and �rms’ contributions to

log-wage dispersion using matched employer-employee data. We focus on a short panel version

of the model of Abowd, Kramarz and Margolis (1999), and report simulation results calibrated

to Swedish administrative data. We compare the performance of two estimators: an additive

version of the grouped �xed-e�ects estimator introduced in Bonhomme, Lamadon and Manresa

(2015) which uses the wage distribution in the �rm to classify �rms into groups, and a �xed-

e�ects estimator. We �nd that grouped �xed-e�ects alleviates the incidental parameter bias

arising from low mobility rates of workers between �rms.

Related literature and outline. The analysis of discrete estimators was initially done

from a random-e�ects perspective, under functional form and/or independence assumptions

on unobservables and how they relate to observed covariates. Heckman and Singer (1984)’s

analysis of single-spell duration models provides a seminal example of this approach, in a

setting where individual heterogeneity is independent of covariates and continuous. There is

also a large literature on parametric and semi-parametric mixture models in statistics and

econometrics; see McLachlan and Peel (2000), Fr�uhwirth-Schnatter (2006), and Kasahara and

Shimotsu (2009), among many others.

Previously to this paper, the properties of grouped �xed-e�ects estimators have been char-

acterized under the assumption that unobserved heterogeneity is discrete in the population.

Under suitable conditions, estimated type memberships converge to the true population types

as both dimensions of the panel increase; see Hahn and Moon (2010), Lin and Ng (2012), Saggio

(2012), Bonhomme and Manresa (2015), Bai and Ando (2015), Su, Shi and Phillips (2015), and

Vogt and Linton (2015).

There has been little work studying properties of discrete estimators as the sample size tends

to in�nity together with the number of groups. Important exceptions are Bester and Hansen

3Finite mixture methods for structural dynamic discrete choice models are developed in Arcidiacono and

Jones (2003) and Arcidiacono and Miller (2011). Also related, Buchinsky, Hahn and Hotz (2005) and Pantano

and Zheng (2013) propose classi�cation-based estimation methods.
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(2016), who focus on a setup with known groups, and Gao, Lu and Zhou (2015) and Wolfe and

Ohlede (2014), who derive results on stochastic blockmodels in networks.4

Finally, our analysis borrows from previous work on kmeans clustering and vector quanti-

zation; see among others Gersho and Gray (1992), Gray and Neuho� (1998), Graf and Luschgy

(2000, 2002), Linder (2002), and Levrard (2015), as well as the seminal analysis of kmeans by

Pollard (1981, 1982a, 1982b).

The outline of the paper is as follows. We introduce the setup and two-step grouped �xed-

e�ects estimators in Section 2. We study their asymptotic properties in Section 3. In Section 4

we focus on several practical aspects of the method: selection of the moments and the number

of groups, and bias reduction and inference. In Section 5 we describe two extensions: grouped

�xed-e�ects in short panels based on outside information for classi�cation, and models with

time-varying unobserved heterogeneity. We then present the two illustrations in Sections 6 and

7. Lastly we conclude in Section 8. A supplementary appendix, appended at the end of the

paper for completeness, contains additional results.

2 Two-step grouped fixed-effects

We consider a panel data setup where outcome variables and covariates are denoted as Yi =

(Yi1, ..., YiT )0 and Xi = (X 0i1, ..., X
0
iT )0, respectively, for i = 1, ..., N .5 Following the literature

(e.g., Hahn and Newey, 2004) the density of (Yi, Xi), with respect to some measure, is denoted

as f(Yi, Xi jαi0, θ0), where the αi0 are individual-speci�c vectors and θ0 is a vector of common

parameters. Throughout the analysis we leave the αi0 unrestricted, and we condition on them.

In dynamic models the joint density is also conditioned on initial values (Yi0, Xi0). We are

interested in estimating the parameter vector θ0, as well as average e�ects depending on the

individual e�ects αi0. In conditional models with strictly exogenous covariates we similarly

denote the conditional density of Yi given Xi as f(Yi jXi, αi0, θ0). However in this case we do

not specify the density of covariates parametrically. We allow the density of Xi to depend on an

additional individual-speci�c vector µi0 while leaving the relationship between Xi and (αi0, µi0)

unrestricted.

Hence the individual-speci�c distribution fi(Yi, Xi) of (Yi, Xi) depends on αi0, or alterna-

tively on (αi0, µi0) in conditional models. We will see that the asymptotic properties of two-step

4Previous statistical analyses of stochastic blockmodels were done under discrete heterogeneity in the popu-

lation; see for example Bickel and Chen (2009).
5The focus on a balanced panel is for simplicity. One may allow for Ti to di�er across i’s.
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grouped �xed-e�ects estimators will depend on the (underlying) dimension of αi0 or (αi0, µi0);

that is, on the dimensionality of individual heterogeneity. In the �rst part of the paper the di-

mension of αi0 or (αi0, µi0) is kept �xed in the asymptotics. In this case �xed-e�ects is generally

consistent as N, T tend to in�nity, hence it is a natural benchmark to consider. In Section 5 we

will instead consider settings where �xed-e�ects is not asymptotically well-behaved in general.

The two-step grouped �xed-e�ects method consists of a classi�cation step and an esti-

mation step. In the classi�cation step we rely on a set of individual-speci�c moments hi =
1
T

∑T
t=1 h(Yit, Xit) to learn about individual heterogeneity αi0. Classi�cation consists in parti-

tioning individual units into K groups based on the moments hi, where K is chosen by the

researcher. In our asymptotic analysis we will require hi to be informative about αi0 in a

precise sense, and we will let K grow with the sample size. In Section 4 we will discuss the

important questions of how to choose the moments and the number of groups. The partition of

individual units, corresponding to group indicators k̂i, is obtained by �nding the best grouped

approximation to the moments hi based on K groups; that is, we solve:(
ĥ, k̂1, ..., k̂N

)
= argmin

(h̃;k1;:::;kN)

N∑
i=1

∥∥∥hi � h̃(ki)
∥∥∥2

, (1)

where k � k denotes the Euclidean norm, fkig 2 f1, ..., KgN are partitions of f1, ..., Ng into at

most K groups, and h̃ =
(
h̃(1)0, ..., h̃(K)0

)0
are K � 1 vectors. Note that ĥ(k) is simply the

mean of hi in group k̂i = k.

In the estimation step we maximize the log-likelihood function with respect to common

parameters and group-speci�c e�ects, where the groups are given by the k̂i estimated in the

�rst step. Letting `i(αi, θ) = ln f(Yi jXi, αi, θ)/T denote the scaled individual log-likelihood,

we de�ne the estimator as: (
θ̂, α̂
)

= argmax
(�;�)

N∑
i=1

`i

(
α
(
k̂i

)
, θ
)
, (2)

where the maximization is with respect to θ and α = (α(1)0, ..., α(K)0)0.

The optimization problem in (1) is referred to as kmeans in machine learning and computer

science. In (1) the minimum is taken with respect to all possible partitions fkig, in addition

to values h̃(1), ..., h̃(K). Computing a global minimum may be challenging, yet fast and stable

heuristic algorithms exist, such as iterative descent, genetic algorithms or variable neighborhood

search. Lloyd’s algorithm is often considered to be a simple and reliable benchmark.6 In

6See Steinley (2006) and Bonhomme and Manresa (2015) for algorithms and references. Di�erent implemen-

tations of kmeans are available in standard software such as R, Matlab or Stata.
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the asymptotic analysis, consistently with most of the statistical literature on classi�cation

estimators dating back to Pollard (1981, 1982a), we will focus on the properties of the global

minimum in (1). Note that, while we focus on an unweighted version of kmeans, the quadratic

loss function in (1) could accommodate di�erent weights on di�erent components of hi (e.g.,

based on inverse variances).

The optimization problem in (2) involves estimating substantially fewer parameters than

�xed-e�ects maximum likelihood. Indeed, the latter would require maximizing
∑N

i=1 `i (αi, θ)

with respect to θ and α1, ..., αN (this would correspond to taking K = N in (2)). In contrast,

in the estimation step in our approach one only needs to estimate K values α(1), ..., α(K). This

dimension reduction can result in a substantial simpli�cation of the computational task when

K is small relative to N .

Let us now brie
y introduce two illustrative examples to which we shall return several times.

Example 1: dynamic discrete choice model. A prototypical structural dynamic discrete

choice model features the following elements (see for example Aguirregabiria and Mira, 2010):

choices jit 2 f1, ..., Jg, payo� variables Yit, and observed and unobserved state variables Xit

and αi, respectively. As an example, in the location choice model of Section 6, jit is location

at time t, and log-wages Yit depend on latent location-speci�c returns αi(jit). The individual

log-likelihood function conditional on initial choices and state variables typically takes the form:

`i(αi, θ) =
1

T

T∑
t=1

ln f (jit jXit, αi, θ)︸ ︷︷ ︸
choices

+ ln f (Xit j ji;t�1, Xi;t�1, αi, θ)︸ ︷︷ ︸
state variables

+ ln f (Yit j jit, Xit, αi, θ)︸ ︷︷ ︸
payo� variables

.

(3)

Computing choice probabilities f (jit jXit, αi, θ) in (3) requires solving the dynamic opti-

mization problem, which can be demanding. In two-step grouped �xed-e�ects, one estimates a

partition fk̂ig in a �rst step that does not require solving the model. In the second step, the

partition fk̂ig is taken as given and the log-likelihood in (3) is maximized with respect to θ

and type-speci�c parameters α(k). This may reduce the computational burden compared both

to �xed-e�ects maximum likelihood, and to random-e�ects mixture approaches which are com-

monly based on iterative algorithms. As moment vectors hi to be used in the classi�cation step

one may take moments of payo� variables, observed state variables, and choices. One may also

use individual-speci�c conditional choice probabilities, possibly based on a coarsened version of

Xit. In the application in Section 6 we will use means of log-wages in a �rst step, while also

relying on a likelihood-based iteration which exploits the full model’s structure, hence using

information on choices.
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Example 2: linear regression. We will use a simple regression example to illustrate our

assumptions and results. Consider the following model for a scalar outcome:

Yit = ρ0Yi;t�1 +X 0itβ0 + αi0 + Uit, (4)

where jρ0j < 1. A two-step grouped �xed-e�ects estimator in this model can be based on the mo-

ment vector hi = (Y i, X
0
i)
0. The estimation step then consists in regressing Yit on Yi;t�1, Xit, and

group indicators. In this model with conditioning covariates the properties of two-step grouped

�xed-e�ects will depend on the dimension of (αi0, µ
0
i0)0, where µi0 = plimT!1

1
T

∑T
t=1Xit.

3 Asymptotic properties of two-step grouped fixed-effects

In this section we study asymptotic properties of the two steps in turn, classi�cation and

estimation, in an environment without any restriction on individual e�ects. At the end of

the section we compare our results with previous results obtained under discrete population

heterogeneity.

3.1 Classification step

Our �rst result is to derive a rate of convergence for the kmeans estimator ĥ(k̂i) in (1). Let q

and r � q denote the dimensions of αi0 and hi, respectively. The dimensions q and r are kept

�xed as N, T,K tend jointly to in�nity.7 We make the following assumption.

Assumption 1. (moments, �rst step) There is a Lipschitz continuous function ϕ such that,

as N, T tend to in�nity: 1
N

∑N
i=1 khi � ϕ(αi0)k2 = Op (1/T ).

The probability limit of hi is a function of αi0, which indexes the joint distribution of

(Yi, Xi). The function ϕ depends on population parameter values, and need not be known to

the econometrician. The rate in Assumption 1 will hold under weak conditions on the serial

dependence of εit = h(Yit, Xit)�ϕ(αi0), such as suitable mixing conditions, which are commonly

made when studying asymptotic properties of �xed-e�ects panel data estimators.

Example 2 (continued). Consider classifying individuals based on the moment vector hi =

(Y i, X
0
i)
0 in Example 2. We have, under standard conditions: plimT!1 hi =

(
�i0+�0

i0�0

1��0
, µ0i0

)0
=

7In Subsection 5.2 we will consider settings with time-varying unobserved heterogeneity where the dimensions

of αi0 and hi increase with the sample size.
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ϕ(αi0, µi0). In this example, as in conditional models more generally, there are thus two types

of individual e�ects: those that enter the outcome distribution conditional on covariates (that

is, αi0), and those that only enter the distribution of covariates (that is, µi0). The full vector

of individual e�ects to be approximated in the classi�cation step is then (αi0, µi0).8

Let us de�ne the following quantity, which we refer to as the approximation bias of αi0:

B�(K) = min
(�;fkig)

1

N

N∑
i=1

kαi0 � α(ki)k2 ,

where, similarly as in (1), the minimum is taken with respect to all fkig and α(k). The

term B�(K) represents the approximation error one would make if one were to discretize the

population unobservables αi0 directly. It is a non-increasing function of K. In conditional

models such as Example 2 where the distribution of covariates depends on µi0, the relevant

approximation bias is B(�;�)(K). Later we will review existing results about the convergence

rate of B�(K) (or alternatively B(�;�)(K)) in various settings.

We have the following characterization of the rate of convergence of ĥ(k̂i). In the asymptotic

we let T = TN and K = KN tend to in�nity jointly with N . All proofs are in Appendix A.

Lemma 1. Let Assumption 1 hold. Then, as N, T,K tend to in�nity:

1

N

N∑
i=1

∥∥∥ĥ(k̂i)� ϕ(αi0)
∥∥∥2

= Op

(
1

T

)
+Op (B�(K)) .

Lemma 1 provides an upper bound on the rate of convergence of the discrete estimator ĥ(k̂i)

of ϕ(αi0). The bound has two terms: an Op(1/T ) term which has a similar order of magnitude as

the convergence rate of the �xed-e�ects estimator hi = 1
T

∑T
t=1 h(Yit, Xit), and an Op (B�(K))

term which re
ects the presence of an approximation error. Lemma 1 will be instrumental

in deriving the asymptotic properties of estimators of common parameters and average e�ects

in the next subsections. Nonetheless, using an alternative machine learning classi�er in the

�rst step will deliver second-step estimators with analogous properties, provided the classi�er

satis�es the convergence rate of Lemma 1.

8Note that there could be additional heterogeneity in the variance of hi, for example, which need not be

included in (αi0, µi0). Correct speci�cation of a Gaussian likelihood is not needed in this example. Moreover,

given that jρ0j < 1 the impact of the initial condition Yi0 vanishes as T tends to in�nity, so the marginal

distribution of Yi0 can be left fully unrestricted.
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Approximation bias: convergence rates. B�(K) is closely related to the dimension of

unobserved heterogeneity. This quantity has been extensively studied in the literature on vector

quantization, where it is referred to as the \empirical quantization error".9 Graf and Luschgy

(2002) provide explicit characterizations in the case where αi0 has compact support with a

nonsingular probability distribution.10 As N,K tend to in�nity, their Theorem 5.3 establishes

that B�(K) = Op(K
� 2
q ). This implies that B�(K) = Op(K

�2) when αi0 is one-dimensional,

and B�(K) = Op(K
�1) when αi0 is two-dimensional, for example.

The quality of approximation of the discretization depends on the underlying dimensionality

of the heterogeneity, not on its number of components. For example, when ϕ is Lipschitz we

have: B’(�)(K) = Op(B�(K)).11 This is precisely the reason why B�(K) shows up in Lemma 1.

More generally, if the dimensions of ϕ(αi0) are linked to each other in some way so its underlying

dimension is low, the approximation bias may still be relatively small for moderate K. In those

cases, discretizing the data jointly using kmeans may allow exploiting the presence of such a

low dimension in the data as opposed to discretizing each component of hi separately.12

Convergence rate with many groups. We end this subsection by establishing a tighter

bound on the rate of convergence of the kmeans estimator ĥ(k̂i), when the number of groups is

relatively large compared to T (though possibly still small relative to N).

Corollary 1. Let εi = hi�ϕ(αi0), and let C = plimN;T!1
1
N

∑N
i=1 T kεik

2. Suppose that there

is an η > 0 such that T � B’(�)(K
1��)

p! 0 as N, T,K tend to in�nity. Suppose also that, for

any diverging sequence KN;T , T �B"(KN;T )
p! 0 as N, T tend to in�nity. Then, as N, T,K tend

to in�nity:

1

N

N∑
i=1

∥∥∥ĥ(k̂i)� ϕ(αi0)
∥∥∥2

=
C

T
+ op

(
1

T

)
.

9Empirical quantization errors can be mapped to covering numbers commonly used in empirical process the-

ory. Speci�cally, it can be shown that if the ε-covering number, for the Euclidean norm, of the set fα10, ..., αN0g
is such that N (ε, fαi0g, k � k) � K, then Bα(K) � ε2.

10While results on empirical quantization errors have been derived in the large-N limit under general condi-

tions, see for example Theorem 6.2 in Graf and Luschgy (2000), rates as N and K tend to in�nity jointly are

so far limited to distributions with compact support; see p.875 in Graf and Luschgy (2002).
11This is a direct consequence of the fact that, if ϕ(αi0) = a(ξi0) and ka(ξ0)� a(ξ)k � τkξ0� ξk for all (ξ, ξ0),

then: min(b,fkig)
1
N

∑N
i=1 kϕ(αi0)� b(ki)k2 � τ2 �min(ξ,fkig)

1
N

∑N
i=1 kξi0 � ξ(ki)k

2
.

12Another possibility would be to bypass the �rst step and optimize:
∑N
i=1 `i(α(hi), θ) with respect to param-

eters θ and functions α(�) : Rr ! Rq (belonging to some nonparametric class). By comparison, an attractive

feature of the two-step approach we study is its ability to exploit low underlying dimensionality in hi.
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Under the conditions of Corollary 1, the kmeans objective is: 1
N

∑N
i=1 khi�ĥ(k̂i)k2 = op

(
1
T

)
,

hence in this regime grouped �xed-e�ects and �xed-e�ects are �rst-order equivalent. This

happens when K grows su�ciently fast relative to T . As an example, when αi0 is scalar and

B’(�)(K) = Op(K
�2) the condition requires TK�2 to tend to zero.13 The condition on B"

should be satis�ed quite generally. As a simple example, it is satis�ed when εi is normal with

zero mean and variance �/T for some � > 0.

3.2 Estimation step

We now turn to the second step. In the following E�i0 denotes an expectation taken with

respect to the joint distribution fi(Yi, Xi), which depends on αi0. For conciseness we simply

write E = E�i0 . Similarly, E� is indexed by a generic α. In conditional models such as Example

2 the expectations are indexed by (αi0, µi0) or a generic (α, µ).

Assumption 2. (regularity)

(i) Observations are i.i.d. across individuals conditional on the αi0’s. Moreover, `i(αi, θ) is

three times di�erentiable in both its arguments. In addition, the parameter spaces � for

θ0 and A for αi0 are compact, and θ0 belongs to the interior of �.

(ii) For all η > 0, inf�i0 infk(�i;�)�(�i0;�0)k>� E[`i(αi0, θ0)] � E[`i(αi, θ)] is bounded away from

zero for large enough T . For all θ 2 �, let αi(θ) = argmax�i limT!1 E(`i(αi, θ)).

inf�i0 inf� limT!1 E(�@2‘i(�i(�);�)
@�i@�0

i
) is positive de�nite. limN;T!1

1
N

∑N
i=1 E(`i(αi(θ), θ))

has a unique maximum at θ0 on � and its second derivative �H is negative de�nite.

(iii) sup�i0 sup(�i;�)
jE(`i(αi, θ))j = O(1), maxi=1;:::;N sup(�i;�)

j`i(αi, θ)� E (`i(αi, θ))j = op (1),

and 1
N

∑N
i=1(`i(αi0, θ0)�E(`i(αi0, θ0)))2 = Op(T

�1), and similarly for the �rst three deriva-

tives of `i. sup�i0 sup� k @
@�0

∣∣
�i0

E�(@‘i(�i(�);�)
@�i

)k = O(1), sup�i0 k
@
@�0

∣∣
�i0

E�(vec @2‘i(�i0;�0)
@�@�0

i
)k =

O(1), and sup�i0 k
@
@�0

∣∣
�i0

E�(vec @2‘i(�i0;�0)
@�i@�0

i
)k = O(1).14

(iv) The function ̂̀i(θ) = `i(α̂(k̂i, θ), θ) is three times di�erentiable on a neighborhood of θ0,

where α̂(k, θ), for all θ and k, is the solution of (2). Moreover, 1
N

∑N
i=1 k

@2‘̂i(�)
@�@�0 k2 = Op(1)

uniformly in a neighborhood of θ0, and similarly for the third derivative of ̂̀i.
13In fact, if for some d > 0 the quantity K

2
dBϕ(α)(K) tends to a positive constant the �rst condition in

Corollary 1 can be replaced by: T �Bϕ(α)(K)! 0.
14When A is a matrix, kAk denotes the spectral norm of A.
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Most conditions in Assumption 2 are commonly assumed in nonlinear panel data models.

The uniqueness of θ0 and αi0 in (ii) is an identi�cation condition. Hahn and Kuersteiner (2011)

show that the convergence rates in (iii) are satis�ed in stationary dynamic models under suitable

mixing conditions on time-series dependence, existence of certain moments, and relative rates

of N and T (speci�cally, N = O(T )), see their Lemma 4. The di�erentiability condition

on the sample objective function in (iv) is not needed in order to characterize the �rst-order

properties of �xed-e�ects estimators.15 Theorem 1 can be established absent this condition

when E(�@2‘i(�i;�0)
@�i@�0

i
) is uniformly bounded away from zero at all αi, not only at the true αi0.

Assumption 3. (injective mapping) There exists a Lipschitz continuous function ψ such that

αi0 = ψ(ϕ(αi0)).

Assumption 3 requires the individual moment hi = 1
T

∑T
t=1 h(Yit, Xit) to be informative

about αi0, in the sense that plimT!1 hi = ϕ(αi0) and αi0 = ψ(ϕ(αi0)), hence ϕ is injective.

The injectivity of the mapping between the heterogeneity αi0 and the limiting moment ϕ(αi0) is

a key requirement for consistency of two-step grouped �xed-e�ects estimators. In Section 4 we

will describe a distribution-based moment choice which guarantees that ϕ is injective when the

αi0’s are identi�ed. Finally, note that neither ϕ nor ψ need to be known to the econometrician.

Example 2 (continued). In Example 2, when using a grouped �xed-e�ects estimator based

on a Gaussian quasi-likelihood, Assumptions 2 and 3 can be veri�ed under standard conditions

on error terms and covariates and a stationary initial condition, as done in Supplementary

Appendix S1. In particular, the expectations in Assumption 2 are indexed by (αi0, µi0) or a

generic (α, µ). In addition, letting ψ(hi1, hi2) = ((1� ρ0)hi1 � h0i2β0, h
0
i2)0, we have (αi0, µ

0
i0)0 =

ψ(ϕ(αi0, µi0)). Moreover, ϕ is injective since ρ0 6= 1. Note that both ϕ and ψ depend on true

parameter values.

We now characterize asymptotic properties of the two-step grouped �xed-e�ects estimators

of θ0 and αi0. For this, let us denote:

si =
∂`i(αi0, θ0)

∂θ
+ E

(
∂2`i(αi0, θ0)

∂θ∂α0i

)[
E
(
�∂

2`i(αi0, θ0)

∂αi∂α0i

)]�1
∂`i(αi0, θ0)

∂αi
,

15This is due to the fact that, under suitable conditions, �xed-e�ects estimators of individual e�ects are

uniformly consistent in the sense that: maxi=1,...,N kα̂i � αi0k = op(1); see, e.g., Hahn and Kuersteiner (2011).

In contrast, our characterization of grouped �xed-e�ects is based on establishing a rate of convergence for the

average 1
N

∑N
i=1 kα̂(k̂i)� αi0k2.
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and:

H = lim
N;T!1

1

N

N∑
i=1

E
(
�∂

2`i(αi0, θ0)

∂θ∂θ0

)
� E

(
∂2`i(αi0, θ0)

∂θ∂α0i

)[
E
(
�∂

2`i(αi0, θ0)

∂αi∂α0i

)]�1

E
(
∂2`i(αi0, θ0)

∂αi∂θ
0

)
.

The individual-speci�c e�cient score for θ0, si, coincides with the score of the target log-

likelihood `i(αi(θ), θ) (e.g., Arellano and Hahn, 2007, 2016). H is the corresponding Hessian

matrix (it is non-singular by Assumption 2 (iii)). That is:

si =
∂

∂θ

∣∣∣∣
�0

`i (αi(θ), θ) , H = plim
N;T!1

� 1

N

N∑
i=1

∂2

∂θ∂θ0

∣∣∣∣
�0

`i (αi(θ), θ) . (5)

We have the following result.

Theorem 1. Let Assumptions 1, 2 and 3 hold. Then, as N, T,K tend to in�nity:

θ̂ = θ0 +H�1 1

N

N∑
i=1

si +Op

(
1

T

)
+Op (B�(K)) + op

(
1p
NT

)
, (6)

and:
1

N

N∑
i=1

∥∥∥α̂(k̂i)� αi0
∥∥∥2

= Op

(
1

T

)
+Op (B�(K)) . (7)

Theorem 1 holds irrespective of the relative rates of N and K, so in particular K may be

small relative to N . The result shows the presence of two types of bias for θ̂: the approximation

bias B�(K) that vanishes as K increases, and a contribution akin to a form of incidental

parameter bias that decreases at the rate 1/T .16 In conditional models such as Example 2 the

relevant approximation bias is B(�;�)(K).

The next corollary characterizes the properties of the grouped �xed-e�ects estimator of θ0

as K grows relatively fast compared to T , but still slowly compared to N .

Corollary 2. Let Assumptions 1, 2 and 3 hold, and suppose that the conditions of Corollary

1 are satis�ed. Let α̂i(θ) = argmax�i `i(αi, θ), ĝi(θ) = @2‘i(�̂i(�);�)
@�@�0

i
(@

2‘i(�̂i(�);�)
@�i@�0

i
)�1, and let E(� j �)

be a conditional expectation across individuals (see the proof for details). Suppose in addition:

16Although Theorem 1 is formulated in a likelihood setup, it holds more generally for M-estimators, inter-

preting
∑N
i=1 `i(αi, θ) as the objective function in the M-estimation. In addition, a similar result holds for

partial likelihood estimators where the objective function
∑N
i=1 `i1(αi1, θ1) + `i2(αi1, αi2, θ1, θ2) is maximized

sequentially, �rst estimating (α1, θ1) based on `1, and then estimating (α2, θ2) given (α1, θ1) based on `2; see

Supplementary Appendix S1. Such sequential estimators are commonly used in empirical applications, and we

use this approach in our illustrations.
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(i) `i is four times di�erentiable, and its fourth derivatives satisfy similar uniform bounded-

ness properties as the �rst three.

(ii) inf�i0 inf�i limT!1 E(�@2‘i(�i;�0)
@�i@�0

i
) is positive de�nite.

(iii) γ(h) = E[α̂i(θ0) jhi = h] and λ(h) = E[ĝi(θ0) jhi = h] are di�erentiable with respect

to h, uniformly bounded with uniformly bounded �rst derivatives. Moreover, uniformly

in h, E[kα̂i(θ0) � γ(hi)k2 jhi = h] = O(T�1), E[kĝi(θ0) � λ(hi)k2 jhi = h] = O(T�1),

E[kα̂i(θ0)� γ(hi)k3 jhi = h] = o(T�1), and E[kĝi(θ0)� λ(hi)k3 jhi = h] = o(T�1).

Then, as N, T,K tend to in�nity such that K/N tends to zero we have:

θ̂ = θ0 +H�1 1

N

N∑
i=1

si +
B

T
+ op

(
1

T

)
+ op

(
1p
NT

)
, (8)

where the expression of the constant B is given in the proof.

Condition (ii) requires the expected log-likelihood to be strictly concave with respect to αi

at all parameter values, not only at αi0. This condition, which plays a technical role in the

proof, was not used to establish Theorem 1.

Corollary 2 shows that, when K is su�ciently large so that the approximation bias B�(K) is

small relative to 1/T , and K/N tends to zero, the grouped �xed-e�ects estimator of θ0 satis�es

a similar expansion as the �xed-e�ects estimator, with a di�erent �rst-order bias term; see, e.g.,

Hahn and Newey (2004, p.1302) for an expression of the bias of �xed-e�ects. More generally,

Theorem 1 and Corollary 2 imply that, when B�(K) is of a similar or lower order of magnitude

compared to 1/T , the asymptotic distribution of two-step grouped �xed-e�ects estimators has

a similar structure as that of conventional �xed-e�ects estimators. Like �xed-e�ects, grouped

�xed-e�ects estimators su�er in general from an Op(1/T ) bias term. In the next section we

will show how a bias reduction technique can be used to improve the performance of grouped

�xed-e�ects estimators, and discuss how to construct asymptotically valid con�dence intervals

as N/T tends to a constant.

3.3 Average effects

Average e�ects are of interest in many economic settings. For example, e�ects of counterfactual

policies can often be written as averages over the cross-sectional agent heterogeneity. Here we

characterize the asymptotic behavior of grouped �xed-e�ects estimators of such quantities.
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Let mi (αi, θ) be a shorthand for 1
T

∑T
t=1m (Xit, αi, θ). A grouped �xed-e�ects estimator of

the population average M0 = 1
N

∑N
i=1mi (αi0, θ0) is:

M̂ =
1

N

N∑
i=1

mi

(
α̂(k̂i), θ̂

)
.

We make the following assumption.

Assumption 4. (average e�ects)

(i) mi(αi, θ) is twice di�erentiable with respect to αi and θ.

(ii) sup�i0 E(kmi(αi0, θ0)k) = O(1), maxi=1;:::;N sup(�i;�)
kmi(αi, θ)k = Op(1), and similarly

for the �rst two derivatives. In addition, 1
N

∑N
i=1 k

@mi(�i0;�0)
@�0 �E(@mi(�i0;�0)

@�0 )k2 = Op(T
�1),

1
N

∑N
i=1 k

@mi(�i0;�0)
@�0

i
� E(@mi(�i0;�0)

@�0
i

)k2 = Op(T
�1), and sup�i0 k

@
@�0

∣∣
�i0

E�(vec @mi(�i0;�0)
@�0

i
)k =

O(1).

Given the quantities si and H introduced in the previous subsection, let us de�ne:

smi = E
(
∂mi (αi0, θ0)

∂α0i

)[
E
(
�∂

2`i (αi0, θ0)

∂αi∂α0i

)]�1
∂`i(αi0, θ0)

∂αi
+ E

(
∂mi (αi0, θ0)

∂θ0

)
H�1 1

N

N∑
j=1

sj

+ E
(
∂mi (αi0, θ0)

∂α0i

)[
E
(
�∂

2`i (αi0, θ0)

∂αi∂α0i

)]�1

E
(
∂2`i (αi0, θ0)

∂αi∂θ
0

)
H�1 1

N

N∑
j=1

sj.

We have the following corollary to Theorem 1.

Corollary 3. Let the assumptions of Theorem 1 hold. Let Assumption 4 hold. Then, as N, T,K

tend to in�nity:

M̂ = M0 +
1

N

N∑
i=1

smi +Op

(
1

T

)
+Op (B�(K)) + op

(
1p
NT

)
.

3.4 Comparison with results under discrete heterogeneity

It is useful to compare the results of this section, obtained in an environment where population

heterogeneity is unrestricted and a growing number of groups K is used in estimation, to

existing results on the performance of grouped �xed-e�ects estimators in discrete population

settings. When the population consists of K� groups, where K� is a known �xed number,

Hahn and Moon (2010) and Bonhomme and Manresa (2015) provide conditions under which
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estimated group membership k̂i tends in probability to the population group membership k�i

for every individual i, up to arbitrary labeling of the groups.17 Their conditions imply that the

probability of misclassifying at least one individual unit tends to zero as N, T tend to in�nity

and N/T � tends to zero for any η > 0. In this asymptotic the grouped �xed-e�ects estimators

are not a�ected by incidental parameter bias. In other words, the asymptotic distribution of θ̂

is not a�ected by the fact that group membership has been estimated.18

The results derived in this section contrast sharply with this previous literature. Under

discrete population heterogeneity, according to perfect classi�cation (or \oracle") results the

grouped �xed-e�ects estimator ĥ(k̂i) would have a convergence rateOp(1/NT ). In contrast, here

the convergence rate of ĥ(k̂i) cannot be op(1/T ). Indeed, by de�nition we have: 1
N

∑N
i=1 kĥ(k̂i)�

ϕ(αi0)k2 � B’(�)(K) almost surely. Now suppose that the rate of ĥ(k̂i) were op(1/T ). In that

case T � B’(�)(K) would tend to zero (corresponding to K growing su�ciently fast). From

Corollary 1 the convergence rate of ĥ(k̂i) would then be proportional to 1/T as in �xed-e�ects,

leading to a contradiction.19 \Oracle" asymptotic results thus appear fragile to departures from

exact discreteness in the population.

Theorem 1 and Corollaries 2 and 3 show that, in an environment with possibly non-discrete

heterogeneity, classi�cation noise does a�ect the properties of second-step estimators. As the

number of groups increases in order to control approximation bias, group membership estimates

k̂i become increasingly noisy as groups become harder to distinguish. The order of magnitude

of the resulting bias is 1/T , as in conventional �xed-e�ects estimators. Providing valid inference

based on grouped �xed-e�ects thus requires working in a very di�erent asymptotic framework

than the one studied in the previous literature on discrete heterogeneity. In addition, as we will

illustrate in a simulation on �rm and worker data below, the characterizations in this section

may also provide more accurate inference in situations where the population is discrete, but

the conditions for applying existing \oracle" results from the literature are violated.

17Assumptions include groups having positive probability and being separated in the population. Under

suitable conditions K� can be consistently estimated using information criteria or sequential tests.
18Although Hahn and Moon (2010) and Bonhomme and Manresa (2015) study joint estimation of parameters

and groups, similar results to the ones they derive hold for two-step grouped �xed-e�ects estimators under

discrete population heterogeneity.
19This argument requires taking η = 0 in the conditions of Corollary 1; see footnote 13 for a su�cient

condition.
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4 Applying grouped fixed-effects

In this section we focus on practical aspects of grouped �xed-e�ects estimation. We �rst discuss

the choice of moments for classi�cation, and a model-based iteration. We then propose a method

to select the number of groups. Finally, we show how to perform bias reduction and inference.

4.1 Choice of moments for the classification

When applying two-step grouped �xed-e�ects the choice of moments is a key input, since it

determines the quality of the approximation to the unobserved heterogeneity. Speci�c models

may suggest particular individual summary statistics to be used in the classi�cation step. In

linear models such as Example 2, individual averages of outcomes and covariates are natural

choices. A general approach which does not rely on speci�c features of the model is to make use

of the entire empirical distribution of the data, thereby capturing all the relevant heterogeneity

in the classi�cation step.

To outline the distribution-based approach, consider a static model with outcomes and

exogenous covariates. Let Wit = (Yit, X
0
it)
0, and denote F̂i(w) = 1

T

∑T
t=1 1fWit � wg the

empirical cumulative distribution function of Wit.
20 We propose to classify individuals based

on hi = F̂i, using the norm kgk2
! =

�
g(w)2ω(w)dw, where ω is an integrable function. The

classi�cation step then is: min(fkig;h̃)

∑N
i=1 khi � h̃(ki)k2

!, where the h̃(k)’s are functions. In

practice we discretize the integral, leading to a standard (weighted) kmeans objective function.

We discuss asymptotic properties in Supplementary Appendix S1. In addition it can be shown

that for this choice of moments the injectivity condition of Assumption 3 is automatically

satis�ed when the αi0’s are identi�ed. We will use a distribution-based classi�cation in the

illustration on matched employer-employee data in Section 7.

Model-based iteration. Given two-step estimates θ̂ and α̂ from (2), a new partition of

individual units can be computed according to the following model-based classi�cation rule:

k̂
(2)
i = argmax

k2f1;:::;Kg
`i

(
α̂ (k) , θ̂

)
, for all i = 1, ..., N. (9)

20In a dynamic setting such as Example 1, one could consider classifying individuals based on joint individual

frequencies such as: hi(j, j
0, x, x0, y) = 1

T

∑T
t=1 1fji,t�1 � j, jit � j0, Xi,t�1 � x,Xit � x0, Yit � yg. Such an

approach could be combined with the model-based iteration described below.
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This classi�cation exploits the full structure of the likelihood model. Second-step estimates can

then be updated as:

(
θ̂

(2)
, α̂(2)

)
= argmax

(�;�)

N∑
i=1

`i

(
α
(
k̂

(2)
i

)
, θ
)
. (10)

The method may be iterated further.

In Supplementary Appendix S1 we derive an asymptotic expansion for the iterated estimator

θ̂
(2)

, similar to the one in Theorem 1, in fully speci�ed likelihood models. We will see in Section

6 that this likelihood-based iteration can provide improvements in �nite samples.21

One-step estimation. A related estimator is the one-step grouped �xed-e�ects estimator,

which is de�ned as follows:(
θ̂

1step
, α̂1step, fk̂1step

i g
)

= argmax
(�;�;fkig)

N∑
i=1

`i (α (ki) , θ) , (11)

where the maximum is taken with respect to all possible parameter values (θ, α) and all possible

partitions fkig of f1, ..., Ng into at most K groups. This corresponds to the classi�cation

maximum likelihood estimator of Bryant and Williamson (1978); see also Hahn and Moon

(2010) and Bonhomme and Manresa (2015). Unlike in two-step grouped �xed-e�ects, (11)

requires optimizing the likelihood function with respect to every partition and parameter value.

This poses two di�culties. First, the estimator may be substantially more computationally

intensive than two-step methods. Second, this complicates the statistical analysis since the

discrete classi�cation depends on parameter values and the objective function of the one-step

estimator is therefore not smooth.22 We now return to Example 2 and characterize properties

of two-step and one-step grouped �xed-e�ects estimators in more detail.

Example 2 (continued). By Theorem 1, under conditions formally spelled out in Supple-

mentary Appendix S1 the two-step estimators of ρ0 and β0 based on hi = (Y i, X
0
i)
0 in model

(4) have bias Op(1/T ) +Op(B(�;�)(K)). Note that, as the dimension of Xit increases, B(�;�)(K)

21In addition, as an alternative to this likelihood-based approach the iteration can be based on modifying the

moments hi to \direct" them at αi0. Speci�cally, one can use ψ̂(hi) as moments in the classi�cation step, where

ψ̂ is a consistent estimate of any generalized inverse ψ appearing in Assumption 3. In the application to �rm

and worker heterogeneity in Section 7 we will show results using such a moment-based iteration.
22 In the case of the kmeans estimator, Pollard (1981, 1982a) derived asymptotic properties for �xed K and T

as N tends to in�nity. Deriving the properties of one-step estimators in (11) as N,T,K tend jointly to in�nity

is an interesting avenue for future work.
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decreases at a slower rate as a function of K. In Supplementary Appendix S1 we derive the

�rst-order bias term for the one-step estimator (11) in model (4). Under normality, the bias

takes a simple form that combines the bias of the within estimator with a \between" component

which tends to zero as the number of groups increases. The rate of convergence of the approxi-

mation bias is 1/K2 in this case, irrespective of the dimension of the vector of covariates. This

re
ects the fact that one-step estimation delivers model-based moments which can improve the

performance of grouped �xed-e�ects.23

4.2 Choice of the number of groups

The other key input for the method is the number of groups K. Here we propose a simple data-

driven selection rule which aims at controlling approximation bias as the sample size increases.

For simplicity the rule is based on the classi�cation step alone. Let:

Q̂(K) = min
(hK ;fkKi g)

1

N

N∑
i=1

∥∥hi � hK(kKi )
∥∥2

be the value of the kmeans objective function corresponding to K groups. For a given constant

ξ > 0, we suggest taking:

K̂ = min
K2N

{
K, Q̂(K) � ξ � V̂h

T

}
, (12)

where V̂h is a consistent estimator of Vh = plimN;T!1
1
N

∑N
i=1 T khi � ϕ(αi0)k2.24

A default choice is ξ = 1. However, a more aggressive choice ξ < 1 may be preferable in

situations where hi is only weakly informative about αi0. In practice we recommend taking

K = K̂ with ξ = 1, and checking how the results of the grouped �xed-e�ects estimator and its

bias-corrected version vary with ξ, as a check of whether the number of groups is su�ciently

large to ensure a small approximation bias. We will illustrate the impact of ξ in our illustration

on �rm and worker heterogeneity.

We have the following result.

23In this example one can consider other possibilities for estimation that exploit features of the model in the

classi�cation step. In Supplementary Appendix S3 we present a \double grouped �xed-e�ects" estimator where

we discretize all components of hi separately, and include the indicators of estimated groups additively in the

second-step regression. We report simulation results for a probit model. This strategy can be used in linear or

linear-index models.
24In the case where εit = h(Yit, Xit) � ϕ(αi0) are independent over time, a consistent estimator of Vh is:

V̂h = 1
NT

∑N
i=1

∑T
t=1 kh(Yit, Xit)�hik2. More generally, with dependent data, trimming or bootstrap strategies

may be used for consistent estimation of Vh; see Hahn and Kuersteiner (2011) and Arellano and Hahn (2016).

20



Corollary 4. Let the conditions of Theorem 1 hold. Take K � K̂, where K̂ is given by (12).

Then, as N, T tend to in�nity:

θ̂ = θ0 +H�1 1

N

N∑
i=1

si +Op

(
1

T

)
+ op

(
1p
NT

)
. (13)

Expansion (13) holds for any K � K̂. In this environment (unlike the ones we consider in

Section 5) taking K = N as in �xed-e�ects also leads to (13). However, when the underlying

dimensionality of unobserved heterogeneity is not too large Corollary 4 o�ers a justi�cation

for using a smaller K. Indeed, the data-driven rule to select K depends on this underlying

dimensionality through the rate of decay of Q̂(K). In particular, if K
2
d Q̂(K) tends to a constant,

where d is the underlying dimension of hi, then K̂ in (12) is of the order of T d=2.25 As an

example, when d = 1 K̂ will be of a similar order of magnitude as
p
T . In situations where

p
T is small relative to N and the likelihood function is hard to evaluate or optimize, two-step

grouped �xed-e�ects based on K̂ can thus represent a substantial decrease in computational

cost compared to �xed-e�ects estimation.

4.3 Bias reduction and inference

The asymptotic analysis shows that grouped �xed-e�ects estimators and �xed-e�ects estimators

of common parameters and average e�ects have a similar asymptotic structure, including when

the number of groups is estimated (by Corollary 4). This similarity motivates adapting existing

bias reduction techniques to grouped �xed-e�ects estimation. A variety of methods have been

developed in the nonlinear panel data literature to perform bias reduction; see Arellano and

Hahn (2007) for a review.

We consider the half-panel jackknife method of Dhaene and Jochmans (2015). Speci�cally,

when estimating θ0 half-panel jackknife works as follows:26 We �rst compute the two-step

grouped �xed-e�ects estimator θ̂ on the full sample, using our data-driven selection of K.

Then, we compute θ̂1 and θ̂2 on the �rst T/2 periods and the last T/2 periods, respectively,

re-selecting K in each sample (considering T even for simplicity). The bias-reduced estimator

is then:

θ̂
BR

= 2θ̂ � θ̂1 + θ̂2

2
.

25Under suitable conditions it can be shown that Q̂(K) = Op(Bϕ(α)(K)) + op(T
�1), where the �rst term

depends on the underlying dimensionality of ϕ(αi0).
26From Corollary 3 the same bias-reduction and inference techniques can be used when estimating average

e�ects M0.
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The half-panel jackknife method requires stationary panel data, however it can allow for serial

correlation and dynamics.

To derive the asymptotic distribution of θ̂
BR

, let us suppose that, as N, T tend to in�nity, the

Op(1/T ) term on the right-hand side of (13) takes the form C/T + op(1/T ), for some constant

C > 0. For example, this will be the case when K is taken such that it grows su�ciently

fast relative to T , under the conditions of Corollary 1. From Theorem 1, under standard

conditions on the asymptotic behavior of the score 1
N

∑N
i=1 si the bias-reduced grouped �xed-

e�ects estimator then has the following distribution as N, T tend to in�nity such that N/T

tends to a non-zero constant:

p
NT

(
θ̂
BR
� θ0

)
d! N (0,
) . (14)

In (14), 
 coincides with the asymptotic variance of the two-step grouped �xed-e�ects estimator,

which in turn coincides with that of the �xed-e�ects estimator; that is:


 = H�1

(
lim

N;T!1

1

N

N∑
i=1

E [sis
0
i]

)
H�1.

This asymptotic variance can be consistently estimated using several methods, for example

using a HAC formula clustered at the individual level, replacing αi0 and θ0 by their (possibly

bias-corrected) grouped �xed-e�ects estimates α̂(k̂i) and θ̂.

5 Grouped fixed-effects in other settings

We now consider two settings where, in contrast with the analysis so far, �xed-e�ects estimators

are poorly behaved or infeasible and grouped �xed-e�ects still provides a consistent alternative.

In the �rst setting, in order to estimate the model on a short panel or a cross-section the

researcher uses additional information (\measurements") about the unobserved heterogeneity.

In the second case unobserved heterogeneity is time-varying. When the underlying dimension

of unobserved heterogeneity is not too large, two-step grouped �xed e�ects provides accurate

estimates of parameters of interest.

5.1 Classification based on outside information

Consider a setting where the time dimension available to estimate the model is short. We

denote the number of periods as S. A special case is S = 1, where only cross-sectional data is

available. Outcomes Yi = (Yi1, ..., YiS) and covariates Xi = (X 0i1, ..., X
0
iS)0 are drawn from the
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individual-speci�c distribution fi(Yi, Xi), which depends on αi0. As in the previous sections,

f(Yi jXi, αi0, θ0) is indexed by a parameter vector θ0, while the conditional distribution of Xi

given αi0 is unrestricted.27

Suppose the researcher has access to T measurements Wi = (W 0
i1, ...,W

0
iT )0 drawn from

an individual-speci�c distribution fi(Wi) indexed by the same individual heterogeneity αi0.

Individual summary statistics hi = 1
T

∑T
t=1 h(Wit) are assumed to be informative about αi0

according to Assumptions 1 and 3.28 We assume that, while S may be very small, T is relatively

large. Unlike S, the number of measurements T will be required to tend to in�nity in the

asymptotic analysis. Moreover, another important di�erence with the setup considered in the

previous sections is that the measurements of αi0 are assumed independent of the outcome

variables and covariates of interest.

Assumption 5. (measurements) hi and (Yi, Xi) are conditionally independent given αi0.

Classifying individuals according to outside measurements may be natural in a number of

situations in economics. For example, in structural models of the labor market the researcher

may have access to measures of academic ability or some dimensions of skills (cognitive or non-

cognitive, as in Cunha at al., 2010), such as test scores or psychometric measures taken before

the individual entered the labor market. Consistency of two-step grouped �xed-e�ects in these

settings will rely on measurements Wi and outcomes and covariates (Yi, Xi) depending on the

same vector of unobserved traits αi0.

Another example is the decomposition of log-wage dispersion into terms re
ecting worker

and �rm heterogeneity (as in Abowd et al., 1999). In Section 7 we will show that the grouped

�xed-e�ects estimator of Bonhomme et al. (2015), where the distribution of wages in the �rm is

used for classi�cation, �ts the setup analyzed here. We will study its performance in simulation

experiments, and show that it can alleviate the �nite-sample bias which arises from low worker

mobility rates.

We now turn to the asymptotic properties of grouped �xed-e�ects in this context. We make

the following assumptions, where `i(αi, θ) = ln f(Yi jXi, αi0, θ0)/S.

Assumption 6. (regularity) Parts (i) in Assumption 2 holds. In addition:

27In conditional models fi(Yi, Xi) is indexed by (αi0, µi0), where the conditional distribution of Xi given

(αi0, µi0) is unrestricted.
28In conditional models where the distribution of (Yi, Xi) depends on (αi0, µi0) the moments hi need to be

informative about (αi0, µi0).
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(i) For each i (Yi1, ..., YiS) and (X 0i1, ..., X
0
iS)0 are stationary. αi(θ) and θ0 uniquely maximize

E(`i(αi, θ)) and limN!1
1
N

∑N
i=1 E(`i(αi(θ), θ)), respectively. The minimum eigenvalue of

(�@2‘i(�i;�)
@�i@�0

i
) is bounded away from zero almost surely, uniformly in i and (αi, θ).

(ii) sup�i0 sup(�i;�)
jE(`i(αi, θ))j = O(1), and similarly for the �rst three derivatives of `i. Sec-

ond and third derivatives of `i(αi, θ) are uniformly Op(1) in (αi, θ) and i. In addition,

sup�i0 sup� k @
@�0

∣∣
�i0

E�(@‘i(�i(�);�)
@�i

)k = O(1), sup�i0 k
@
@�0

∣∣
�i0

E�(vec @2‘i(�i0;�0)
@�@�0

i
)k = O(1),

and sup�i0 k
@
@�0

∣∣
�i0

E�(vec @2‘i(�i0;�0)
@�i@�0

i
)k = O(1).

(iii) sup�i0 sup� Var(@‘i(�i(�);�)
@�i

) = O(1/S), and sup�i0 Var(vec @
@�0 j�0

@‘i(�i(�);�)
@�i

) = O(1/S).

Strict concavity of the log-likelihood in (i) was not required in Assumption 2. This limits

the scope of the theorem to strictly concave likelihood models. Examples of strictly concave

panel data likelihood models are the Logit, Probit, ordered Probit, Multinomial Logit, Poisson,

or Tobit regression models; see Chen et al. (2014) and Fern�andez-Val and Weidner (2015). In

regression models part (ii) requires covariates Xis to have bounded support. Note that here we

do not require the log-likelihood function to be concave in all parameters, only in individual

e�ects. The other conditions in Assumption 6 are similar to those in Assumption 2, with the

di�erence that here there are S available periods on every individual in the second step, where

S may or may not tend to in�nity.

We have the following result.29

Theorem 2. Let Assumptions 1, 3, 5 and 6 hold. Then, as N, T,K tend to in�nity such

that K/NS tends to zero:

θ̂ = θ0 +H�1 1

N

N∑
i=1

si +Op

(
1

T

)
+Op(B�(K)) +Op

(
K

NS

)
+ op

(
1p
NS

)
.

Under the conditions of Theorem 2 a �xed-e�ects estimator only based on (Yi, Xi), which

maximizes the likelihood
∑N

i=1 `i(αi, θ), satis�es: θ̂
FE

= θ0 + H�1 1
N

∑N
i=1 si + Op(S

�1) +

op((NS)�
1
2 ). In particular, �xed-e�ects may be severely biased when S is small, and it is

generally inconsistent for S �xed. In contrast, since it takes advantage of the measurements

data, the two-step grouped �xed-e�ects estimator is still consistent even when S = 1, as N, T,K

tend to in�nity such that K/NS tends to zero.

29An analogous result to Theorem 2 also holds for partial likelihood estimation under similar conditions,

although for conciseness we do not formally spell it out.
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The expansion in Theorem 2 is similar to that in Theorem 1, with one important di�erence:

here, unlike in the setting analyzed in the previous sections, increasing K comes at a cost that

is re
ected in the term Op(K/NS). Intuitively, when choosing K too large the grouped �xed-

e�ects estimator gets close to �xed-e�ects, which is generally not well-behaved asymptotically

in this setting.30 Hence, in this environment discretizing unobserved heterogeneity has a second

advantage in addition to lowering the computational burden, as the discrete regularization leads

to a reduction in the incidental parameter bias.

5.2 Time-varying unobserved heterogeneity

We now return to the setup of Section 2, with the di�erence that unobserved heterogeneity

αi0 = (αi0(1)0, ..., αi0(T )0)0 is time-varying, where αi0(t) has �xed dimension q. We focus on

static models where the likelihood function takes the form:

ln f(Yi jXi, αi, θ) =
T∑
t=1

ln f(Yit jXit, αi(t), θ),

and denote `it(αi(t), θ) = ln f(Yit jXit, αi(t), θ) and `i(αi, θ) = ln f(Yi jXi, αi, θ)/T . As before

we leave the relationship between Xi and αi0 unrestricted.

Allowing for time-varying unobserved heterogeneity is of interest in many economic settings.

For example, in demand models for di�erentiated products unobserved product characteristics

may vary across markets t as well as products i (as in Berry et al., 1995). Fixed-e�ects methods

are popular alternatives to instrumental variables strategies. As an example, Moon, Shum and

Weidner (2014) model unobserved product characteristics through a factor-analytic \interac-

tive �xed-e�ects" speci�cation in the spirit of Bai (2009). In comparison, here we show that

grouped �xed-e�ects methods are able to approximate general unobservables with low underly-

ing dimensionality, through delivering a data-based classi�cation of products in terms of their

unobserved attributes.

Let r � qT . Let hi = h(Yi, Xi) be an r-dimensional vector with hi = ϕ(αi0) + εi, where here

the function ϕ maps RqT to Rr. Let us start with a de�nition and an assumption.

Definition 1. (sub-Gaussianity) Let Z be a random vector of dimension m. We say that Z is

sub-Gaussian if there exists a scalar constant λ > 0 such that E [exp(τ 0Z)] � exp(λ � kτk2) for

all τ 2 Rm.
30This feature of the problem should be kept in mind when using the data-driven selection of K proposed

in Subsection 4.2. Indeed, in order to obtain an analogous result to Corollary 4 in the setting of Theorem 2,

one needs to take K such that K/NS is O(T�1). This requires: K̂/NS = Op(T
�1). Developing a data-driven

method to select K that is justi�ed more generally is left to future work.
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Assumption 7. (moments, �rst step) ε = (ε01, ..., ε
0
N)0 satis�es De�nition 1 for a constant λ

independent of the sample size. In addition, the ratio r/T tends to a positive constant as T

tends to in�nity, and ϕ is Lipschitz continuous.

Assumption 7 requires the ε = (ε01, ..., ε
0
N)0 to be sub-Gaussian (e.g., Vershynin, 2010).

This is stronger than Assumption 1. For example, i.i.d. Gaussian random variables and i.i.d.

bounded random variables are sub-Gaussian. More generally, this assumption allows for de-

pendence across observations. As an example, in the case where ε � N (0,�) Assumption 7

holds provided the maximal eigenvalue of � is bounded from above by 2λ. This allows for weak

forms of dependence in ε, across both individual units and time periods.31 This condition is

only needed for the models with time-varying heterogeneity of this subsection.

Assumption 8. (regularity) Parts (i) in Assumption 2 holds (with A denoting the parameter

space for αi0(t)). In addition:

(i) For all i, t, θ, E(`it(αi(t), θ)) has a unique maximum on A, denoted as αi(θ, t). θ0 uniquely

maximizes limN;T!1
1
NT

∑N
i=1

∑T
t=1 E(`it(αi(θ, t), θ)). In addition, the minimum eigen-

value of (�@2‘it(�i(t);�)
@�i(t)@�i(t)0 ) is bounded away from zero almost surely, uniformly in i, t, and

(αi(t), θ).

(ii) sup�i0(t) sup(�i(t);�)
jE(`it(αi(t), θ))j = O(1), and similarly for the �rst three deriva-

tives of `it. Moreover, second and third derivatives of `it(αi(t), θ) are uniformly

Op(1) in (αi(t), θ) and i, t. Further, sup�i0(t) sup� k @
@�(t)0

∣∣
�i0(t)

E�(t)(
@‘it(�i(�;t);�)

@�i(t)
)k =

O(1), sup�i0(t) k @
@�(t)0

∣∣
�i0(t)

E�(t)(vec @2‘it(�i0(t);�0)
@�@�i(t)0 )k = O(1), and we have in addition

sup�i0(t) k @
@�(t)0

∣∣
�i0(t)

E�(t)(vec @2‘it(�i0(t);�0)
@�i(t)@�i(t)0 )k = O(1).

(iii) For each θ 2 �, (T � @‘i(�i(�);�)
@�i

)i=1;:::;N satis�es De�nition 1 for a common constant λ.32

Moreover, (T � vec @
@�0

∣∣
�0

@‘i(�i(�);�)
@�i

)i=1;:::;N satis�es De�nition 1.

Similarly as Assumption 5, Assumption 8 restricts the scope to likelihood models that are

strictly concave in α’s. In particular, concavity is used to establish consistency of the grouped

�xed-e�ects estimator. The tail condition on scores in part (iii) is also instrumental in order to

deal with the presence of time-varying unobserved heterogeneity. In Supplementary Appendix

S1 we provide su�cient conditions for Assumption 8 in a regression example (Example 3 below).

31Related conditions have been used in the literature on large approximate factor models (Chamberlain and

Rothschild, 1983, Bai and Ng, 2002).
32Here we denote: αi(θ) = (αi(θ, 1)0, ..., αi(θ, T )0)0.
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Theorem 3. Let Assumptions 7 and 8 hold. Then, as N, T,K tend to in�nity such that

(lnK)/T , K/N , and B�(K)/T tend to zero:

θ̂ = θ0 +H�1 1

N

N∑
i=1

si +Op

(
lnK

T

)
+Op

(
K

N

)
+Op

(
B�(K)

T

)
, (15)

and:

1

NT

N∑
i=1

T∑
t=1

∥∥∥α̂(k̂i, t)� αi0(t)
∥∥∥2

= Op

(
lnK

T

)
+Op

(
K

N

)
+Op

(
B�(K)

T

)
. (16)

In Theorem 3 the expansion of θ̂ and the convergence rate of α̂(k̂i, t) have three components.

The K/N part re
ects the fact that we are estimating KT parameters (that is, the α(k, t))

using NT observations. Hence, as in Theorem 2, and unlike the setup studied in the �rst part

of the paper, here increasing K may worsen the convergence rate. The (lnK)/T term is equal

to the logarithm of the number of possible partitions of N individual units into K groups (that

is, KN) divided by the number of observations. This term re
ects the presence of an incidental

parameter bias due to noisy group classi�cation, similarly as the 1/T term in Theorem 1.33

The third component of the rate in Theorem 3 is the scaled approximation bias:34

B�(K)

T
= min

(�;fkig)

1

NT

N∑
i=1

T∑
t=1

kαi0(t)� α(ki, t)k2 .

As in the case studied in Section 3 this term depends on the underlying dimensionality of αi0(t).

When no restrictions are made on αi0(t) except bounded support, one can only bound B�(K)/T

by Op(K
� 2
T ), which does not tend to zero unless K is extremely large relative to T . Restrictions

on the underlying dimension of αi0(t) allow one to separate its contribution from that of time-

varying errors. Examples of latent processes with low underlying dimensionality are linear or

nonlinear factor models of the form αi0(t) = α(ξi0, t), where α is Lipschitz continuous in its �rst

argument and the factor loading ξi0 has �xed dimension d > 0. In that case the approximation

bias is B�(K)/T = Op(K
� 2
d ). In Supplementary Appendix S3 we show the results of a small

simulation exercise that illustrates the convergence rate in (16).

Lastly, unlike Theorems 1 and 2, Theorem 3 cannot be directly used to motivate the use of

standard bias-reduction techniques, since (lnK)/T dominates 1/T asymptotically. In models

33A related term arises as a component of the convergence rate in the study of network stochastic blockmodels

in Gao, Lu and Zhou (2015).
34Similarly as in Theorems 1 and 2, in conditional models where the distribution of Xit also depends on µi0(t)

the relevant approximation bias is B(α,µ)(K)/T .
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with time-varying heterogeneity, the development of bias reduction and inference methods for

common parameters and average e�ects, and of methods to select K, are important questions

that we leave for future work.

Example 3: regression with time-varying unobservables. In this example we allow for

time-varying unobservables possibly correlated with covariates (that is, \time-varying �xed-

e�ects") in a regression model, and consider:

Yit = X 0itβ0 + αi0(t) + Uit. (17)

As an example, in a logit demand model Yit could be the log market share of product i in

market t, and Xit could include the price and other observed product attributes. Let Xit =

µi0(t) + Vit. Grouped �xed-e�ects may be based on hi = (Y 0i , X
0
i)
0, in which case εi is a linear

transformation of (U 0i , V
0
i )
0. Assumption 7 then requires (U 0i , V

0
i )
0 to be sub-Gaussian, as shown

in Supplementary Appendix S1. Theorem 3 implies that β̂ is consistent as N, T,K tend to

in�nity such that (lnK)/T , K/N , and B�(K)/T tend to zero. The result is quite general

as it allows for unspeci�ed form of heterogeneity, although the performance of the estimator

may not be as good when the underlying dimension of (αi0(t), µi0(t)) is large. A special case

of Example 3 is when αi0(t) has an exact grouped structure, as in Bonhomme and Manresa

(2015). Another special case with low underlying dimension is the interactive �xed-e�ects model

with αi0(t) = λ00if0t, as in Bai (2009). Compared to interactive �xed-e�ects, an advantage of

grouped �xed-e�ects is that the researcher need not specify the functional form of time-varying

unobservables. This may be of particular interest in nonlinear models where explicitly allowing

for linear or nonlinear factor-analytic speci�cations can be computationally challenging (see

Chen et al., 2014).35

6 A dynamic model of location choice

In this section we study a structural dynamic model of location choice. In such environments

discrete estimation improves tractability since unobserved state variables have a small num-

35Similarly as in Example 2, an alternative estimator is \double grouped �xed-e�ects", where Yi and all

components of Xi are used separately to form sets of groups, which are then all included as controls additively

in the regression and interacted with time indicators. Under similar conditions it can be shown that the

convergence rate of the estimator of β0 is the same as in Theorem 3, except that the relevant approximation bias

is the maximum among the unidimensional approximation biases corresponding to αi0(t) and all components

of µi0(t). Hence, as in Example 2, speci�c features of the model (here its additive structure) can be exploited

in order to improve statistical performance.
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ber of points of support and the total number of parameters becomes relatively small. We

report simulation results for two-step estimators and their bias-corrected and iterated versions

which show the ability of discrete approximations to deliver accurate estimates of structural

parameters and counterfactual e�ects.

6.1 Model and estimation

We consider a model of location choices over J possible alternatives. There is a continuum

of agents i who di�er in their permanent type αi 2 RJ which de�nes their wage in each

location. Log-wages in location j, net of age e�ects and other demographics, are given by:

lnWit(j) = αi(j) + εit(j), where εit(j) are assumed to be i.i.d over time, agents, and locations,

distributed as normal (0, σ2). The 
ow utility of being in location j at time t is given by:

Uit(j) = ρWit(j) + ξit(j), where ξit(j) are unobserved shocks i.i.d across agents, time and

locations, and distributed as type-I extreme value. When moving between two locations j and

j0 the agent faces a cost c(j, j0) = c1fj0 6= jg.
Agent i faces uncertainty about her own type αi. While we assume she knows the distri-

bution from which the components of αi are drawn, she only observes αi(j) in the locations

j she has visited, and she forms expectations about the value she might get in locations she

has not visited yet. At time t, let Jit denote the set of locations that agent i has visited. Let

αi (Jit) denote the set of corresponding realized location-speci�c types. The information set of

the agent is: Sit = (jit,Jit, αi (Jit)). Note that we assume that wage shocks εit(j) do not a�ect

the decision to move to another location. This assumption is useful for tractability, though not

essential to our approach.

We consider an in�nite horizon environment, where agents discount time at a common

β. At time t, let Vt(j, Si;t�1) denote the expected value function associated with choosing

location j given state Si;t�1 and behaving optimally in the future. Value functions are derived

in Supplementary Appendix S2. The conditional choice probabilities are then:

Pr (jit = j jSi;t�1) =
expVt(j, Si;t�1)∑J
j0=1 expVt(j0, Si;t�1)

. (18)

Given an i.i.d sample of wages and locations (Wi1, ...,WiT , ji1, ..., jiT ) we �rst estimate the

location-speci�c returns αi(jit) as follows:

(α̂, fk̂ig) = argmin
(�;fkig)

N∑
i=1

T∑
t=1

(lnWit � α(ki, jit))
2 , (19)

which amounts to classifying individuals according to location-speci�c means of log-wages.
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In the second step, we maximize the log-likelihood of choices; that is:

θ̂ = argmax
�

N∑
i=1

T∑
t=1

J∑
j=1

1fjit = jg ln Pr
(
jit = j j ji;t�1,Ji;t�1, α̂(k̂i,Ji;t�1), θ

)
, (20)

where θ contains utility and cost parameters (ρ and c), and Ji;t�1 denotes the set of locations

visited by i until period t�1. The likelihood is conditional on the initial location and location-

speci�c return of the agent in period 0. We use a steepest ascent algorithm to maximize the

objective in (20), analogous to the nested �xed point method of Rust (1994).36 Lastly, given

parameter estimates α̂(k, j), σ̂2, and θ̂, one can update the estimated partition of individuals

using the full model’s structure, as in (9) and (10). Details are given in Supplementary Appendix

S2.

Note that agents in the model face uncertainty about future values of realized types αi(j).

The decision problem is only discretized for estimation purposes. This approach contrasts with

a model with discrete types in the population, where after observing her type in one location

the agent would in many cases be able to infer her type in all other possible locations. In the

present setup, uncertainty about future types diminishes over time as the agent visits more

locations, but it does not disappear.

6.2 Simulation exercise

We calibrate the model to the NLSY79, using observations on males who were at least 22 years

old in 1979. We keep observations until 1994. Log-wages are regressed on indicators of years of

education and race and a full set of age indicators. We then compute log-wage residuals lnWit.

We focus on a stylized setup with J = 2 large regions: North-East and South (region A), and

North-Central and West (B). There are N = 1889 workers, who are observed on average for

12.3 years with a maximum of T = 16 years. The probability of moving between the two regions

is low in the data: 1.5% per year, and only 10.5% of workers move at all during the observation

period. Mean log-wage residuals are .09 higher in region A compared to B.

To construct the data generating process (DGP) we �rst estimate the model using grouped

�xed-e�ects with K = 10 groups, with an iteration starting from a �rst step based on location-

speci�c mean log-wages as in (19). Following Kennan and Walker (2011), each agent is a \stayer

type" with some probability (which depends on the initial αi(ji1) though a logistic speci�cation),

36Alternatively, in this model the CCP method of Hotz and Miller (1993) or the iterative method of Aguir-

regabiria and Mira (2002) could be used. A computational alternative to maximize the objective in (20) is the

MPEC method of Su and Judd (2012).
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Figure 3: Parameter estimates across simulations

â (stayer pr., intercept) b̂ (stayer pr., slope)

ρ̂ (utility) ĉ (cost)
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Notes: Solid is two-step grouped �xed-e�ects, dotted is bias-corrected, dashed is iterated once and bias-

corrected, dashed-dotted is iterated three times and bias-corrected. The vertical line indicates the true

parameter value. N = 1889, T = 16. Unobserved heterogeneity is continuously distributed in the

DGP. The number of groups K is estimated in every replication. 500 replications.

in which case his mobility cost is in�nite; \mover types" have mobility cost c. Hence, while

the main parameters of interest are ρ and c, the model also features the intercept and slope

coe�cients in the probability of being a stayer type (a and b). The estimates we obtain are

ρ̂ = .28, ĉ = 2.10, â = �1.94, and b̂ = �.58. According to the DGP the probability of being a

stayer type is high and depends negatively on the initial location-speci�c return αi(ji1). Costs

are also high for non-stayer types. The e�ect of wages on utility is positive, although we will

see below that it is quantitatively small.37

37The model reproduces well the probability of moving, both unconditionally and conditional on past wages;

in particular it reproduces the negative relationship between past wages and mobility. It also reproduces means

and variances of log-wages by location. However, the model does not �t well average wages posterior to mobility,

as it tends to predict mean wage increases upon job move while the data do not show such a pattern.
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Figure 4: Long-run e�ects of wages

(a) two-step (b) two-step, b.c. (c) iterated (1x), b.c. (d) iterated (3x), b.c.
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Notes: Di�erence in log-wage between the two regions (x-axis), and steady-state probability of working

in region A (y-axis). (a) is two-step grouped �xed-e�ects, (b) is bias-corrected, (c) is iterated once

and bias-corrected, (d) is iterated three times and bias-corrected. The dashed curve indicates the true

value. Solid curves are means, and dotted curves are 97.5% and 2.5% percentiles, across simulations.

500 replications.

We next solve and simulate the model (as described in Supplementary Appendix S2) based

on these parameter values, together with i.i.d. normal speci�cations of shocks to log wages and

(αi(A), αi(B)), with means and variances calibrated to our estimates. The model is simulated

for T = 16 periods, the α’s being drawn independently of the initial location. Note that the α’s

are not discrete in the DGP, although we use a discrete approach in estimation. In Figure 3

we report the results of 500 Monte Carlo simulations for the four parameters of the model. We

use a kmeans routine with 100 randomly generated starting values, and checked that varying

this number had no noticeable impact on the results. We estimate the number of groups

based on (12), with ξ = 1, in every simulation (and in every subsample when using half-panel

jackknife for bias correction). We show four types of estimates: two-step grouped �xed-e�ects

(solid curve), bias-corrected two-step grouped �xed-e�ects (dotted), a single iteration and bias-

corrected (dashed), and iterated three times and bias-corrected (dashed-dotted).

The results in Figure 3 show that grouped-�xed-e�ects estimators have moderate bias for
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all parameters except for the wage coe�cient in utility ρ.38 Using both bias reduction and

an iteration improves the performance of the estimator of ρ substantially. Note that, when

combined with half-panel jackknife, a single iteration seems su�cient to reduce bias. At the

same time, bias reduction tends to be associated with a variance increase. In Supplementary

Appendix S2 we show the results of various alternative estimators: two-step grouped �xed-

e�ects for �xed values of K, a �xed-e�ects estimator and its bias-corrected counterpart, and

a random-e�ects estimator with a �xed number of types computed using the EM algorithm.

We �nd that setting K too low relative to our suggested procedure may be associated with

less accuracy, and that the statistical performance of two-step grouped �xed-e�ects estimators

(which enjoy computational advantages) is competitive with �xed-e�ects and random-e�ects

alternatives.

Counterfactual: long-run effects of wages. As an example of a counterfactual experiment

that the model can be used for, we next compute the steady-state probability of working in

region A when varying the log-wage di�erential between A and B E(αi(A)� αi(B)). In Figure

4 we show the log-wage di�erential on the x-axis, and the probability of working in A on the

y-axis. The dashed curves on the graphs show the estimates from the NLSY, while the solid

and dotted curves are means and 95% pointwise bands across simulations for the two-step

estimator, two-step bias-corrected, iterated once and bias-corrected, and iterated three times

and bias-corrected, respectively.39

The results in Figure 4 show that the model predicts small e�ects of wages on mobility on

average. When increasing the wage in A relative to B by 30% the probability of working in A

increases by less than 2 percentage points, from 56.7% to 58.2%. When focusing on workers

who are not of a \stayer type" (bottom panel), whose mobility may be a�ected by the change in

wages, we see a more substantial e�ect, as increasing the wage in region A by 30% increases the

long-run probability of working in A from 52.8% to 64.0%. In both cases the two-step estimators

are biased downward. In contrast the bias-corrected and bias-corrected iterated estimators are

close to unbiased. However they are less precisely estimated, re
ecting the estimates of the

wage coe�cient ρ in Figure 3.

This application illustrates the potential usefulness of discrete grouped �xed-e�ects estima-

tors in the presence of continuous unobserved heterogeneity. Computation of two-step esti-

38The estimated number of groups K̂ is around 7 on average.
39In the counterfactual we keep the probability of being a \stayer type" constant. Hence we abstract from

the fact that wage increases could a�ect the distribution of mobility costs, in addition to the e�ect on utility

that we focus on.
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mators is particularly easy, and the jackknife bias reduction and the iteration (only once, or

three times) provide �nite-sample improvements at moderate computational cost. This stylized

illustration thus suggests that the methods we propose could be useful in structural models.

7 Firm and worker heterogeneity

In the second illustration we consider the question of assessing the sources of dispersion in

log-wages across workers and �rms. We consider an additive model in worker and �rm hetero-

geneity:

Yit = ηi + ψj(i;t) + εit, (21)

where Yit denote log-wages, worker i works in �rm j(i, t) at time t, and ηi and ψj denote

unobserved attributes of worker i and �rm j, respectively. Equation (21) corresponds to the

model of Abowd et al. (1999) for matched employer-employee data, where we abstract from

observed covariates for simplicity. Our interest centers on the decomposition of the variance of

log-wages into a worker component, a �rm component, a component re
ecting the sorting of

workers into heterogeneous �rms, and an idiosyncratic match component:

Var (yi1) = Var (ηi) + Var
(
ψj(i;1)

)
+ 2 Cov

(
ηi, ψj(i;1)

)
+ Var (εi1) . (22)

Identi�cation of �rm e�ects ψj comes from job movements. As an example, with two time

periods the �xed-e�ects estimators of the ψj’s are obtained from:

Yi2 � Yi1 = ψj(i;2) � ψj(i;1) + εi2 � εi1,

which is uninformative for workers who remain in the same �rm in the two periods. When the

number of job movers into and out of �rm j is low, ψj may be poorly estimated; see Abowd et

al. (2004), Andrews et al. (2008), and Jochmans and Weidner (2016). This source of incidental

parameter bias may be particularly severe in short panels.

To alleviate this \low-mobility bias", Bonhomme et al. (2015, BLM) propose to reduce the

number of �rm-speci�c parameters by grouping �rms based on �rm-level observables in a �rst

step. Then, in a second step, the ψj’s are recovered at the group level, thus pooling information

across job movers within �rm groups. Speci�cally, given a kmeans-based classi�cation fk̂jg of

�rms, the ψ(k)’s are estimated based on the following criterion:

min
( (1);:::; (K))

n∑
i=1

∥∥∥Ê
(
Yi2 � Yi1 j k̂j(i;1), k̂j(i;2)

)
� ψ

(
k̂j(i;2)

)
+ ψ

(
k̂j(i;1)

)∥∥∥2

,
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where Ê denotes a group-pair average and n denotes the number of workers, subject to a single

normalization (e.g., ψ(K) = 0).

This estimator is a two-step grouped �xed-e�ects estimator based on outside information,

as analyzed in Subsection 5.1. Here N is the number of �rms, S is the number of available

observations to estimate the �rm-speci�c parameters ψj (that is, S is the number of job movers

per �rm), and T is the number of measurements on �rm heterogeneity. In BLM �rms are

classi�ed based on their empirical wage distribution functions. Using only job stayers in the

classi�cation is consistent with conditional independence in Assumption 5, provided wage ob-

servations are independent within �rms. In this case T is the number of job stayers per �rm,

which is typically much larger than the number of job movers in short panels.40

Simulation exercise. We focus on a two-period model, where εit are independent of j(i, 1),

j(i, 2), η’s, and ψ’s, have zero means, and are i.i.d. across workers and time. Following BLM

we adopt a correlated random-e�ects approach to model worker heterogeneity within �rms.

The parameters of the model are the �rm �xed-e�ects ψj, the means and variances of worker

e�ects in each �rm µj = E (ηi j j(i, 1) = j) and σ2
j = Var (ηi j j(i, 1) = j), and the variance

of idiosyncratic errors s2 = Var (εi1). We will be estimating the components of the variance

decomposition in (22). In addition we will report estimates of the correlation between worker

and �rm e�ects, Corr
(
ηi, ψj(i;1)

)
, which is commonly interpreted as a measure of sorting.

In the baseline DGP �rm heterogeneity is continuous and three-dimensional, and its under-

lying dimension equals one. Speci�cally, the vector of �rm-speci�c parameters is:

αj =
(
ψj , µj , σ

2
j

)
=
(
ψj, E

(
ηijψj(i;1) = ψj

)
, Var

(
ηijψj(i;1) = ψj

))
,

so all �rm-speci�c parameters are (nonlinear) functions of the scalar �rm e�ects ψj. This speci�-

cation is consistent with theoretical models of worker-�rm sorting where �rms are characterized

by their scalar productivity level. In Supplementary Appendix S2 we report simulations using

several alternative designs. We study cases where the underlying dimension of �rm heterogene-

ity is equal to two, which allows for a second dimension of latent �rm heterogeneity in addition

to the wage e�ects ψj. We also consider a DGP where �rm heterogeneity is discrete in the

population.

40A di�erence with the setting of Theorem 2 is that here the likelihood function is not separable across �rms,

due to the fact that two �rms are linked by the workers who move between them. We conjecture that Theorem

2 could be extended to such network settings, although formally developing this extension exceeds the scope of

this paper.
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Table 1: Estimates of �rm and worker heterogeneity across simulations

Firm size Var (ηi) Var
(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) K̂

true values

- 0.0758 0.0017 0.0057 0.4963 0.0341

two-step estimator

10 0.0775 0.0011 0.0048 0.5281 0.0348 3.0
[0.076,0.079] [0.001,0.001] [0.005,0.005] [0.519,0.537] [0.034,0.035] [3,3]

20 0.0769 0.0013 0.0051 0.5091 0.0345 4.0
[0.076,0.078] [0.001,0.002] [0.005,0.005] [0.500,0.518] [0.034,0.035] [4,4]

50 0.0764 0.0015 0.0054 0.4986 0.0343 6.0
[0.075,0.078] [0.001,0.002] [0.005,0.006] [0.490,0.507] [0.034,0.035] [6,6]

100 0.0761 0.0016 0.0055 0.4955 0.0342 8.4
[0.075,0.077] [0.001,0.002] [0.005,0.006] [0.487,0.504] [0.034,0.035] [8,9]

200 0.0760 0.0017 0.0056 0.4930 0.0342 11.3
[0.075,0.077] [0.001,0.002] [0.005,0.006] [0.483,0.503] [0.034,0.035] [11,12]

two-step estimator, bias-corrected

10 0.0778 0.0013 0.0047 0.4511 0.0346
[0.076,0.079] [0.001,0.002] [0.004,0.005] [0.439,0.463] [0.034,0.035]

20 0.0763 0.0016 0.0055 0.4902 0.0343
[0.075,0.078] [0.001,0.002] [0.005,0.006] [0.479,0.501] [0.034,0.035]

50 0.0762 0.0017 0.0055 0.4876 0.0342
[0.075,0.078] [0.001,0.002] [0.005,0.006] [0.476,0.499] [0.034,0.035]

100 0.0759 0.0017 0.0056 0.4923 0.0341
[0.075,0.077] [0.002,0.002] [0.005,0.006] [0.481,0.502] [0.034,0.035]

200 0.0759 0.0017 0.0056 0.4909 0.0341
[0.074,0.077] [0.002,0.002] [0.005,0.006] [0.480,0.503] [0.033,0.035]

�xed-e�ects estimator

10 0.1342 0.0342 -0.0267 -0.3949 0.0173
[0.132,0.136] [0.033,0.036] [-0.028,-0.025] [-0.409,-0.382] [0.017,0.018]

20 0.1002 0.0130 -0.0056 -0.1548 0.0256
[0.099,0.102] [0.012,0.014] [-0.006,-0.005] [-0.169,-0.139] [0.025,0.026]

50 0.0848 0.0055 0.0019 0.0895 0.0307
[0.083,0.086] [0.005,0.006] [0.002,0.002] [0.072,0.107] [0.030,0.031]

100 0.0802 0.0035 0.0039 0.2311 0.0324
[0.079,0.082] [0.003,0.004] [0.004,0.004] [0.212,0.250] [0.032,0.033]

200 0.0780 0.0026 0.0048 0.3359 0.0333
[0.077,0.079] [0.002,0.003] [0.004,0.005] [0.319,0.352] [0.033,0.034]

Notes: Means and 95% con�dence intervals. See Supplementary Appendix S2 for a description of the

estimators. Unobserved heterogeneity is continuously distributed in the DGP. The number of groups

K̂ is estimated in every replication, using (12) with ξ = 1, and it is reported in the last column of the

�rst panel. We use the kmeans routine from R, with 100 starting values. 500 simulations.
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Figure 5: Estimates of �rm and worker heterogeneity across simulations
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We start by estimating model (21) on Swedish register data, following BLM. We select male

workers full-year employed in 2002 and 2004, and de�ne as job movers the workers whose �rm

IDs change between the two years. We focus on �rms that are present throughout the period.

There are about 20,000 job movers in the sample. We use two-step grouped �xed-e�ects with

a classi�cation based on the �rms’ empirical distributions of log-wages in 2002, evaluated at 20

percentiles of the overall log-wage distribution, with K = 10 groups. In the second step, we

estimate the model’s parameters ψ̂(k̂j), µ̂(k̂j), σ̂
2(k̂j), and ŝ2. This step relies on simple mean

and covariance restrictions, as we describe in Supplementary Appendix S2.

Given parameter estimates, we then simulate a two-period model where �rm heterogeneity is

continuously distributed. Speci�cally, the ψj’s are drawn from a normal distribution, calibrated

to match the mean and variance of the ψ̂(k̂j)’s. We draw 120,000 workers in the cross-section,

including 20,000 job movers. We run simulations for di�erent �rm sizes, from 10 workers per

�rm to 200 workers per �rm. The total number of job movers is kept constant, so the number

of movers per �rm increases with �rm size.

In Table 1 and Figure 5 we report the mean and 95% con�dence intervals of grouped �xed-

e�ects and �xed-e�ects estimators of the components of the variance decomposition (22), across

500 simulations. The number of groups is estimated in every simulation. We see that biases of

two-step grouped �xed-e�ects estimators decrease quite rapidly when �rm size grows, although

biases are not negligible when �rms are small. As an example, the variance of �rm e�ects is

two thirds of the true value on average when �rm size equals 10, and 75% of the true value for

a �rm size of 20. Moreover, bias correction tends to provide performance improvements: for

example, biases for the variance of �rm e�ects become 25% and 5% for �rm sizes of 10 and 20,

respectively. Note that bias correction is not associated with large increases in dispersion.41

In addition, the last column in the table shows that the estimated number of groups is rather

small, and close to proportional to the square root of �rm size (which is to be expected in this

DGP with one-dimensional underlying heterogeneity).

Lastly, in the bottom panel of Table 1 we report the results for a �xed-e�ects estimator,

which is computationally feasible in this linear setting. We see that �xed-e�ects is substantially

biased. This shows that incidental parameter bias due to low mobility is particularly acute in

this DGP. The contrast between �xed-e�ects and grouped �xed-e�ects is in line with Theorem

2, since here the number S of movers per �rm is small relative to the total number T of workers

41To implement the bias-correction method of Dhaene and Jochmans (2015) we select two halves within each

�rm at random. We re-estimate the number of groups in each half-sample. Note that in this particular setting

one could alternatively average across multiple random permutations within �rm.
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in the �rm which we use to group �rms.42 Hence grouped �xed-e�ects, possibly combined with

bias reduction, provides an e�ective regularization in this context. In Supplementary Appendix

S2 we illustrate this point further by contrasting the performance of �xed-e�ects and grouped

�xed-e�ects estimators as the number of job movers per �rm varies.

8 Conclusion

Two-step grouped �xed-e�ects method based on an initial data-driven classi�cation are e�ective

dimension reduction devices. In this paper we have analyzed some of their properties under

general assumptions on the form of individual unobserved heterogeneity. We have seen that

grouped �xed-e�ects estimators are subject to an approximation bias, when the population

is not discrete, and an incidental parameter bias, since groups are estimated with noise. We

have shown in two illustrations that �xed-e�ects bias correction methods can improve the

performance of discrete estimators.

Grouped �xed-e�ects methods may be particularly well-suited when unobservables are

multi-dimensional, provided their underlying dimension is low. A case in point is a model

with time-varying unobservables with an underlying low-dimensional nonlinear factor struc-

ture. In such settings important questions for future work are the choice of the number of

groups and the characterization of asymptotic distributions.

Finally, grouped �xed-e�ects methods could be of interest beyond the two empirical illus-

trations we have considered here. Other settings include models with multi-sided heterogeneity,

nonlinear factor models, semi-parametric panel data models such as quantile regression with

individual e�ects, and network models, for example. We also envision grouped �xed-e�ects

methods, and more generally classi�cation and clustering methods, to be useful in structural

analysis. For example, in dynamic migration models with a large number of locations, a curse

of dimensionality arises when workers keep track of their full history of locations (as in Ken-

nan and Walker, 2011). Extending clustering methods to address this dimensionality challenge

would be interesting.

42In Supplementary Appendix S2 we report the results for a bias-corrected version of the �xed-e�ects estima-

tor. We �nd that, although the correction helps, the modi�ed estimator is still substantially biased.
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APPENDIX

A Proofs

A.1 Proof of Lemma 1

Let us de�ne:43

(h�, fk�i g) = argmin
(h̃;fkig)

N∑
i=1

∥∥∥ϕ(αi0)� h̃(ki)
∥∥∥2
. (A1)

By de�nition of (ĥ, fk̂ig), we have (almost surely):

N∑
i=1

∥∥∥hi � ĥ(k̂i)
∥∥∥2
�

N∑
i=1

khi � h�(k�i )k
2 .

Letting εi =
∑T

t=1 εit/T , with εit = h(Yit, Xit)�ϕ(αi0), we thus have, by the triangular inequality:

1

N

N∑
i=1

∥∥∥ϕ(αi0)� ĥ(k̂i)
∥∥∥2

= Op

(
1

N

N∑
i=1

kϕ(αi0)� h�(k�i )k
2

)
︸ ︷︷ ︸

=Bϕ(α)(K)

+Op

(
1
N

∑N
i=1 kεik2

)
.

Lemma 1 thus follows from the fact that, by Assumption 1, 1
N

∑N
i=1 kεik2 = Op(1/T ) andB’(�)(K) =

Op(B�(K)).

A.2 Proof of Corollary 1

Let fkig = fki1g \ fki2g be the intersection of two partitions of f1, ..., Ng: a �rst partition with (the

integer part of) K1 = K1�� groups, and a second partition with (the integer part of) K2 = K� groups.

Since
(
ĥ, fk̂ig

)
solves (1), we have:

1

N

N∑
i=1

∥∥∥hi � ĥ(k̂i)
∥∥∥2

=
1

N

N∑
i=1

∥∥∥ϕ(αi0) + εi � ĥ(k̂i)
∥∥∥2

� min
(h̃1;h̃2;fki1g;fki2g)

1

N

N∑
i=1

∥∥∥ϕ(αi0)� h̃1(ki1) + εi � h̃2(ki2)
∥∥∥2

= Op
(
B’(�)(K1)

)
+Op (B" (K2)) = op

(
1

T

)
.

Hence, Corollary 1 follows from the fact that: 1
N

∑N
i=1 khi � ϕ(αi0)k2 = C/T + op(1/T ).

43The literature on vector quantization provides general results on existence of optimal empirical quantizers;

that is, solutions to (A1). See for example Chapter 1 in Graf and Luschgy (2000).
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A.3 Proof of Theorem 1

In this proof and the rest of the appendix we will use the following notation. vi = @‘i
@�i

, v�i = @2‘i
@�i@�0

i
,

v�i = @2‘i
@�@�0

i
, and v��i = @3‘i

@�i@�0
i
@�0

i
(which is a q� q2 matrix). When there is no ambiguity we will omit

the dependence on true parameter values from the notation. Let, for all θ and k 2 f1, ...,Kg:

α̂(k, θ) = argmax
�2A

N∑
i=1

1fk̂i = kg`i (α, θ) . (A2)

Let αi(θ) = argmax�i2A limT!1 E (`i(αi, θ)). Let also δ = 1
T + B�(K) (or more generally δ =

1
T +B(�;�)(K) in conditional models).

The proof consists of three steps. We will �rst establish that θ̂ is consistent for θ0. Then, we will

expand the score equation around θ0:

0 =
1

N

N∑
i=1

∂`i(α̂(k̂i, θ̂), θ̂)

∂θ
=

1

N

N∑
i=1

∂`i(α̂(k̂i, θ0), θ0)

∂θ
+

(
∂

∂θ0

∣∣∣
�̃

1

N

N∑
i=1

∂`i(α̂(k̂i, θ), θ)

∂θ

)(
θ̂ � θ0

)
,

where θ̃ lies between θ0 and θ̂. We will then establish the following main intermediate results:

1

N

N∑
i=1

∂`i(α̂(k̂i, θ0), θ0)

∂θ
=

1

N

N∑
i=1

∂

∂θ

∣∣∣∣
�0

`i (αi(θ), θ) +Op (δ) , (A3)

1

N

N∑
i=1

∂2

∂θ∂θ0

∣∣∣∣
�0

(
`i

(
α̂(k̂i, θ), θ

)
� `i (αi(θ), θ)

)
= op(1). (A4)

By (5), the �rst part of Theorem 1 will then come from approximating @
@�0

∣∣
�̃

1
N

∑N
i=1

@‘i(�̂(k̂i;�);�)
@� by its

value at θ0, using that θ̃ is consistent and part (iv) in Assumption 2. The second part of the theorem

will then follow.

We will focus on the case where E (`i(αi, θ)) does not depend on T , and likewise for its �rst three

derivatives. Allowing those population moments to depend on T would be needed in order to deal

with the presence of non-stationary initial conditions in dynamic models. This could be done at the

cost of making the notation in the proof more involved.

Consistency of θ̂. We will establish that:

sup
�2�

∣∣∣∣∣ 1

N

N∑
i=1

`i

(
α̂(k̂i, θ), θ

)
� 1

N

N∑
i=1

`i (αi (θ) , θ)

∣∣∣∣∣ = op(1). (A5)

Compactness of the parameter space, continuity of the target likelihood, and identi�cation of θ0 (from

part (ii) in Assumption 2), will then imply that θ̂ is consistent for θ0 (e.g., Theorem 2.1 in Newey and

McFadden, 1994).

To show (A5) we �rst note that, for every θ 2 �: E (vi (αi(θ), θ)) = 0, where the expectation is

taken with respect to fi(Yi, Xi), which depends on αi0. This shows that αi(θ), which is unique by
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Assumption 2 (ii), is a function of θ and αi0. We will denote this function as αi(θ) = α (θ, αi0).44

From Assumption 2 (ii) and (iii) we have that both:

∂α (θ, αi0)

∂θ0
= E [�v�i (αi(θ), θ)]

�1 E
[
v�i (αi(θ), θ)

]0
and:

∂α (θ, αi0)

∂α0i
= E [�v�i (αi(θ), θ)]

�1 ∂

∂α0

∣∣∣∣
�i0

E� [vi (αi(θ), θ)] (A6)

are uniformly bounded. This shows that α (θ, αi0) is Lipschitz continuous with uniformly bounded

Lipschitz coe�cients.

Let now a(k, θ) = α
(
θ, ψ

(
ĥ (k)

))
, where ψ is de�ned in Assumption 3. De�ne the �xed-e�ects

estimator of αi, for given θ, as α̂i(θ) = argmax�i2A `i(αi, θ). We have, for all θ (that is, pointwise):

1

N

N∑
i=1

`i

(
a(k̂i, θ), θ

)
� 1

N

N∑
i=1

`i

(
α̂(k̂i, θ), θ

)
� 1

N

N∑
i=1

`i (α̂i(θ), θ) =
1

N

N∑
i=1

`i (αi(θ), θ) +Op

(
1

T

)
,

where the last equality follows from expanding the log-likelihood around αi(θ) (as in Arellano and

Hahn, 2007, for example).

Now, for some ai(θ) between α̂i (θ) and a(k̂i, θ):

1

N

N∑
i=1

`i

(
a(k̂i, θ), θ

)
� 1

N

N∑
i=1

`i (α̂i (θ) , θ) =
1

2N

N∑
i=1

(
a(k̂i, θ)� α̂i (θ)

)0
v�i (ai (θ) , θ)

(
a(k̂i, θ)� α̂i (θ)

)
.

By Assumption 2 (iii), maxi=1;:::;N sup(�i;�) kv
�
i (αi, θ)k = Op(1). Moreover:

1

N

N∑
i=1

∥∥∥a(k̂i, θ)� α̂i (θ)
∥∥∥2

=
1

N

N∑
i=1

∥∥∥a(k̂i, θ)� αi (θ)
∥∥∥2

+Op

(
1

T

)

=
1

N

N∑
i=1

∥∥∥α(θ, ψ (ĥ(k̂i)))� α (θ, ψ(ϕ(αi0)))
∥∥∥2

+Op

(
1

T

)

= Op

(
1

N

N∑
i=1

∥∥∥ĥ(k̂i)� ϕ(αi0)
∥∥∥2
)

+Op

(
1

T

)
= Op(δ), (A7)

where we have used Lemma 1 and Assumption 3, and the fact that α is Lipschitz with respect to its

second argument. This implies that, pointwise in θ 2 �:∣∣∣∣∣ 1

N

N∑
i=1

`i

(
α̂(k̂i, θ), θ

)
� 1

N

N∑
i=1

`i (α̂i (θ) , θ)

∣∣∣∣∣ = Op(δ). (A8)

44In conditional models where the distribution of covariates depends also on µi0, αi(θ) will be a function of

both types of individual e�ects; that is: α (θ, αi0, µi0).
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In order to establish uniform convergence of the grouped �xed-e�ects log-likelihood, let us �rst

recall the uniform convergence of the �xed-e�ects log-likelihood (from Assumption 2 (i)-(ii)-(iii)):

sup
�2�

∣∣∣∣∣ 1

N

N∑
i=1

`i (α̂i(θ), θ)�
1

N

N∑
i=1

`i (αi (θ) , θ)

∣∣∣∣∣ = op(1).

We have, using similar arguments as above:

sup
�2�

∣∣∣∣∣ 1

N

N∑
i=1

`i

(
α̂(k̂i, θ), θ

)
� 1

N

N∑
i=1

`i (α̂i (θ) , θ)

∣∣∣∣∣ � sup
�2�

∣∣∣∣∣ 1

N

N∑
i=1

`i

(
a(k̂i, θ), θ

)
� 1

N

N∑
i=1

`i (α̂i (θ) , θ)

∣∣∣∣∣
� sup

�2�

∣∣∣∣∣ 1

N

N∑
i=1

`i

(
a(k̂i, θ), θ

)
� 1

N

N∑
i=1

`i (αi (θ) , θ)

∣∣∣∣∣+ op(1) = op(1),

where the last inequality comes from a �rst-order expansion around αi(θ), Assumption 2 (iii), and the

fact that: sup�2�
1
N

∑N
i=1 ka(k̂i, θ)� αi(θ)k2 = Op(δ) = op(1).

This implies (A5) and consistency of θ̂ as N,T,K tend to in�nity.

Proof of (A3). From (A8) evaluated at θ0 we have, for some ai between α̂(k̂i, θ0) and α̂i (θ0), and

omitting from now on the reference to θ0 for conciseness:

Op(δ) =
1

N

N∑
i=1

`i (α̂i)�
1

N

N∑
i=1

`i(α̂(k̂i)) =
1

2N

N∑
i=1

(
α̂(k̂i)� α̂i

)0
(�v�i (ai))

(
α̂(k̂i)� α̂i

)
� 0. (A9)

By parts (ii) and (iii) in Assumption 2 there exists a constant η > 0 and a positive de�nite matrix

� such that:

inf
�i0

inf
k�i��i0k��

E (�v�i (αi)) � �.

For this η we will �rst show that:

1

N

N∑
i=1

1
{
kα̂(k̂i)� αi0k > η

}
= Op(δ). (A10)

Showing (A10) will allow us to control the di�erence α̂(k̂i)�αi0 in an average sense. This is important

since, unlike for �xed-e�ects, we conjecture that maxi=1;:::;N kα̂(k̂i)� αi0k is generally not op(1).

To see that (A10) holds, let ιi = 1
{
kα̂(k̂i)� αi0k � η

}
, and note that by (A9) we have, since

`i (α̂i) � `i(α̂(k̂i)) for all i:

0 � 1

N

N∑
i=1

(1� ιi)
(
`i (α̂i)� `i(α̂(k̂i))

)
= Op(δ).

Now, by parts (ii) and (iii) in Assumption 2, and using that maxi=1;:::;N kα̂i � αi0k = op(1):

min
i=1;:::;N

inf
k�i��i0k>�

`i (α̂i)� `i(αi) � inf
�i0

inf
k�i��i0k>�

E [`i (αi0)]� E [`i(αi)] + op(1) � ζ + op(1),
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where ζ > 0 is a constant, and the op(1) term is uniform in i and αi. Hence 1
N

∑N
i=1(1�ιi)(ζ+op(1)) =

Op(δ), from which (A10) follows.

Next, by part (iii) in Assumption 2 kv�i (αi)� E (v�i (αi))k is op (1) uniformly in i and αi. We thus

have:

min
i=1;:::;N

inf
k�i��i0k��

(�v�i (αi)) � � + op(1). (A11)

Using (A9) this implies that: 1
N

∑N
i=1 ιi

∥∥∥α̂(k̂i)� α̂i
∥∥∥2

= Op(δ). Hence, using in addition (A10) and

the fact that A is compact, we have:

1

N

N∑
i=1

∥∥∥α̂(k̂i)� α̂i
∥∥∥2

=
1

N

N∑
i=1

ιi

∥∥∥α̂(k̂i)� α̂i
∥∥∥2

+
1

N

N∑
i=1

(1� ιi)
∥∥∥α̂(k̂i)� α̂i

∥∥∥2
= Op(δ). (A12)

We are now going to show (A3). It follows from (A12) and a second-order expansion that:

1

N

N∑
i=1

∂`i(α̂(k̂i))

∂θ
=

1

N

N∑
i=1

∂`i(αi0)

∂θ
+

1

N

N∑
i=1

v�i

(
α̂(k̂i)� αi0

)
+Op (δ) .

By Cauchy Schwarz, using (A12) and the fact that 1
N

∑N
i=1 kv�i �E

(
v�i
)
k2 = Op(T

�1) by Assumption

2 (iii), we have:

1

N

N∑
i=1

v�i

(
α̂(k̂i)� αi0

)
=

1

N

N∑
i=1

E
(
v�i

)(
α̂(k̂i)� αi0

)
+Op (δ) .

We are going to show that:

1

N

N∑
i=1

E
(
v�i

)(
α̂(k̂i)� αi0 � [E (�v�i )]�1 vi

)
= Op (δ) . (A13)

Expanding vi(α̂i) = 0 around αi0 we have, by Assumption 2:

1

N

N∑
i=1

E
(
v�i

)(
α̂i � αi0 � [E (�v�i )]�1 vi

)
= Op

(
1

T

)
.

It will thus be enough to show that:

1

N

N∑
i=1

E
(
v�i

)(
α̂(k̂i)� α̂i

)
= Op (δ) . (A14)

Next, expanding to second order each vi(α̂(k)) around α̂i in the score equation:
∑N

i=1 1fk̂i =

kgvi(α̂(k)) = 0, we have:

α̂(k) =

(
N∑
i=1

1fk̂i = kg(�ṽ�i )

)�1( N∑
i=1

1fk̂i = kg
[
(�ṽ�i )α̂i +

1

2
v��i (ai(k)) (α̂(k)� α̂i)
 (α̂(k)� α̂i)

])
,
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where ṽ�i = v�i (α̂i), and ai(k) lies between α̂i and α̂(k). Let us also de�ne:

α̃(k) =

(
N∑
i=1

1fk̂i = kg(�ṽ�i )

)�1( N∑
i=1

1fk̂i = kg(�ṽ�i )α̂i

)
.

We start by noting that, since:

α̃(k)� α̂(k) = �1

2

(
N∑
i=1

1fk̂i = kg(�ṽ�i )

)�1 N∑
i=1

1fk̂i = kgv��i (ai(k)) (α̂(k)� α̂i)
 (α̂(k)� α̂i) ,

(A15)

and since mini=1;:::;N (�ṽ�i ) � � + op(1), it follows from (A12) that:∥∥∥∥∥ 1

N

N∑
i=1

E
(
v�i

)(
α̃
(
k̂i

)
� α̂

(
k̂i

))∥∥∥∥∥ � 1

2
max

i=1;:::;N

∥∥∥E
(
v�i

)∥∥∥ max
i=1;:::;N

∥∥∥(�ṽ�i )�1
∥∥∥ max
i=1;:::;N

∥∥∥(v��i ) (ai(k̂i))
∥∥∥

� 1

N

N∑
i=1

 N∑
j=1

1fk̂j = k̂ig

�1
N∑
j=1

1fk̂j = k̂ig
∥∥∥α̂(k̂j)� α̂j

∥∥∥2


= Op

(
1

N

N∑
i=1

∥∥∥α̂(k̂i)� α̂i
∥∥∥2
)

= Op(δ),

where we have used (A12) in the last step. To show (A14) it will thus su�ce to show that:

1

N

N∑
i=1

E
(
v�i

)(
α̃(k̂i)� α̂i

)
= Op (δ) . (A16)

Before continuing, note also that, by a similar argument and using that A is compact:

1

N

N∑
i=1

∥∥∥α̃(k̂i)� α̂(k̂i)∥∥∥2
= Op(δ),

hence, by (A12):

1

N

N∑
i=1

∥∥∥α̃(k̂i)� α̂i∥∥∥2
= Op(δ). (A17)

Let now z0i = E
(
v�i
)

[E (�v�i )]�1, and let z̃(k) be the weighted mean:

z̃(k) =

(
N∑
i=1

1fk̂i = kg(�ṽ�i )

)�1( N∑
i=1

1fk̂i = kg(�ṽ�i )zi

)
.
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We have, by Assumption 2:

1

N

N∑
i=1

E
(
v�i

)(
α̃(k̂i)� α̂i

)
=

1

N

N∑
i=1

E
(
v�i

)
[E (�v�i )]�1 (�v�i )

(
α̃(k̂i)� α̂i

)
+Op (δ)

=
1

N

N∑
i=1

E
(
v�i

)
[E (�v�i )]�1︸ ︷︷ ︸
=z0

i

(�ṽ�i )
(
α̃(k̂i)� α̂i

)
+Op (δ)

=
1

N

N∑
i=1

(
zi � z̃(k̂i)

)0
(�ṽ�i )

(
α̃(k̂i)� α̂i

)
+Op (δ) , (A18)

where the �rst equality comes from parts (ii) and (iii), the second equality comes from combining

(A17) with: 1
N

∑N
i=1 kv�i � ṽ�i k2 = Op

(
1
N

∑N
i=1 kαi0 � α̂ik2

)
= Op(1/T ), and the last equality comes

from α̃(k) and z̃(k) being weighted means of α̂i and zi with weights (�ṽ�i ).

Let now z(k) = (
∑N

i=1 1fk̂i = kg)�1(
∑N

i=1 1fk̂i = kgzi) be the unweighted mean of zi in group

k̂i = k. Since mini=1;:::;N (�ṽ�i ) � � + op(1), we have:

1

N

N∑
i=1

(
zi � z̃(k̂i)

)0
(�ṽ�i )

(
zi � z̃(k̂i)

)
= Op

(
1

N

N∑
i=1

(
zi � z(k̂i)

)0
(�ṽ�i )

(
zi � z(k̂i)

))
,

where we have used that z̃(k) is the weighted mean of zi. Using Assumption 2 (iii) then gives:

1

N

N∑
i=1

(
zi � z̃(k̂i)

)0
(�ṽ�i )

(
zi � z̃(k̂i)

)
= Op

(
1

N

N∑
i=1

∥∥∥zi � z(k̂i)∥∥∥2
)
.

Moreover, by parts (ii) and (iii) in Assumption 2, zi = g(αi0) is a Lipschitz function of αi0. We

thus have:

1

N

N∑
i=1

∥∥∥zi � z(k̂i)∥∥∥2
� 1

N

N∑
i=1

∥∥∥g(αi0)� g
(
a(k̂i, θ0)

)∥∥∥2
= Op(B�(K)) = Op(δ),

where we have used (A7) at θ = θ0.45

Hence, using again that: mini=1;:::;N (�ṽ�i ) � � + op(1), we obtain:

1

N

N∑
i=1

∥∥∥zi � z̃(k̂i)∥∥∥2
= Op(δ). (A19)

Applying Cauchy Schwarz to the right-hand side of (A18), and using (A17) and Assumption 2

(iii), then shows (A16), hence (A13), hence (A3).

45More generally, in conditional models: 1
N

∑N
i=1 kg(αi0, µi0)� g(a(k̂i, θ0))k2 = Op(B(α,µ)(K)) = Op(δ).
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Proof of (A4). Let ι̃(k) = 1
{∑N

j=1 1fk̂j = kg
(
�v�j

(
α̂(k̂j)

))
� 1

2�
}

. We are �rst going to show

that:

1

N

N∑
i=1

(
1� ι̃

(
k̂i

))
= Op(δ). (A20)

Similarly as (A10), showing (A20) is needed since we have not established that maxi=1;:::;N kα̂(k̂i)�αi0k
is op(1) (in fact, we conjecture that uniform consistency does not hold in general).

Let η > 0 as in (A10), and de�ne ιi accordingly. From (A10) it su�ces to show that:

1

N

N∑
i=1

ιi

(
1� ι̃

(
k̂i

))
= Op(δ).

With probability approaching one we have: mini;�i=1

(
�v�i

(
α̂(k̂i)

))
� 2

3�. When this condition is

satis�ed we have:

ιi

(
1� ι̃

(
k̂i

))
= ιi

1� 1


N∑
j=1

1fk̂j = k̂ig
(
�v�j

(
α̂(k̂j)

))
� 1

2
� � 0




� ιi

1� 1

(�v�i (α̂(k̂i)
))
� 1

2
� +

∑
j 6=i

1fk̂j = k̂ig
(
�v�j

(
α̂(k̂j)

))
� 0




� ιi

1� 1


N∑
j=1

ιj1fk̂j = k̂ig
1

6
� � �

N∑
j=1

(1� ιj)1fk̂j = k̂ig
(
�v�j

(
α̂(k̂j)

))


� 1


N∑
j=1

ιj1fk̂j = k̂ig �
6

σ

(
max

j=1;:::;N

∥∥∥�v�j (α̂(k̂j)
)∥∥∥) N∑

j=1

(1� ιj)1fk̂j = k̂ig


� 1


N∑
j=1

1fk̂j = k̂ig �
(

1 +
6

σ
max

j=1;:::;N

∥∥∥�v�j (α̂(k̂j)
)∥∥∥) N∑

j=1

(1� ιj)1fk̂j = k̂ig

 ,

where σ denotes the minimum eigenvalue of �. Hence we have, with probably approaching one:

0 � 1

N

N∑
i=1

ιi

(
1� ι̃

(
k̂i

))

� 1

N

N∑
i=1

1


N∑
j=1

1fk̂j = k̂ig �
(

1 +
6

σ
max

j=1;:::;N

∥∥∥�v�j (α̂(k̂j)
)∥∥∥) N∑

j=1

(1� ιj)1fk̂j = k̂ig


=

1

N

K∑
k=1

N∑
i=1

1fk̂i = kg1


N∑
j=1

1fk̂j = kg �
(

1 +
6

σ
max

j=1;:::;N

∥∥∥�v�j (α̂(k̂j)
)∥∥∥) N∑

j=1

(1� ιj)1fk̂j = kg


� 1

N

K∑
k=1

(
1 +

6

σ
max

j=1;:::;N

∥∥∥�v�j (α̂(k̂j)
)∥∥∥) N∑

j=1

(1� ιj)1fk̂j = kg = Op

 1

N

N∑
j=1

(1� ιj)

 = Op(δ).

This shows (A20).
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We are now going to show (A4). By part (iv) in Assumption 2, Cauchy Schwarz, and (A20), we

have: ∥∥∥∥∥ 1

N

N∑
i=1

(
1� ι̃(k̂i)

) ∂2

∂θ∂θ0

∣∣∣∣
�0

`i

(
α̂(k̂i, θ), θ

)∥∥∥∥∥
2

� 1

N

N∑
i=1

(1� ι̃(k̂i))�
1

N

N∑
i=1

∥∥∥∥∥ ∂2

∂θ∂θ0

∣∣∣∣
�0

`i

(
α̂(k̂i, θ), θ

)∥∥∥∥∥
2

= op(1).

Let k such that ι̃(k) = 1. Di�erentiating with respect to θ:
∑N

i=1 1fk̂i = kgvi(α̂(k, θ), θ) = 0 we

obtain, at θ = θ0:

∂α̂(k)

∂θ0
=

 N∑
j=1

1fk̂j = kg
(
�v�j

(
α̂(k̂j)

))�1
N∑
j=1

1fk̂j = kg
(
v�j

(
α̂(k̂j)

))0
, (A21)

where we note that since, ι̃(k) = 1,
∑N

j=1 1fk̂j = kg
(
�v�j

(
α̂(k̂j)

))
is bounded from below by �/2.

Let now:

�2S(θ0) � 1

N

N∑
i=1

ι̃(k̂i)
∂2

∂θ∂θ0

∣∣∣∣
�0

`i

(
α̂(k̂i, θ), θ

)
� 1

N

N∑
i=1

∂2

∂θ∂θ0

∣∣∣∣
�0

`i (αi(θ), θ) .

We have, at θ0 (omitting again the reference to θ0 from the notation):

�2S(θ0) =
1

N

N∑
i=1

ι̃(k̂i)
∂2`i

(
α̂(k̂i)

)
∂θ∂θ0

+ ι̃(k̂i)v
�
i

(
α̂(k̂i)

) ∂α̂(k̂i)

∂θ0
� ∂2`i (αi0, θ0)

∂θ∂θ0
� v�i

∂αi
∂θ0

�
(
∂αi
∂θ0

)0
(v�i )

0 �
(
∂αi
∂θ0

)0
v�i
∂αi
∂θ0
� ∂2

∂θ∂θ0

∣∣∣∣∣
�0

(
αi(θ)

0vi
)

=
1

N

N∑
i=1

ι̃(k̂i)
∂2`i

(
α̂(k̂i)

)
∂θ∂θ0

+ ι̃(k̂i)v
�
i

(
α̂(k̂i)

) ∂α̂(k̂i)

∂θ0
� ∂2`i (αi0, θ0)

∂θ∂θ0
� v�i

∂αi
∂θ0

+ op(1),

where we have used that E (vi) = 0 and: @�i
@�0 = [E (�v�i )]�1 E

(
v�i
)0

. Hence, using (A12) and (A20):

�2S(θ0) =
1

N

N∑
i=1

ι̃(k̂i)v
�
i

(
∂α̂(k̂i, θ0)

∂θ0
� ∂αi(θ0)

∂θ0

)
+ op (1) ,

so:

�2S(θ0) =
1

N

N∑
i=1

ι̃(k̂i)E
(
v�i

)(∂α̂(k̂i, θ0)

∂θ0
� ∂αi(θ0)

∂θ0

)
+ op (1) .
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Next, de�ning z0i = E
(
v�i
)

[E (�v�i )]�1 and z̃(k) as above we have:

�2S(θ0) =
1

N

N∑
i=1

ι̃(k̂i)z
0
iE (�v�i )

(
∂α̂(k̂i)

∂θ0
� ∂αi
∂θ0

)
+ op (1)

=
1

N

N∑
i=1

ι̃(k̂i)z
0
i (�v�i )

(
∂α̂(k̂i)

∂θ0
� ∂αi
∂θ0

)
+ op (1)

=
1

N

N∑
i=1

ι̃(k̂i)z
0
i

(
�v�i

(
α̂(k̂i)

))(∂α̂(k̂i)

∂θ0
� ∂αi
∂θ0

)
+ op (1)

=
1

N

N∑
i=1

ι̃(k̂i)z̃(k̂i)
0
(
�v�i

(
α̂(k̂i)

))(∂α̂(k̂i)

∂θ0
� ∂αi
∂θ0

)
+ op (1)

=
1

N

N∑
i=1

ι̃(k̂i)z̃(k̂i)
0
((

v�i

(
α̂(k̂i)

))0
�
(
�v�i

(
α̂(k̂i)

)) ∂αi
∂θ0

)
+ op (1)

=
1

N

N∑
i=1

ι̃(k̂i)z̃(k̂i)
0

(E
(
v�i

))0
� (E (�v�i ))

∂αi
∂θ0︸ ︷︷ ︸

=0

+ op (1) = op (1) ,

where we have used (A12) in the third equality, (A19) in the fourth one, (A21) and the fact that

∂α̂(k)/∂θ0 is a weighted mean in the �fth one, and we have expanded around αi0 and used (A12) in

the last equality.

Proof of the second part of Theorem 1. Finally, to show (7) let us de�ne, analogously to

the beginning of the proof of (A3):

ι̂i = 1
{
kα̂(k̂i, θ̂)� αi0k � η

}
,

where η is such that: inf�i0 infk(�i;�)�(�i0;�0)k�2� E (�v�i (αi, θ)) � �. Using that θ̂ is consistent it is

easy to verify that:∣∣∣∣∣ 1

N

N∑
i=1

`i

(
α̂(k̂i, θ̂), θ̂

)
� 1

N

N∑
i=1

`i

(
α̂i

(
θ̂
)
, θ̂
)∣∣∣∣∣ �

∣∣∣∣∣ 1

N

N∑
i=1

`i

(
a(k̂i, θ̂), θ̂

)
� 1

N

N∑
i=1

`i

(
α̂i

(
θ̂
)
, θ̂
)∣∣∣∣∣ = Op(δ).

(A22)

Using similar arguments as at the beginning of the proof of (A3), but now at θ̂, it can be shown that:

1

N

N∑
i=1

(1� ι̂i) = Op(δ),
1

N

N∑
i=1

ι̂i

∥∥∥α̂(k̂i, θ̂)� α̂i
(
θ̂
)∥∥∥2

= Op(δ),

hence that:

1

N

N∑
i=1

∥∥∥α̂(k̂i, θ̂)� α̂i
(
θ̂
)∥∥∥2

= Op(δ).

(7) then comes from the fact that 1
N

∑N
i=1 kα̂i(θ̂)� αi0k2 = Op(T

�1).

This ends the proof of Theorem 1.
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A.4 Proof of Corollary 2

We follow a likelihood approach as in Arellano and Hahn (2007, 2016). Consider the di�erence between

the grouped �xed-e�ects and �xed-e�ects concentrated likelihoods:

�L(θ) =
1

N

N∑
i=1

`i(α̂(k̂i, θ), θ)�
1

N

N∑
i=1

`i(α̂i(θ), θ).

We are going to derive an expansion for the derivative of �L(θ) at θ0. From there, we will characterize

the �rst-order bias of the grouped �xed-e�ects estimator θ̂.

For any zi let us denote as E (zi jhi) the conditional expectation of zi given hi across individuals;

that is, the function of hi which minimizes:

lim
N!1

1

N

N∑
i=1

E�i0
[∥∥zi � E (zi jhi)

∥∥2
]
.

Let: νi(θ) = α̂i(θ)� E (α̂i(θ) jhi). We are going to show that:

∂

∂θ

∣∣∣
�0

�L(θ) = � ∂

∂θ

∣∣∣
�0

1

2N

N∑
i=1

νi(θ)
0E [�v�i (αi(θ), θ)] νi(θ) + op

(
1

T

)
. (A23)

To show (A23) we are �rst going to establish several preliminary results. Together with fourth-

order di�erentiability, those will allow us to derive the required expansions. In the following we will

evaluate all functions at θ0, and omit θ0 for the notation.46 First, note that from the proof of Theorem

1 and using the fact that 1
N

∑N
i=1 khi � ĥ(k̂i)k2 = op

(
1
T

)
we have:

1

N

N∑
i=1

kα̂(k̂i)� α̂ik2 = Op

(
1

T

)
. (A24)

Next, let α̂i = γ(hi) + νi, where γ(hi) = E (α̂i jhi). We have:

α̂(k) =

(
N∑
i=1

1fk̂i = kg(�v�i (ai(k)))

)�1( N∑
i=1

1fk̂i = kg(�v�i (ai(k)))α̂i

)
, (A25)

for some ai(k) between α̂i and α̂(k). Note that, by condition (ii) in Corollary 2 and Assumption 2

(iii), (�v�i (αi)) is uniformly bounded away from zero with probability approaching one. Let γ̂(k) and

ν̂(k) denote the weighted means of γ(hi) and νi in group k̂i = k, respectively, where the weight is

(�v�i (ai(k))). Note that α̂(k) = γ̂(k)+ ν̂(k). Since 1
N

∑N
i=1 khi� ĥ(k̂i)k2 = op (1/T ) and γ is uniformly

Lipschitz, we have:

1

N

N∑
i=1

kγ(hi)� γ̂(k̂i)k2 = op

(
1

T

)
. (A26)

46In particular, α̂i will be a shorthand for α̂i(θ0).
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Moreover, since by condition (iii) in Corollary 2 the
p
Tνi, which are mean independent of the k̂j ’s

and have zero mean, have bounded conditional variance, and denoting as ν(k) the unweighted mean

of νi in group k̂i = k, we have: 1
N

∑N
i=1 kν(k̂i)k2 = Op

(
K
NT

)
= op

(
1
T

)
, where we have used that K/N

tends to zero. Hence:

1

N

N∑
i=1

kν̂(k̂i)k2 = op

(
1

T

)
. (A27)

Let ĝi = v�i (α̂i)(�v�i (α̂i))
�1 = λ(hi) + ξi, where λ(hi) = E (ĝi jhi). Similarly we have, using

analogous notations for weighted group means:

1

N

N∑
i=1

kλ(hi)� λ̂(k̂i)k2 = op

(
1

T

)
,

1

N

N∑
i=1

kξ̂(k̂i)k2 = op

(
1

T

)
. (A28)

Further, denote as γ̃(k), ν̃(k), λ̃(k), and ξ̃(k) the weighted means of γ(hi), νi, λ(hi), and ξi in

group k̂i = k, respectively, where the weight is (�v�i (α̂i)). By similar arguments we have:

1

N

N∑
i=1

kγ(hi)� γ̃(k̂i)k2 = op

(
1

T

)
,

1

N

N∑
i=1

kν̃(k̂i)k2 = op

(
1

T

)
, (A29)

1

N

N∑
i=1

kλ(hi)� λ̃(k̂i)k2 = op

(
1

T

)
,

1

N

N∑
i=1

kξ̃(k̂i)k2 = op

(
1

T

)
. (A30)

Next, using (A25), (A26), and (A27), in addition to A being compact and γ being bounded, we

have that: 1
N

∑N
i=1 kα̂(k̂i)� α̂ik3 = � 1

N

∑N
i=1 kνik3 + op(1/T ). Hence, by condition (iii) in Corollary

2:

1

N

N∑
i=1

kα̂(k̂i)� α̂ik3 = op

(
1

T

)
. (A31)

To see that (A23) holds, �rst note that, denoting a
2 = a
 a:

∂

∂θ

∣∣∣
�0

�L(θ) =
1

N

N∑
i=1

∂`i(α̂(k̂i))

∂θ
� 1

N

N∑
i=1

∂`i(α̂i)

∂θ

=
1

N

N∑
i=1

v�i (α̂i)
(
α̂(k̂i)� α̂i

)
+

1

2N

N∑
i=1

v��i (ai)
(
α̂(k̂i)� α̂i

)
2

=
1

N

N∑
i=1

v�i (α̂i)
(
α̃(k̂i)� α̂i

)
︸ ︷︷ ︸

�A1

+
1

2N

N∑
i=1

v��i (ai)
(
α̂(k̂i)� α̂i

)
2

︸ ︷︷ ︸
�A2

+
1

2N

N∑
i=1

v�i (α̂i)

 N∑
j=1

1fk̂j = k̂ig(�v�j (α̂j))

�1
N∑
j=1

1fk̂j = k̂igv��j
(
aj(k̂j)

)(
α̂(k̂j)� α̂j

)
2

︸ ︷︷ ︸
�A3

,
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where we have used the notation of the proof of Theorem 1, ai lies between α̂i and α̂(k̂i) and so does

ai(k̂i), v
��
i (ai) is a matrix of third derivatives with q2 columns, and the last equality comes from (A15),

where note that (�v�i (α̂i)) is uniformly bounded away from zero with probability approaching one.

Let us consider the three terms in turn. First, we have:

A1 =
1

N

N∑
i=1

ĝi (�v�i (α̂i))
(
α̃(k̂i)� α̂i

)
=

1

N

N∑
i=1

(
ĝi � g̃(k̂i)

)
(�v�i (α̂i))

(
α̃(k̂i)� α̂i

)
= � 1

N

N∑
i=1

(
λ(hi)� λ̃(k̂i) + ξi � ξ̃(k̂i)

)
(�v�i (α̂i))

(
γ(hi)� γ̃(k̂i) + νi � ν̃(k̂i)

)
= � 1

N

N∑
i=1

ξi(�v�i (α̂i))νi + op

(
1

T

)

= � 1

N

N∑
i=1

ξiE(�v�i (αi0))νi + op

(
1

T

)
,

where we have used (A25), (A29), and (A30).

Next, we have, using in addition (A31):

A2 =
1

2N

N∑
i=1

E
(
v��i (αi0)

)(
α̂(k̂i)� α̂i

)
2
+ op

(
1

T

)

=
1

2N

N∑
i=1

E
(
v��i (αi0)

)(
γ̂(k̂i)� γ(hi) + ν̂(k̂i)� νi

)
2
+ op

(
1

T

)

=
1

2N

N∑
i=1

E
(
v��i (αi0)

)
ν
2
i + op

(
1

T

)
.

57



Lastly, de�ning g̃(k) the weighted mean of ĝi in group k̂i = k with weight (�v�i (α̂i)), we have:

A3 =
1

2N

N∑
i=1

ĝi(�v�i (α̂i))

 N∑
j=1

1fk̂j = k̂ig(�v�j (α̂j))

�1

�
N∑
j=1

1fk̂j = k̂igv��j
(
aj(k̂j)

)(
α̂(k̂j)� α̂j

)
2

=
1

2N

N∑
i=1

g̃(k̂i)(�v�i (α̂i))

 N∑
j=1

1fk̂j = k̂ig(�v�j (α̂j))

�1

�
N∑
j=1

1fk̂j = k̂igv��j
(
aj(k̂j)

)(
α̂(k̂j)� α̂j

)
2
+ op

(
1

T

)

=
1

2N

N∑
i=1

g̃(k̂i)v
��
i

(
ai(k̂i)

)(
α̂(k̂i)� α̂i

)
2
+ op

(
1

T

)

=
1

2N

N∑
i=1

E
(
v�i (αi0)

)
[E(�v�i (αi0))]�1 E [v��i (αi0)] ν
2

i + op

(
1

T

)
.

Combining results, we get:

∂

∂θ

∣∣∣
�0

�L(θ) = � 1

N

N∑
i=1

ξiE(�v�i (αi0))νi

+
1

2N

N∑
i=1

[
E
(
v��i (αi0)

)
+ E

(
v�i (αi0)

)
[E(�v�i (αi0))]�1 E [v��i (αi0)]

]
ν
2
i + op

(
1

T

)
.

This shows (A23), since @�̂i(�0)
@�0 = ĝ0i, and:

∂

∂θ0

∣∣∣
�0

vec E [�v�i (αi(θ), θ)] = �
(

E
(
v��i (αi0)

)
+ E

(
v�i (αi0)

)
[E(�v�i (αi0))]�1 E [v��i (αi0)]

)0
.

As an example, consider the case where ϕ is one-to-one. Note that:

α̂i(θ) = αi(θ)︸ ︷︷ ︸
=�(�;�i0)

+ E [�v�i (αi(θ), θ)]
�1 vi (αi(θ), θ) + op

(
1p
T

)
.

In this case it can be shown that: E (α̂i(θ) jhi) = α
(
θ, ϕ�1(hi)

)
+ op

(
1p
T

)
. Hence, under suitable

di�erentiability conditions we have the following explicit expression for νi(θ) up to smaller order terms:

νi(θ) = α(θ, αi0)� α
(
θ, ϕ�1(hi)

)
+ E [�v�i (αi(θ), θ)]

�1 vi (αi(θ), θ) + op

(
1p
T

)
= E [�v�i (αi(θ), θ)]

�1 vi (αi(θ), θ)�
∂α (θ, αi0)

∂α0i

(
∂ϕ(αi0)

∂α0i

)�1

εi + op

(
1p
T

)
,

where recall that εi = hi�ϕ(αi0), and the presence of
(
@’(�i0)
@�0

i

)�1
shows the need for ϕ to be injective.
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Equation (A23) readily delivers an expression for the �rst-order bias term of the grouped �xed-

e�ects estimator. Focusing �rst on the case where ϕ is one-to-one, (A23) implies that:

∂

∂θ

∣∣∣
�0

1

N

N∑
i=1

`i(α̂(k̂i, θ), θ)�
1

N

N∑
i=1

`i(αi(θ), θ)

= � ∂

∂θ

∣∣∣
�0

1

2N

N∑
i=1

ε0i

(
∂α (θ, αi0)

∂α0i

(
∂ϕ(αi0)

∂α0i

)�1
)0

E [�v�i (αi(θ), θ)]
∂α (θ, αi0)

∂α0i

(
∂ϕ(αi0)

∂α0i

)�1

εi

+
∂

∂θ

∣∣∣
�0

1

N

N∑
i=1

vi (αi(θ), θ)
0 ∂α (θ, αi0)

∂α0i

(
∂ϕ(αi0)

∂α0i

)�1

εi + op

(
1

T

)
,

where we have used that (e.g., Arellano and Hahn, 2007):

∂

∂θ

∣∣∣
�0

1

N

N∑
i=1

`i(αi(θ), θ)�
1

N

N∑
i=1

`i(α̂i(θ), θ)

= � ∂

∂θ

∣∣∣
�0

1

2N

N∑
i=1

vi (αi(θ), θ)
0 E [�v�i (αi(θ), θ)]

�1 vi (αi(θ), θ) + op

(
1

T

)
.

It thus follows that Corollary 2 holds, with:

B = H�1 lim
N;T!1

1

N

N∑
i=1

∂

∂θ

∣∣∣∣
�0

T � bi(θ),

and:

bi(θ) = �1

2
ε0i

(
∂α (θ, αi0)

∂α0i

(
∂ϕ(αi0)

∂α0i

)�1
)0

E [�v�i (αi(θ), θ)]
∂α (θ, αi0)

∂α0i

(
∂ϕ(αi0)

∂α0i

)�1

εi

+ vi (αi(θ), θ)
0 ∂α (θ, αi0)

∂α0i

(
∂ϕ(αi0)

∂α0i

)�1

εi.

More generally, when ϕ is not surjective:

bi(θ) = �1

2

(
α̂i(θ)� E (α̂i(θ) jhi)

)0 E [�v�i (αi(θ), θ)]
(
α̂i(θ)� E (α̂i(θ) jhi)

)
+

1

2
vi (αi(θ), θ)

0 E [�v�i (αi(θ), θ)]
�1 vi (αi(θ), θ) .

Bias in the regression example. In Example 2, α̂i(θ) = (1� ρ)Y i �X
0
iβ + op

(
T�

1
2

)
. Hence,

when classifying individuals based on hi =
(
Y i, X

0
i

)0
, α̂i(θ) belongs to the span of hi, up to small

order terms. Hence B/T is identical to the �rst-order bias BFE/T of �xed e�ects, and �xed-e�ects

and two-step grouped �xed-e�ects are �rst-order equivalent.

This equivalence does not hold generally. As an example, suppose the unobservables (αi0, µi0)

follow a one-factor structure with µi0 = λαi0 for a vector λ, and base the classi�cation on hi = Y i
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only. Injectivity is satis�ed in this example, due to the low underlying dimensionality of (αi0, µi0). In

this case it can be veri�ed that:

E (α̂i(θ) jhi) =

 1��
1��0

+
(

1��
1��0

β0 � β
)0
λ

1
1��0

+
�0

0�
1��0

Y i + op

(
1p
T

)
,

and, letting Vit = Xit � λαi0:

νi(θ) = β0
λU i � V i

1 + β00λ
+ op

(
1p
T

)
.

As a result, the �rst-order bias term on ρ0 is the same for grouped �xed-e�ects and �xed-e�ects, while

for β0 we have, letting limT!1
1
T

∑T
t=1 E(VitV

0
it) = � > 0:

B = BFE � ��1 lim
T!1

E
[
T
(
λU i � V i

) (
λU i � V i

)0] β0(
1 + β00λ

)2 ,
so B 6= BFE in general.

A.5 Proof of Corollary 3

We have, by the two parts of Theorem 1 and Assumption 4:

M̂ �M0 =
1

N

N∑
i=1

mi

(
α̂(k̂i, θ̂), θ̂

)
� 1

N

N∑
i=1

mi (αi0, θ0)

=
1

N

N∑
i=1

∂mi (αi0, θ0)

∂α0i

(
α̂(k̂i, θ̂)� αi0

)
+

1

N

N∑
i=1

∂mi (αi0, θ0)

∂θ0

(
θ̂ � θ0

)
+Op (δ) .

Using similar arguments to those used to establish (A14) in the proof of Theorem 1, we can show

that under Assumption 4:

1

N

N∑
i=1

∂mi (αi0, θ0)

∂α0i

(
α̂(k̂i, θ̂)� α̂i(θ̂)

)
= Op(δ). (A32)

The result then comes from substituting θ̂ � θ0 by its in
uence function, and di�erentiating the

identity: vi(α̂i(θ), θ) = 0 with respect to θ.

A.6 Proof of Corollary 4

Let K � K̂. Let (ĥ, fk̂ig) be given by (1). We have, by (12):

1

N

N∑
i=1

∥∥∥hi � ĥ(k̂i)
∥∥∥2
� ξ � 1

N

N∑
i=1

khi � ϕ(αi0)k2 + op

(
1

T

)
.

Hence, by the triangular inequality we get:

1

N

N∑
i=1

∥∥∥ĥ(k̂i)� ϕ(αi0)
∥∥∥2

= Op

(
1

N

N∑
i=1

khi � ϕ(αi0)k2
)

+ op

(
1

T

)
= Op

(
1

T

)
.

Following the steps of the proof of Theorem 1 then gives the desired result.
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A.7 Proof of Theorem 2

The proof shares some similarities with the proof of Theorem 1, with some important di�erences. The

outline of the proof is identical. Throughout the proof we let δ = 1
T +B�(K) + K

NS (or more generally

δ = 1
T +B(�;�)(K) + K

NS in conditional models).

Consistency of θ̂. Let a(k, θ) = α
(
θ, ψ

(
ĥ (k)

))
. We have:

N∑
i=1

`i(α̂(k̂i, θ), θ) �
N∑
i=1

`i

(
a
(
k̂i, θ

)
, θ
)
.

Expanding, we have:

1

N

N∑
i=1

`i(α̂(k̂i, θ), θ) =
1

N

N∑
i=1

`i(αi(θ), θ) +
1

N

N∑
i=1

vi(αi(θ), θ)
0
(
α̂(k̂i, θ)� αi(θ)

)
+

1

2N

N∑
i=1

(
α̂(k̂i, θ)� αi(θ)

)0
v�i (ai(θ), θ)

(
α̂(k̂i, θ)� αi(θ)

)
,

and:

1

N

N∑
i=1

`i

(
a
(
k̂i, θ

)
, θ
)

=
1

N

N∑
i=1

`i(αi(θ), θ) +
1

N

N∑
i=1

vi(αi(θ), θ)
0
(
a
(
k̂i, θ

)
� αi(θ)

)
+

1

2N

N∑
i=1

(
a
(
k̂i, θ

)
� αi(θ)

)0
v�i (bi(θ), θ)

(
a
(
k̂i, θ

)
� αi(θ)

)
=

1

N

N∑
i=1

`i(αi(θ), θ) +
1

N

N∑
i=1

vi(αi(θ), θ)
0
(
a
(
k̂i, θ

)
� αi(θ)

)
+Op

(
1

T

)
+Op(B�(K)),

where we have used Lemma 1, that α and ψ are Lipschitz, and that (�v�i (αi, θ)) is uniformly bounded.

The Op terms are uniform in θ.

Hence, using that (�v�i (ai(θ), θ)) is uniformly bounded away from zero:

sup
�2�

1

N

N∑
i=1

∥∥∥α̂(k̂i, θ)� αi(θ)
∥∥∥2

= Op

(
sup
�2�

∣∣∣∣∣ 1

N

N∑
i=1

vi(αi(θ), θ)
0
(
α̂(k̂i, θ)� a

(
k̂i, θ

))∣∣∣∣∣
)

+Op(δ).

Let v(θ, k) denote the mean of vi(αi(θ), θ) in group k̂i = k. We are going to bound the following

quantity:

1

N

N∑
i=1

vi(αi(θ), θ)
0
(
α̂(k̂i, θ)� a

(
k̂i, θ

))
=

1

N

N∑
i=1

v(k̂i, θ)
0
(
α̂(k̂i, θ)� a

(
k̂i, θ

))
.

We have, for all θ 2 � (that is, pointwise):

E

[
1

N

N∑
i=1

kv(k̂i, θ)k2
]

=
1

N

K∑
k=1

E

[(
N∑
i=1

1fk̂i = kg

)
kv(k, θ)k2

]

=
1

N

K∑
k=1

E

[∑N
i=1 1fk̂i = kgE (vi(αi(θ), θ)

0vi(αi(θ), θ) j fαi0g)∑N
i=1 1fk̂i = kg

]
= O

(
K

NS

)
,
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where we have used that, by Assumptions 5 and 6 (iii), the vi(αi(θ), θ) are independent of each other

and independent of the k̂j ’s conditional on the αj0’s, with conditional variances that are O(1/S).

Hence:

1

N

N∑
i=1

kv(k̂i, θ)k2 = Op

(
K

NS

)
. (A33)

Hence, by the Cauchy Schwarz and triangular inequalities:

A � 1

N

N∑
i=1

∥∥∥α̂(k̂i, θ)� αi(θ)
∥∥∥2
� Op

(√
K

NS

)(p
A+

√
Op (δ)

)
+Op(δ),

so, solving for
p
A we get:

1

N

N∑
i=1

∥∥∥α̂(k̂i, θ)� αi(θ)
∥∥∥2

= Op (δ) . (A34)

We are now going to show that:

sup
�2�

1

N

N∑
i=1

kv(k̂i, θ)k2 = op (1) . (A35)

Using a similar bounding argument as above will then imply that:

sup
�2�

1

N

N∑
i=1

∥∥∥α̂(k̂i, θ)� αi(θ)
∥∥∥2

= op (1) .

To see that (A35) holds, let Z(θ) = 1
N

∑N
i=1 kv(k̂i, θ)k2. We have shown that Z(θ) = Op(K/NS)

for all θ. Moreover, @Z(�)
@� = 2

N

∑N
i=1 v

�(k̂i, θ)v(k̂i, θ) = Op(
√

sup�2� Z(θ)) uniformly in θ by Cauchy

Schwarz and Assumption 6 (ii). Since the parameter space is compact it follows that sup� Z(θ) =

op(1).47

The above shows that, as N,T,K tend to in�nity such that K
NS tends to zero, 1

N

∑N
i=1 `i(α̂(k̂i, θ), θ)

is uniformly consistent to: `(θ) = limN!1
1
N

∑N
i=1 E [`i(αi(θ), θ)], which is uniquely maximized at θ0

by Assumption 6 (i). Consistency of θ̂ follows since the parameter space for θ is compact.

Rate of the score. We are now going to show that:

1

N

N∑
i=1

∂`i(α̂(k̂i, θ0), θ0)

∂θ
=

1

N

N∑
i=1

si +Op (δ) . (A36)

47Let η > 0, ε > 0. There is a constant M > 0 such that Pr
(

supθ2�

∥∥∥∂Z(θ)
∂θ

∥∥∥ > M
√

supθ2� Z(θ)
)
<

ε
2 . Take a �nite cover of � = B1 [ ... [ BR, where Br are balls with centers θr and diamBr � 1

2M

p
η.

Since: supθ2� Z(θ) � maxr Z(θr) + supθ

∥∥∥∂Z(θ)
∂θ

∥∥∥ 1
2M

p
η, and since: a > η ) a �

p
a 1

2

p
η > η

2 , we have:

Pr (supθ2� Z(θ) > η) � ε
2 + Pr

(
maxr Z(θr) >

η
2

)
, which, by (A33), is smaller than ε for N,T,K large enough.
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We have, omitting references to θ0 and αi0 for conciseness:

1

N

N∑
i=1

∂`i(α̂(k̂i))

∂θ
=

1

N

N∑
i=1

∂`i(αi0)

∂θ
+

1

N

N∑
i=1

v�i

(
α̂(k̂i)� αi0

)
+Op (δ) ,

where we have used (A34) evaluated at θ = θ0, and part (ii) in Assumption 6.

Expanding
∑N

i=1 1fk̂i = kgvi(α̂(k)) = 0, we have: α̂(k) = α̃(k) + ṽ(k) + w̃(k), where:

α̃(k) =

(
N∑
i=1

1fk̂i = kg(�v�i )

)�1( N∑
i=1

1fk̂i = kg(�v�i )αi0

)
,

ṽ(k) =

(
N∑
i=1

1fk̂i = kg(�v�i )

)�1( N∑
i=1

1fk̂i = kgvi

)
,

and:

w̃(k) =
1

2

(
N∑
i=1

1fk̂i = kg(�v�i )

)�1( N∑
i=1

1fk̂i = kgv��i (ai)
(
α̂(k̂i)� αi0

)


(
α̂(k̂i)� αi0

))
, (A37)

where ai lies between αi0 and α̂(k̂i).

For all functions of αi0, say zi = g(αi0), we will denote:

z̃(k) =

(
N∑
i=1

1fk̂i = kg(�v�i )

)�1( N∑
i=1

1fk̂i = kg(�v�i )zi

)
,

and:

z�(k) =

(
N∑
i=1

1fk̂i = kgE (�v�i )

)�1( N∑
i=1

1fk̂i = kgE (�v�i ) zi

)
.

To establish (A36) we are going to show that:

1

N

N∑
i=1

v�i

(
α̂(k̂i)� αi0

)
+ E

(
v�i

)
[E (v�i )]�1 vi = Op (δ) . (A38)

For this we will bound, in turn:

A � 1

N

N∑
i=1

E
(
v�i

)
[E (v�i )]�1 v�i

(
α̂(k̂i)� αi0 + (v�i )�1vi

)
,

B � 1

N

N∑
i=1

(
v�i (v�i )�1 � E

(
v�i

)
[E (v�i )]�1

)
v�i

(
α̂(k̂i)� αi0

)
.

Let us start with A. We have:

A =
1

N

N∑
i=1

E
(
v�i

)
[E (v�i )]�1 v�i

(
w̃(k̂i) + α̃(k̂i)� αi0 + ṽ(k̂i) + (v�i )�1vi

)
.
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Note �rst that:

1

N

N∑
i=1

E
(
v�i

)
[E (v�i )]�1 v�i w̃(k̂i) = Op

(
1

N

N∑
i=1

∥∥∥α̂(k̂i)� αi0
∥∥∥2
)

= Op(δ),

where we have used (A37), (A34) at θ = θ0, and parts (i) and (ii) in Assumption 6.

Let z0i = E
(
v�i
)

[E (v�i )]�1. We have (with probability approaching one):

1

N

N∑
i=1

E
(
v�i

)
[E (v�i )]�1 v�i

(
α̃(k̂i)� αi0

)
=

1

N

N∑
i=1

(
z0i � z̃

(
k̂i

)0)
v�i

(
α̃(k̂i)� αi0

)
.

Now, from the assumptions on derivatives, strict concavity of `i, and (A34), we have, since α̃ =

argmin(�(1);:::;�(K))

∑N
i=1

(
α(k̂i)� αi0

)0
(�v�i )

(
α(k̂i)� αi0

)
:

1

N

N∑
i=1

∥∥∥α̃(k̂i)� αi0
∥∥∥2

= Op

(
1

N

N∑
i=1

(
α̃(k̂i)� αi0

)0
(�v�i )

(
α̃(k̂i)� αi0

))

= Op

(
1

N

N∑
i=1

(
α̂(k̂i)� αi0

)0
(�v�i )

(
α̂(k̂i)� αi0

))
= Op

(
1

N

N∑
i=1

∥∥∥α̂(k̂i)� αi0
∥∥∥2
)

= Op(δ).

Likewise, for any zi = g(αi0) with g Lipschitz:

1

N

N∑
i=1

∥∥∥z̃(k̂i)� zi∥∥∥2
= Op

(
1

N

N∑
i=1

(
z̃(k̂i)� zi

)0
(�v�i )

(
z̃(k̂i)� zi

))

= Op

(
1

N

N∑
i=1

(
g
(
a(k̂i, θ0)

)
� g(αi0)

)0
(�v�i )

(
g
(
a(k̂i, θ0)

)
� g(αi0)

))

= Op

(
1

N

N∑
i=1

∥∥∥a(k̂i, θ0)� αi0
∥∥∥2
)

= Op(δ). (A39)

Combining, using Cauchy Schwarz we get:

1

N

N∑
i=1

E
(
v�i

)
[E (v�i )]�1 v�i

(
α̃(k̂i)� αi0

)
= Op(δ).

The last term in A is:

A3 =
1

N

N∑
i=1

E
(
v�i

)
[E (v�i )]�1 (�v�i )

(
(�v�i )�1vi � ṽ(k̂i)

)
.

Note that:

ṽ(k) =

(
N∑
i=1

1fk̂i = kg(�v�i )

)�1( N∑
i=1

1fk̂i = kg(�v�i )(�v�i )�1vi

)
.
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Letting as before z0i = E
(
v�i
)

[E (v�i )]�1, we thus have:

A3 =
1

N

N∑
i=1

(
z0i � z̃

(
k̂i

)0)
(�v�i )(�v�i )�1vi =

1

N

N∑
i=1

(
z0i � z̃

(
k̂i

)0)
vi

=
1

N

N∑
i=1

(
z0i � z�

(
k̂i

)0)
vi +

1

N

N∑
i=1

(
z�
(
k̂i

)0
� z̃

(
k̂i

)0)
vi. (A40)

The �rst term in (A40) is Op(δ) due to the fact that, conditionally on all αj0’s, the vi are inde-

pendent of each other with zero mean, and independent of all k̂j ’s, so:

E

∥∥∥∥∥ 1

N

N∑
i=1

(
z0i � z�

(
k̂i

)0)
vi

∥∥∥∥∥
2
 = E

E

∥∥∥∥∥ 1

N

N∑
i=1

(
z0i � z�

(
k̂i

)0)
vi

∥∥∥∥∥
2 ∣∣∣∣∣ fαi0g


= E

[
1

N2

N∑
i=1

(
z0i � z�

(
k̂i

)0)
E

[
viv
0
i

∣∣∣∣∣ fαi0g
](

zi � z�
(
k̂i

))]
,

which is O(δ/NS) = O(δ2) since by part (iii) in Assumption 6 E[viv
0
i j fαi0g] is uniformly O(1/S), and

1
N

∑N
i=1 kzi � z�(k̂i)k2 is Op(δ) by a similar argument as (A39), since E(�v�i ) is bounded away from

zero.

As for the second term in (A40) we have:

1

N

N∑
i=1

(
z�
(
k̂i

)0
� z̃

(
k̂i

)0)
vi =

1

N

N∑
i=1

(
z�
(
k̂i

)0
� z̃

(
k̂i

)0)
v
(
k̂i

)
,

where by (A33) evaluated at θ = θ0 we have: 1
N

∑N
i=1 kv(k̂i)k2 = Op(K/NS) = Op(δ).

Moreover:

1

N

N∑
i=1

∥∥∥z� (k̂i)� z̃ (k̂i)∥∥∥2
= Op

(
1

N

N∑
i=1

∥∥∥zi � z� (k̂i)∥∥∥2
+

1

N

N∑
i=1

∥∥∥zi � z̃ (k̂i)∥∥∥2
)
,

where the second term on the right-hand side is Op(δ) due to (A39), and the �rst term is also Op(δ).

This establishes that A = Op(δ).

Let us now turn to B. Letting: η0i = v�i (v�i )�1 � E
(
v�i
)

[E (v�i )]�1, we have:

B =
1

N

N∑
i=1

η0iv
�
i

(
w̃(k̂i) + ṽ(k̂i) + α̃(k̂i)� αi0

)
.

Similarly as above we have, using part (ii) in Assumption 6: 1
N

∑N
i=1 η

0
iv
�
i w̃(k̂i) = Op(δ). Next, we

have:

1

N

N∑
i=1

η0iv
�
i ṽ(k̂i) =

1

N

N∑
i=1

η̃(k̂i)
0v�i ṽ(k̂i).
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To see that the right-hand side is Op(K/NS), �rst note that, by strict concavity of the likelihood:48

1

N

N∑
i=1

∥∥∥ṽ(k̂i)
∥∥∥2

=
1

N

N∑
i=1

∥∥∥∥∥∥
(∑N

j=1 1fk̂j = k̂ig(�v�j )∑N
j=1 1fk̂j = k̂ig

)�1

v(k̂i)

∥∥∥∥∥∥
2

= Op

(
1

N

N∑
i=1

∥∥∥v(k̂i)
∥∥∥2
)
.

Moreover, letting τ i = η0iv
�
i we have:

1

N

N∑
i=1

∥∥∥η̃(k̂i)
∥∥∥2

=
1

N

N∑
i=1

∥∥∥∥∥∥
(∑N

j=1 1fk̂j = k̂ig(�v�j )∑N
j=1 1fk̂j = k̂ig

)�1

τ(k̂i)

∥∥∥∥∥∥
2

= Op

(
1

N

N∑
i=1

∥∥∥τ(k̂i)
∥∥∥2
)
,

where the τ i’s are independent of each other conditional on αj0’s, and independent of k̂j ’s, with mean:

E
(
η0iv

�
i

)
= E

((
v�i (v�i )�1 � E

(
v�i

)
[E (v�i )]�1

)
v�i

)
= 0,

and bounded conditional variances. It thus follows that 1
N

∑N
i=1 kη̃(k̂i)k2 = Op(δ), by a similar argu-

ment as in (A33).

We lastly bound the third term in B:

B3 =
1

N

N∑
i=1

η0iv
�
i

(
α̃(k̂i)� αi0

)
=

1

N

N∑
i=1

η0iv
�
i

(
α�(k̂i)� αi0

)
+

1

N

N∑
i=1

η0iv
�
i

(
α̃(k̂i)� α�(k̂i)

)
.

The �rst term is Op(δ) since: 1
N

∑N
i=1 kα�(k̂i)�αi0k2 = Op(δ), and the τ i = η0iv

�
i are independent

of each other conditional on αj0’s, and independent of k̂j ’s, with zero mean and bounded conditional

variances (using a similar argument as for the �rst term in (A40)). The second term is:

1

N

N∑
i=1

η0iv
�
i

(
α̃(k̂i)� α�(k̂i)

)
=

1

N

N∑
i=1

η̃(k̂i)
0v�i

(
α̃(k̂i)� α�(k̂i)

)
.

We have already shown that: 1
N

∑N
i=1 kη̃(k̂i)k2 = Op(δ). Moreover, using similar arguments as for

1
N

∑N
i=1 kz�(k̂i)� z̃(k̂i)k2 above, we have: 1

N

∑N
i=1 kα̃(k̂i)� α�(k̂i)k2 = Op(δ).

This shows that B = Op(δ) and establishes (A36).

Consistency of the Hessian. We are �nally going to show that:

�2S(θ0) � ∂2

∂θ∂θ0

∣∣∣∣∣
�0

1

N

N∑
i=1

(
`i

(
α̂(k̂i, θ), θ

)
� `i (αi(θ), θ)

)
= op(1). (A41)

The proof of Theorem 2 will then follow from standard arguments as in the proof of Theorem 1.

Similarly as in the proof of Theorem 1, we have:

�2S(θ0) =
1

N

N∑
i=1

v�i

(
∂α̂(k̂i, θ0)

∂θ0
� ∂αi(θ0)

∂θ0

)
+ op (1) .

48Recall that: ṽ(k) =
(∑N

i=1 1fk̂i = kg(�vαi )
)�1 (∑N

i=1 1fk̂i = kg(�vαi )(�vαi )�1vi

)
. Hence a more consis-

tent (though also more cumbersome) alternative notation for ṽ(k) could be: ^(�vα)�1v (k).
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We will now show that:

1

N

N∑
i=1

∥∥∥∥∥∂α̂(k̂i, θ0)

∂θ0
� ∂αi(θ0)

∂θ0

∥∥∥∥∥
2

= op (1) . (A42)

We have:

∂α̂(k, θ0)

∂θ0
=

 N∑
j=1

1fk̂j = kg
(
�v�j (α̂(k))

)�1
N∑
j=1

1fk̂j = kg
(
v�j (α̂(k))

)0
. (A43)

Let us de�ne, at true values:

∂α̃(k, θ0)

∂θ0
=

 N∑
j=1

1fk̂j = kg(�v�j )

�1
N∑
j=1

1fk̂j = kg(v�j )0,

and:

∂α̃�(k, θ0)

∂θ0
=

 N∑
j=1

1fk̂j = kg(�v�j )

�1
N∑
j=1

1fk̂j = kg(�v�j )
[
E(�v�j )

]�1 E(v�j )
0︸ ︷︷ ︸

=
∂αi(θ0)

∂θ0

.

We have:

∂α̂(k̂i, θ0)

∂θ0
� ∂α̃(k̂i, θ0)

∂θ0

=

 ∂

∂α

∣∣∣∣
ai

 N∑
j=1

1fk̂j = kg(�v�j (α, θ0))

�1
N∑
j=1

1fk̂j = kg
(
v�j (α, θ0)

)0(α̂(k̂i, θ0)� αi0
)
,

where ai lies between αi0 and α̂(k̂i, θ0). By parts (i) and (ii) in Assumption 6 we thus have, using

(A34):

1

N

N∑
i=1

∥∥∥∥∥∂α̂(k̂i, θ0)

∂θ0
� ∂α̃(k̂i, θ0)

∂θ0

∥∥∥∥∥
2

= op (1) .

Moreover:

∂α̃(k, θ0)

∂θ0
� ∂α̃�(k, θ0)

∂θ0
=

 N∑
j=1

1fk̂j = kg(�v�j )

�1
N∑
j=1

1fk̂j = kgτ 0j

=

(∑N
j=1 1fk̂j = kg(�v�j )∑N

j=1 1fk̂j = kg

)�1(∑N
j=1 1fk̂j = kgτ 0j∑N
j=1 1fk̂j = kg

)
,

where the τ 0i = (v�i )
0 � (�v�i ) [E(�v�i )]�1 E(v�i )

0 are independent of each other conditional on αj0’s,

and independent of k̂j ’s, with zero mean and bounded conditional variances. Hence, since (�v�i ) is

bounded away from zero:

1

N

N∑
i=1

∥∥∥∥∥∂α̃(k̂i, θ0)

∂θ0
� ∂α̃�(k̂i, θ0)

∂θ0

∥∥∥∥∥
2

= op (1) .
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Lastly, using again that (�v�i ) is bounded away from zero we have, as in (A39):

1

N

N∑
i=1

∥∥∥∥∥∂α̃�(k̂i, θ0)

∂θ0
� ∂αi(θ0)

∂θ0

∥∥∥∥∥
2

= op (1) .

Combining results shows (A42).

Finally, using the expression of @�̂(k̂i;�)
@�0 (see (A43)), and using parts (i) and (ii) in Assumption 6,

we have: 1
N

∑N
i=1 k

@2�̂(k̂i;�)
@�0
@�0 k2 = Op(1), uniformly around θ0. This implies that the third derivative of

1
N

∑N
i=1
̂̀
i(θ) is uniformly Op(1) in a neighborhood of θ0.

This ends the proof of Theorem 2.

A.8 Proof of Theorem 3

Let us start with a lemma.49

Lemma A1. Let Assumption 7 hold. Then, as N,T,K tend to in�nity:

1

NT

N∑
i=1

∥∥∥ĥ(k̂i)� ϕ(αi0)
∥∥∥2

= Op

(
lnK

T

)
+Op

(
K

N

)
+Op

(
B�(K)

T

)
. (A44)

Proof. Let (h�, fk�i g) be de�ned similarly as in Lemma 1. Let ε(k̂i, k̃i) denote the linear projection of

εi on the indicators 1fk̂i = kg and 1fk̃i = kg, all of which are interacted with component indicators.

Since:
∑N

i=1 khi � ĥ(k̂i)k2 �
∑N

i=1 khi � h�(k�i )k2 we have:

1

N

N∑
i=1

∥∥∥ϕ(αi0)� ĥ(k̂i)
∥∥∥2
� B’(�)(K) +

2

N

N∑
i=1

ε0i

(
ĥ(k̂i)� h�(k�i )

)
= B’(�)(K) +

2

N

N∑
i=1

ε(k̂i, k̃i)
0
(
ĥ(k̂i)� h�(k�i )

)

� B’(�)(K) + 2

(
1

N

N∑
i=1

∥∥∥ε(k̂i, k̃i)∥∥∥2
) 1

2

�

(
1

N

N∑
i=1

∥∥∥ĥ(k̂i)� h�(k�i )
∥∥∥2
) 1

2

.

Letting A = 1
N

∑N
i=1 kϕ(αi0)� ĥ(k̂i)k2 we thus have:

A � B’(�)(K) + 2

(
1

N

N∑
i=1

∥∥∥ε(k̂i, k̃i)∥∥∥2
) 1

2

�
(p

A+
√
B’(�)(K)

)
.

Solving for
p
A in this equation gives, using that B’(�)(K) = Op(B�(K)) since ϕ is Lipschitz:

1

N

N∑
i=1

∥∥∥ϕ(αi0)� ĥ(k̂i)
∥∥∥2

= Op(B�(K)) +Op

(
1

N

N∑
i=1

∥∥∥ε(k̂i, k̃i)∥∥∥2
)
.

49In conditional models Lemma A1 holds with Op

(
B(α,µ)(K)

T

)
instead of Op

(
Bα(K)
T

)
.
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We are now going to show that:

1

N

N∑
i=1

∥∥∥ε(k̂i, k̃i)∥∥∥2
= Op (lnK) +Op

(
KT

N

)
. (A45)

For this purpose we apply a version the Hanson-Wright tail inequality for quadratic forms, due to

Hsu, Kakade and Zhang (2012, Theorem 2.1), which allows for dependent data.

Lemma A2. (Hsu et al., 2012) Let Z be a m-dimensional random vector such that, for some λ > 0,

E [exp(τ 0Z)] � exp(λ � kτk2) for all τ 2 Rm. Let A be a positive semi-de�nite matrix. Then, for all

s > 0:

Pr
[
Z 0AZ > 2λ trA+ 4λ

p
s trA2 + s4λ kAk

]
� exp(�s).

Let, for given partitions fki1g, fki2g: 1
N

∑N
i=1 kε(k1i, k2i)k2 = "0A"

N , where ε = (ε01, ..., ε
0
N )0, A is a

rN � rN projection matrix with trA = 2rK, A2 = A, and kAk = 1. By Lemma A2 and Assumption

7 we have:

Pr
[
ε0Aε > 4λrK + 4λ

p
2rKs+ 4λs

]
� exp(�s),

so, using that 2
p
ab � a+ b:

Pr
[
ε0Aε > 8λrK + 6λs

]
� exp(�s),

hence, for all b > 0:

Pr

[
ε0Aε

N
> b

]
� exp

[
�
(
bN

6λ
� 4rK

3

)]
.

Lastly, by the union bound, given that the set of partitions fki1g \ fki2g has K2N elements:

Pr

[
1

N

N∑
i=1

∥∥∥ε(k̂i, k̃i)∥∥∥2
> b

]
� K2N max

(fki1g;fki2g)
Pr

[
1

N

N∑
i=1

kε(k1i, k2i)k2 > b

]

� exp

[
2N lnK +

4rK

3
� bN

6λ

]
.

Using that r/T tends to a positive constant then implies (A45) and ends the proof of Lemma A1.

The rest of the proof is similar to the proof of Theorem 2. Let us denote vit = @‘it
@�i(t)

, v�it =
@2‘it

@�i(t)@�i(t)0 , vi = 1
T (v0i1, ..., v

0
iT )0, and v�i = 1

T diag (v�i1, ..., v
�
iT ). Let also δ = lnK

T + K
N + Bα(K)

T (or more

generally δ = lnK
T + K

N +
B(α,µ)(K)

T in conditional models).
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Consistency of θ̂. Letting a(k, θ) = α
(
θ, ψ

(
ĥ (k)

))
, we start by noting that, by Lemma A1 and

since α and ψ are Lipschitz by Assumptions 7 and 8 (i)-(ii):

sup
�2�

1

NT

N∑
i=1

∥∥∥a(k̂i, θ)� αi(θ)
∥∥∥2

= Op(δ).

Proceeding as in the beginning of the proof of Theorem 2 we then have, using that (�v�it) is

bounded away from zero and in�nity:

sup
�2�

1

NT

N∑
i=1

∥∥∥α̂(k̂i, θ)� αi(θ)
∥∥∥2

= Op

(
sup
�2�

∣∣∣∣∣ 1

N

N∑
i=1

v(k̂i, θ)
0
(
α̂(k̂i, θ)� a

(
k̂i, θ

))∣∣∣∣∣
)

+Op(δ),

where v(k, θ) denotes the mean of vi(αi(θ), θ) in group k̂i = k.

We are �rst going to show that, for all θ 2 � (pointwise):

A � 1

NT

N∑
i=1

∥∥∥α̂(k̂i, θ)� αi(θ)
∥∥∥2

= Op (δ) . (A46)

To see this, note that by Cauchy Schwarz and triangular inequalities:

A � Op

( 1

N

N∑
i=1

T
∥∥∥v(k̂i, θ)

∥∥∥2
) 1

2

�
(p

A+
√
Op(δ)

)+Op(δ),

from which we get:

A = Op

(
1

N

N∑
i=1

T
∥∥∥v(k̂i, θ)

∥∥∥2
)

+Op(δ).

Now, since Tvi(αi(θ), θ) satis�es De�nition 1 we have, as in the proof of Lemma A1 (see (A45)):

1

N

N∑
i=1

T
∥∥∥v(k̂i, θ)

∥∥∥2
= Op(δ).

This shows (A46).

Proceeding in a similar way as in the proof of Theorem 2 then gives:

sup
�2�

1

NT

N∑
i=1

∥∥∥α̂(k̂i, θ)� αi(θ)
∥∥∥2

= op(1).

Uniform convergence of the objective function then comes from:

sup
�2�

∣∣∣∣∣ 1

N

N∑
i=1

`i

(
α̂(k̂i, θ), θ

)
� 1

N

N∑
i=1

`i (αi(θ), θ)

∣∣∣∣∣ � sup
�2�

∣∣∣∣∣ 1

N

N∑
i=1

vi (αi(θ), θ)
0
(
α̂(k̂i, θ)� αi(θ)

)∣∣∣∣∣+ op(1),

and using that T � vi(αi(θ), θ) satis�es De�nition 1 for a common λ, so (e.g., Lemma 5.5 in Vershynin,

2010): sup�
1
N

∑N
i=1 Tkvi (αi(θ), θ) k2 = Op(1/T ). Consistency of θ̂ then follows similarly as in the

proof of Theorem 2.
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Rate of the score. The rest of the proof follows closely that of Theorem 2. To show that the

grouped �xed-e�ects score is Op(δ) it su�ces to show that:

1

N

N∑
i=1

v�i

(
α̂(k̂i)� αi0

)
+ E

(
v�i

)
[E (v�i )]�1 vi = Op (δ) . (A47)

Following the steps of the proof of Theorem 2, and letting:

α̃(k, t) =

(
N∑
i=1

1fk̂i = kg(�v�it)

)�1( N∑
i=1

1fk̂i = kg(�v�it)αi0(t)

)
,

we have, using in particular Assumption 8 (i):

1

NT

N∑
i=1

∥∥∥α̃(k̂i)� αi0
∥∥∥2

=
1

NT

N∑
i=1

T∑
t=1

∥∥∥α̃(k̂i, t)� αi0(t)
∥∥∥2

= Op(δ).

So, using that T (�v�i ) is bounded away from zero we have, similarly as in the proof of Theorem 2:

1

N

N∑
i=1

E
(
v�i

)
[E (v�i )]�1 v�i

(
α̃(k̂i)� αi0

)
= Op(δ).

Let z0i = E
(
v�i
)

[E (�v�i )]�1. In order to bound the analog to the term A3 in the proof of Theorem

2 we are �rst going to apply Lemma A2 to the following quadratic form:∥∥∥∥∥ 1

N

N∑
i=1

(
z0i � z�

(
k̂i

)0)
vi

∥∥∥∥∥
2

.

Let ε > 0. As in the proof of Theorem 2 we have, since zi is a Lipschitz function of αi0:

Tr

(
1

NT

N∑
i=1

(
zi � z�

(
k̂i

))(
z0i � z�

(
k̂i

)0))
= Op

(
1

NT

N∑
i=1

kzi � z�(k̂i)k2
)

= Op(δ).

Hence there exists a c > 0 such that for N,T,K large enough:

Pr

[
Tr

(
1

NT

N∑
i=1

(
zi � z�

(
k̂i

))(
z0i � z�

(
k̂i

)0))
> cδ

]
<
ε

2
.

Let E denote this event, and Ec denote the complementary event (which happens with probability

� 1� �
2).

Let b > 0. Since T �vi satis�es De�nition 1, and using similar derivations as in the proof of Lemma
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A1, we have:50

Pr

[∥∥∥∥∥ 1

N

N∑
i=1

(
z0i � z�

(
k̂i

)0)
vi

∥∥∥∥∥ > bδ

]
� Pr(E) + Pr

∥∥∥∥∥ 1

NT

N∑
i=1

(
z0i � z�

(
k̂i

)0)
Tvi

∥∥∥∥∥
2

> b2δ2 , Ec



� Pr(E) + Pr


∥∥∥∥ 1
NT

∑N
i=1

(
z0i � z�

(
k̂i

)0)
Tvi

∥∥∥∥2

Tr

(
1
NT

∑N
i=1

(
zi � z�

(
k̂i

))(
z0i � z�

(
k̂i

)0)) >
b2δ2

cδ
, Ec


� Pr(E) +KN max

fkig
Pr


∥∥∥ 1
NT

∑N
i=1

(
z0i � z� (ki)

0)Tvi∥∥∥2

Tr
(

1
NT

∑N
i=1 (zi � z� (ki))

(
z0i � z� (ki)

0)) > b2δ

c


� ε

2
+KN � C � exp

(
�b2 δNT

6cλ

)
,

where we have used the union bound in the next-to-last inequality and Lemma A2 in the last inequality,

and C > 0 is a constant. Taking b >
p

6cλ we thus obtain that Pr

[∥∥∥∥ 1
N

∑N
i=1

(
z0i � z�

(
k̂i

)0)
vi

∥∥∥∥ > bδ

]
<

ε for N,T,K large enough. Hence we obtain that:

1

N

N∑
i=1

(
z0i � z�

(
k̂i

)0)
vi = Op (δ) .

Turning to the second part in the analog to A3, we apply Lemma A2 to the quadratic form
1
N

∑N
i=1 Tkv(k̂i)k2, we obtain that:

1

N

N∑
i=1

T
∥∥∥v(k̂i)

∥∥∥2
= Op

(
lnK

T

)
+Op

(
K

N

)
= Op(δ).

Proceeding as in the proof of Theorem 2 then implies that A3 = Op(δ), hence that A = Op(δ).

From similar derivations, in particular relying for the analog to B3 on the fact that T � τ i satis�es

De�nition 1 where:

τ i = v�i � E
(
v�i

)
[E (v�i )]�1 (v�i ) ,

it then follows that B = Op(δ).

Consistency of the Hessian. This is essentially the same proof as for Theorem 2, except for the

argument that leads to bounding:

∂α̃(k, θ0)

∂θ0
� ∂α̃�(k, θ0)

∂θ0
=

 N∑
j=1

1fk̂j = kg(�v�j )

�1
N∑
j=1

1fk̂j = kgτ 0j ,

where here we apply Lemma A2 to T � τ i, which satis�es De�nition 1 by Assumption 8 (iii), and we

use again that T (�v�i ) is bounded away from zero.

50We are implicitly assuming that Tr

(
1
NT

∑N
i=1

(
zi � z�

(
k̂i

))(
z0i � z�

(
k̂i

)0))
6= 0. The event that the

trace is zero can easily be taken care of.
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Convergence rate of time-varying individual effects. Finally, the rate of convergence of
1
NT

∑N
i=1

∑T
t=1 kα̂(k̂i, t)� αi0(t)k2 then comes from expanding:

1

NT

N∑
i=1

T∑
t=1

kα̂(k̂i, θ̂, t)� αi0(t)k2 =
1

NT

N∑
i=1

T∑
t=1

∥∥∥∥∥α̂(k̂i, θ0, t)� αi0(t) +
∂α̂(k̂i, θ̃, t)

∂θ0

(
θ̂ � θ0

)∥∥∥∥∥
2

= Op

(
1

NT

N∑
i=1

T∑
t=1

∥∥∥α̂(k̂i, θ0, t)� αi0(t)
∥∥∥2
)

+Op

 1

NT

N∑
i=1

T∑
t=1

∥∥∥∥∥∂α̂(k̂i, θ̃, t)

∂θ0

∥∥∥∥∥
2 ∥∥∥θ̂ � θ0

∥∥∥2

 = Op(δ),

where we have used (A46), (15), and the fact that by the expression of @�̂(k;�;t)
@�0 (which is analogous

to (A21)), and by Assumption 8 (ii), we have:

1

NT

N∑
i=1

T∑
t=1

∥∥∥∥∥∂α̂(k̂i, θ̃, t)

∂θ0

∥∥∥∥∥
2

= Op(1).

This ends the proof of Theorem 3.
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Supplementary Appendix to

\Discretizing Unobserved Heterogeneity"

St�ephane Bonhomme, Thibaut Lamadon and Elena Manresa

S1 Complements to the econometrics

S1.1 Conditions for Assumptions 2 and 3 in Example 2

Let us verify Assumptions 2 and 3 in Example 2 under the following conditions.

Assumption S1. (regularity in Example 2)

(i) Observations are i.i.d. across individuals conditional on the αi0’s and µi0’s. The parameter

spaces � for θ0 = (ρ0, β
0
0)0 and A for (αi0, µ

0
i0)0 are compact, and θ0 belongs to the interior of

�.

(ii) jρ0j < 1, and (Yit, X
0
it)
0 is stationary for every i. E(Uit) = 0, E(UitYi;t�1) = 0, and

E(UitXit) = 0. In addition, letting Wit = (Yi;t�1, X
0
it)
0, the minimum eigenvalue of

E
(
(Wit � E(Wit)) (Wit � E(Wit))

0) is bounded away from zero.

(iii) Let Vit = Xit � µi0. E(Vit) = 0. Moreover, for every i, Zit = (Uit, V
0
it)
0 is a stationary mixing

sequence such that, for some 0 < a < 1 and C > 0:

sup
i

∣∣∣∣∣sup
t

sup
B2Bit;D2Dit+m

jPr(B \D)� Pr(B) Pr(D)j

∣∣∣∣∣ � Cam,
where Bit and Dit denote the sigma-algebras generated by (Zit, Zit�1, ...) and (Zit, Zit+1, ...), re-

spectively. Zit has �nite (8 + η) moments uniformly in i, t, for some η > 0. N = O(T ).

Consider the quasi-likelihood function: `i(αi, θ) = � 1
2T

∑T
t=1(Yit � ρYi;t�1 �X 0itβ � αi)2. Third-

1



order di�erentiability in Assumption 2 (i) is immediate. Furthermore we have, using stationarity:

E (`i(αi0, θ0)� `i(αi, θ))

=
1

2
E
(

2Uit
(
W 0it(θ0 � θ) + αi0 � αi

)
+
(
W 0it(θ0 � θ) + αi0 � αi

)2)
=

1

2
E
((
W 0it(θ0 � θ) + αi0 � αi

)2)
.

Using Assumption S1 (ii) thus implies the �rst condition in Assumption 2 (ii).

Next we have: E (vi (αi, θ)) = 1��
1��0

(
αi0 + β00µi0

)
� β0µi0 � αi, so:

αi(θ) =
1� ρ
1� ρ0

αi0 +

(
1� ρ
1� ρ0

β0 � β
)0
µi0,

and αi(θ) is unique. Moreover v�i = �1, so infi inf� E(�@2‘i(�i(�);�)
@�i@�0

i
) = 1. Finally, the function

1
N

∑N
i=1 E(`i(αi(θ), θ)) is quadratic in θ = (ρ, β0)0, and its partial derivatives with respect to ρ and β

are, respectively:

1

N

N∑
i=1

E
((

Yi;t�1 �
αi0 + µ0i0β0

1� ρ0

)(
Yit �

αi0 + µ0i0β0

1� ρ0

� ρ
(
Yi;t�1 �

αi0 + µ0i0β0

1� ρ0

)
� (Xit � µi0)0β

))
,

and:

1

N

N∑
i=1

E
(

(Xit � µi0)

(
Yit �

αi0 + µ0i0β0

1� ρ0

� ρ
(
Yi;t�1 �

αi0 + µ0i0β0

1� ρ0

)
� (Xit � µi0)0β

))
.

It is easy to verify that those are zero at θ0. Moreover, the second derivative �H is negative de�nite

by Assumption S1 (ii). This completes the veri�cation of Assumption 2 (ii).

Next, since (Uit, V
0
it)
0 has �nite second moments and A and � are compact it is easy to see that

supi sup(�i;�) jE(`i(αi, θ))j = O(1), and similarly for the �rst three derivatives of `i. From the assump-

tions on time-series mixing and moment existence it follows (as in see Lemma 1 in Hahn and Kuer-

steiner, 2011) that, for all (αi, θ), maxi=1;:::;N j`i(αi, θ)� E (`i(αi, θ))j = op (1). Combining the latter

lemma with the compactness of the parameter space as in Lemma 4 in Hahn and Kuersteiner (2011)

one can show that maxi=1;:::;N sup(�i;�) j`i(αi, θ)� E (`i(αi, θ))j = op (1). The same argument can be

applied to all �rst three derivatives of `i. Moreover, the rate on 1
N

∑N
i=1(`i(αi0, θ0)� E(`i(αi0, θ0)))2,

and the corresponding rates on the derivatives of `i, come from the fact that (Uit, V
0
it)
0 has �nite second

moments and satis�es suitable mixing conditions.

Next, we have:

E(�;�) (vi(αi(θ), θ)) = E(�;�)

(
Yit �

αi0 + µ0i0β0

1� ρ0

� ρ
(
Yi;t�1 �

αi0 + µ0i0β0

1� ρ0

)
� (Xit � µi0)0β

)
= (1� ρ)

α� αi0 + (µ� µi0)0β0

1� ρ0

� (µ� µi0)0β,

2



so:

∂

∂α

∣∣∣∣
(�i0;�i0)

E(�;�) (vi(αi(θ), θ)) =
1� ρ
1� ρ0

,
∂

∂µ

∣∣∣∣
(�i0;�i0)

E(�;�) (vi(αi(θ), θ)) =
1� ρ
1� ρ0

β0 � β,

which are uniformly bounded. Likewise:

E(�;�)

(
v�i (αi0, θ0)

)
=
(
�E(�;�)(Yi;t�1) , �E(�;�)(Xit)

0)0 = (�α+ µ0β0

1� ρ0

, �µ0
)0
,

and E(�;�) (v�i (αi0, θ0)) = �1, both of which have uniformly bounded derivatives. This shows the last

part of Assumption 2 (iii).

Turning to the part (iv) in Assumption 2 we have:

α̂(k̂i, θ) = Y (k̂i)� ρY �1(k̂i)�X(k̂i)
0β,

where Y (k̂i), Y �1(k̂i) and X(k̂i) are group-speci�c means of Yit, Yi;t�1 and Xit, over individuals and

time periods. This implies that ̂̀i(θ) = `i(α̂(k̂i, θ), θ) is quadratic in θ. Assumption 2 (iv) directly

follows.

Finally, when using hi = (Y i, X
0
i)
0 in the classi�cation step, it follows from the expressions in

the main text that ϕ is injective and both ϕ and ψ are Lipschitz, since jρ0j < 1. This shows that

Assumption 3 holds.

S1.2 Sequential estimation based on a partial likelihood

Consider the following grouped �xed-e�ects estimator. Instead of jointly maximizing the likelihood

function in the second step, one sequentially estimates (α1, θ1) based on
∑N

i=1 `i1(αi1, θ1), and (α2, θ2)

given (α1, θ1) based on
∑N

i=1 `i2(αi1, αi2, θ1, θ2). Under similar assumptions as in Theorem 1, θ̂1 and

α̂1(k̂i) follow the same expansions as in (6) and (7) in Theorem 1, up to adapting the notation. The

grouped �xed-e�ects estimator of α2’s and θ2 is then:

(
θ̂2, α̂2

)
= argmax

(�2;�2)

N∑
i=1

`i2

(
α̂1

(
k̂i

)
, α2

(
k̂i

)
, θ̂1, θ2

)
.

Next, let α̂i2 (α1, θ1, θ2) = argmax�2
`i2 (α1, α2, θ1, θ2). Replacing `i by:

̂̀
i2 (αi2, θ2) = `i2

(
α̂1

(
k̂i

)
, αi2, θ̂1, θ2

)

3



in the proof of Theorem 1, we obtain the following counterpart to (A3):

1

N

N∑
i=1

∂ ̂̀i2(α̂2(k̂i, θ20), θ20)

∂θ2
=

1

N

N∑
i=1

∂`i2

(
α̂1

(
k̂i

)
, α̂i2

(
α̂1

(
k̂i

)
, θ̂1, θ20

)
, θ̂1, θ20

)
∂θ2

+Op (δ)

=
1

N

N∑
i=1

∂`i2 (αi10, αi20, θ10, θ20)

∂θ2
+
∂2`i2 (αi10, αi20, θ10, θ20)

∂θ2∂α0i1
(α̂i1 � αi10)

+
∂2`i2 (αi10, αi20, θ10, θ20)

∂θ2∂θ
0
1

(
θ̂1 � θ10

)
+
∂2`i2 (αi10, αi20, θ10, θ20)

∂θ2∂α0i2

(
∂α̂i2 (αi10, θ10, θ20)

∂α0i1
(α̂i1 � αi10)

+
∂α̂i2 (αi10, θ10, θ20)

∂θ01

(
θ̂1 � θ10

)
+ α̂i2 (αi10, θ10, θ20)� αi20

)
+Op (δ) ,

where the last identity follows as in the proof of Theorem 1 (see also (A32) in the proof of Corollary

3).

We also have the following counterpart to (A4):

1

N

N∑
i=1

∂2

∂θ2∂θ
0
2

∣∣∣∣
�20

̂̀
i2

(
α̂2(k̂i, θ2), θ2

)
=

1

N

N∑
i=1

∂2

∂θ2∂θ
0
2

∣∣∣∣
�20

̂̀
i2

(
α̂i2

(
α̂1

(
k̂i

)
, θ̂1, θ20

)
, θ2

)
+ op(1)

=
1

N

N∑
i=1

∂2

∂θ2∂θ
0
2

∣∣∣∣
�20

`i2 (αi10, α̂i2 (αi10, θ10, θ2) , θ10, θ2) + op(1).

Let us de�ne, omitting references to true values for conciseness:

si1 =
∂`i1
∂θ1

+ E
(

∂2`i1
∂θ1∂α0i1

)[
E
(
� ∂2`i1
∂αi1∂α0i1

)]�1
∂`i1
∂αi1

,

H1 = lim
N;T!1

1

N

N∑
i=1

E
(
� ∂2`i1
∂θ1∂θ

0
1

)
� E

(
∂2`i1

∂θ1∂α0i1

)[
E
(
� ∂2`i1
∂αi1∂α0i1

)]�1

E
(

∂2`i1
∂αi1∂θ

0
1

)
,

si2 =
∂`i2
∂θ2

+ E
(

∂2`i2
∂θ2∂α0i1

)[
E
(
� ∂2`i1
∂αi1∂α0i1

)]�1
∂`i1
∂αi1

+ E
(
∂2`i2
∂θ2∂θ

0
1

)
H�1

1

1

N

N∑
j=1

sj1

+ E
(

∂2`i2
∂θ2∂α0i2

)[
E
(
� ∂2`i2
∂αi2∂α0i2

)]�1
(
∂`i2
∂αi2

+ E
(

∂2`i2
∂αi2∂α0i1

)[
E
(
� ∂2`i1
∂αi1∂α0i1

)]�1
∂`i1
∂αi1

+ E
(

∂2`i2
∂αi2∂θ

0
1

)
H�1

1

1

N

N∑
j=1

sj1

)
,

H2 = lim
N;T!1

1

N

N∑
i=1

E
(
� ∂2`i2
∂θ2∂θ

0
2

)
� E

(
∂2`i2

∂θ2∂α0i2

)[
E
(
� ∂2`i2
∂αi2∂α0i2

)]�1

E
(

∂2`i2
∂αi2∂θ

0
2

)
.
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We thus have:

θ̂1 = θ10 +H�1
1

1

N

N∑
i=1

si1 +Op

(
1

T

)
+Op (B�(K)) + op

(
1p
NT

)
,

θ̂2 = θ20 +H�1
2

1

N

N∑
i=1

si2 +Op

(
1

T

)
+Op (B�(K)) + op

(
1p
NT

)
.

S1.3 Properties of classification based on empirical distributions

Let Fi(w) = Pr (Wit � w jαi0) = G(w;αi0) denote the population cdf of Wit.
1 Similarly as in Lemma

1, the following convergence rate is achieved:

1

N

N∑
i=1

∥∥∥ĥ(k̂i)�G(�;αi0)
∥∥∥2

!
= Op

(
1

T

)
+Op (B�(K)) ,

provided (i) 1
N

∑N
i=1 kF̂i � Fik2! = Op(T

�1), and (ii) G(�;αi0) is Lipschitz with respect to its second

argument. Both conditions are satis�ed quite generally. For (i) a functional central limit theorem on F̂i,

together with ω being integrable, will su�ce. The Lipschitz condition in (ii) will be satis�ed provided
� @ ln f(y;x;�i)

@�i

@ ln f(y;x;�i)
@�0

i
f(y, x, αi)dydx is uniformly bounded. Here αi 7! G(�;αi) maps individual-

speci�c parameters to L2(ω).

For the second step to deliver estimators with similar properties as in Theorem 1 an injectivity

condition is needed. When classifying individuals based on empirical distributions, this condition does

not impose further restrictions other than αi0 being identi�ed. Indeed, αi 7! G(�, αi) being injective

is equivalent to G(�, αi2) = G(�, αi1) ) αi2 = αi1, which in turn is equivalent to αi0 being identi�ed

given knowledge of the function G (hence in particular given knowledge of θ0).

S1.4 Iterated grouped fixed-effects estimator

In this subsection we consider a fully speci�ed likelihood model, where fi(Yi, Xi) is indexed by αi0.

We have the following result for θ̂
(2)

in (10). Similar results hold for α̂(2)(k̂
(2)
i ) and average e�ects,

although we omit them for brevity.

Corollary S1. Let the assumptions of Theorem 1 hold. Let θ̂ be the two-step grouped �xed-e�ects

estimator of θ0. Then, as N,T,K tend to in�nity:

θ̂
(2)

= θ̂ +Op

(
1

T

)
+Op (B�(K)) + op

(
1p
NT

)
.

1In conditional models where the data also depends on µi0 we will write Fi(w) = G(w;αi0, µi0).
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Proof. Let δ = 1/T +B�(K). We start by noting that, by de�nition of fk̂(2)
i g:

N∑
i=1

`i

(
α̂(k̂i), θ̂

)
�

N∑
i=1

`i

(
α̂(k̂

(2)
i ), θ̂

)
�

N∑
i=1

`i

(
α̂i, θ̂

)
.

By (A22) we have:

1

N

N∑
i=1

`i

(
α̂i, θ̂

)
� 1

N

N∑
i=1

`i

(
α̂(k̂i), θ̂

)
= Op(δ),

from which it follows that:

0 � 1

N

N∑
i=1

`i

(
α̂i, θ̂

)
� 1

N

N∑
i=1

`i

(
α̂(k̂

(2)
i ), θ̂

)
= Op(δ).

Then, following the �rst part of the proof of Theorem 1 (using that θ̂ is consistent for θ0) we then

obtain, similarly as in (A12):

1

N

N∑
i=1

∥∥∥α̂(k̂
(2)
i )� α̂i

∥∥∥2
= Op(δ).

Hence: 1
N

∑N
i=1 kα̂(k̂

(2)
i )�αi0k2 = Op (δ). This establishes that there exists a function of fk̂(2)

i g which

approximates the true αi0 on average at the desired rate.

Let us then de�ne: a(k, θ) = α (θ, α̂ (k)). Note that:

1

N

N∑
i=1

`i

(
a(k̂

(2)
i , θ), θ

)
� 1

N

N∑
i=1

`i

(
α̂(2)(k̂

(2)
i , θ), θ

)
� 1

N

N∑
i=1

`i (α̂i(θ), θ) =
1

N

N∑
i=1

`i (αi(θ), θ)+Op

(
1

T

)
.

The rest of the proof is identical as in the proof of Theorem 1, up to a change in notation consisting

in adding (2) superscripts.

S1.5 Bias of the one-step estimator in Example 2

Write (4) in compact form as Yit = W 0itθ0 + αi0 + Uit, where Wit = (Yi;t�1, X
0
it)
0 and θ0 = (ρ0, β

0
0)0.

Pollard (1981, 1982a) provides conditions under which, for �xed K,T and as N tends to in�nity,

the one-step grouped �xed-e�ects estimator is root-N consistent and asymptotically normal for the

minimizer θ� of the following population objective function:2

Q(θ) = plim
N!1

min
(�;fkig)

1

NT

N∑
i=1

T∑
t=1

(
Yit �W 0itθ � α(ki)

)2
.

2Pollard focuses on the standard kmeans estimator, without covariates. See the supplementary appendix in

Bonhomme and Manresa (2015) for an analysis with covariates.
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Now:

Q(θ) = plim
N!1

1

NT

N∑
i=1

T∑
t=1

(
Yit � Y i �

(
Wit �W i

)0
θ
)2

+QB(θ),

where:

QB(θ) = plim
N!1

min
(�;fkig)

1

N

N∑
i=1

(
Y i �W

0
iθ � α(ki)

)2
.

From Theorem 6.2 in Graf and Luschgy (2000) we have, as K tends to in�nity for �xed T , and

provided the density f� of Y i �W
0
iθ is non-singular with respect to the Lebesgue measure:

QB(θ) =
1

12K2

(�
[f�(y)]

1
3 dy

)3

+ o

(
1

K2

)
.

As an example, consider the case where the Y i�W
0
iθ are i.i.d. normal with mean µ(θ) and variance

σ2(θ). Then direct calculations show that:

1

12K2

(�
[f�(y)]

1
3 dy

)3

=
π
p

3

2K2
σ2(θ).

Moreover:
∂σ2(θ)

∂θ
= 2 Var(W i)θ � 2 Cov

(
W i, Y i

)
.

This suggests that, up to an o(K�2) term, the pseudo-true value θ� solves:

E

[
� 1

T

T∑
t=1

(
Wit �W i

) (
Yit � Y i �

(
Wit �W i

)0
θ
)]

+
π
p

3

K2

(
Var(W i)θ � Cov

(
W i, Y i

))
= 0.

This gives:

θ� =

(
E

[
1

T

T∑
t=1

(
Wit �W i

) (
Wit �W i

)0]
+
π
p

3

K2
Var(W i)

)�1

�

(
E

[
1

T

T∑
t=1

(
Wit �W i

) (
Yit � Y i

)]
+
π
p

3

K2
Cov

(
W i, Y i

))
+ o

(
1

K2

)
.

Hence:

θ� � θ0 =

(
E

[
1

T

T∑
t=1

(
Wit �W i

) (
Wit �W i

)0]
+
π
p

3

K2
Var(W i)

)�1

�

(
E

[
1

T

T∑
t=1

(
Wit �W i

)
Uit

]
+
π
p

3

K2
Cov

(
W i, αi + U i

))
+ o

(
1

K2

)
.

As K tends to in�nity θ� converges to the probability limit of the within estimator. The conver-

gence rate is 1/K2. Moreover, the approximation bias depends on the \between" moments Var(W i)

and Cov
(
W i, αi + U i

)
.
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S1.6 Conditions for Assumptions 7 and 8 in Example 3

Let us verify Assumptions 7 and 8 in Example 3 under the following conditions.

Assumption S2. (regularity in Example 3)

(i) Observations are i.i.d. across individuals conditional on the αi0(t)’s and µi0(t)’s. The parameter

spaces � for β0 and A for (αi0(t), µi0(t)0)0 are compact, and β0 belongs to the interior of �.

(ii) (Yit, X
0
it)
0 is stationary conditional on the αi0(t)’s. Let Vit = Xit�µi0(t). E(Uit) = 0, E(Vit) = 0,

and E(UitVit) = 0. The minimum eigenvalue of E
(
(Xit � E(Xit)) (Xit � E(Xit))

0) is bounded

away from zero. Xit have bounded support.

(iii) Let Zit = (Uit, V
0
it)
0. (Zit)i;t satis�es De�nition 1.

Take hi = (Yi, X
0
i)
0. Then ϕ(αi0(t)) = (αi0(t) + µi0(t)0β0, µi0(t)0)0 is Lipschitz since β0 belongs to

a compact set. Moreover, εit = (Uit + V 0itβ0, V
0
it)
0 satis�es De�nition 1 since (Uit, V

0
it)
0 is sub-Gaussian

and (1, β00)0 belongs to a compact set. This veri�es Assumptions 7.

Consider next the quasi-likelihood: `it(αi(t), β) = �1
2(Yit � X 0itβ � αi(t))2. αi(β, t) is uniquely

de�ned, equal to:

αi(β, t) = αi0(t) + µi0(t)0(β0 � β).

1
NT

∑N
i=1

∑T
t=1 E(`it(αi(β), β)) is a quadratic function of β. Moreover, it derivative is:

1

NT

N∑
i=1

T∑
t=1

E

(
Vit
(
Uit + V 0it(β0 � β)

))
.

This derivative is zero at β0, and the second derivative �H is negative de�nite by Assumption S2 (ii).

Since v�it = �1 the last part of Assumption 8 (i) follows.

Next, it is easy to check that supi;t sup(�i(t);�) jE(`it(αi(t), β))j = O(1), and similarly for the �rst

three derivatives of `it, since (Uit, V
0
it)
0 being sub-Gaussian implies it has �nite moments at any order.

Third derivatives of `it are zero. As for second derivatives we have v�it = �1, @2‘it
@�@�i(t)

= �Xit, and

@2‘it
@�@�0 = �XitX

0
it. Those are uniformly bounded since Xit have bounded support.

Next, we have:

E(�(t);�(t)) (vit(αi(β, t), β)) = E(�(t);�(t))

(
Yit �X 0itβ � αi0(t)� µi0(t)0(β0 � β)

)
= α(t)� αi0(t) + (µ(t)� µi0(t))0(β0 � β),
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so @
@�(t)

∣∣
(�i0(t);�i0(t))

E(�(t);�(t)) (vit(αi(β, t), β)) is uniformly bounded. Similar arguments end the veri-

�cation of Assumption 8 (ii).

Lastly:

vit(αi(β, t), β) = Yit �X 0itβ � αi0(t)� µi0(t)0(β0 � β) = Uit + V 0it(β0 � β).

Since (1, (β0�β)0)0 is bounded and the (Uit, V
0
it)
0 satisfy De�nition 1, the vector stacking all vit(αi(β, t), β)0

satis�es the sub-Gaussian requirement of De�nition 1 uniformly in β. Likewise:

∂

∂β

∣∣∣∣
�0

vit (αi(β, t), β) = �Vit,

which also satis�es De�nition 1.

This ends the veri�cation of Assumption 8.
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S2 Complements to the applications

S2.1 Dynamic model of location choice

Value functions. Let us denote the integrated value function as:

V t(Si;t�1) = E
[

max
j2f1;:::;Jg

Vt(j, Si;t�1) + ξit(j)

∣∣∣∣Si;t�1

]
.

By Bellman’s principle the alternative-speci�c value functions are:

Vt(j, Si;t�1) = E
[
ρWit(j)� c(ji;t�1, j) + βV t(Sit)

∣∣∣∣ jit = j, Si;t�1

]
,

where Sit =
(
j,J ji;t�1, αi

(
J ji;t�1

))
when jit = j, for J ji;t�1 = Ji;t�1 [ fjg. From the functional forms

we obtain (as in Rust, 1994):

V t(Si;t�1) = ln

 J∑
j=1

expVt(j, Si;t�1)

+ γ, (S1)

where γ � .57 is Euler’s constant. Moreover:

Vt(j, Si;t�1) =

E
[
ρ exp

(
αi(j) +

σ2

2

)
� c(ji;t�1, j) + βV t

(
j,J ji;t�1, αi

(
J ji;t�1

)) ∣∣∣∣ jit = j, Si;t�1

]
, (S2)

where the expectation is taken with respect to the distribution of αi(j) given αi (Ji;t�1), conditional

on ji;t�1 and jit = j.

Computation. Computation of the solution proceeds in a recursive manner. In the case where

all locations have been visited, Jit = f1, ..., Jg so Sit = (jit, f1, ..., Jg, fαi(1), ..., αi(J)g). Denote the

corresponding integrated value function given most recent location j as V
J
(i, j). From (S1) and (S2)

we have:

V
J
(i, j) = ln

 J∑
j0=1

exp

[
ρ exp

(
αi(j

0) +
σ2

2

)
� c(j, j0) + βV

J
(i, j0)

]+ γ, j = 1, ..., J.

We solve this �xed-point system by successive iterations.

Consider now a case where the agent has visited s states in set J $ f1, ..., Jg, and is currently at

location j. Let V
s
(i, j,J ) denote her integrated value function. The latter solves:

V
s
(i, j,J ) = ln

(∑
j0 =2J

exp

[
EJ ;j;j0

(
ρ exp

(
αi(j

0) +
σ2

2

)
� c(j, j0) + βV

s+1
(i, j0,J j0

)

)]

+
∑
j02J

exp

[
ρ exp

(
αi(j

0) +
σ2

2

)
� c(j, j0) + βV

s
(i, j0,J )

])
+ γ,
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where EJ ;j;j0 is taken with respect to the distribution of αi(j
0) given αi(J ), conditional on moving

from j to j0. In practice we discretize the values of each αi(j) on a 50-point grid. In the computation

of the �xed points we set a 10�11 numerical tolerance.

Estimation. The choice probabilities entering the likelihood are given by an estimated counterpart

to (18), where the estimated value functions V̂t

(
j, ji;t�1,Ji;t�1, α̂(k̂i,Ji;t�1), θ

)
solve the system (S1)-

(S2). We estimate the conditional expectation in (S2) as a conditional mean given α̂(k̂i,Ji;t�1), based

on all job movers from Ji;t�1 to jit = j. Nonparametric or semi-parametric methods could be used

for this purpose. We experimented with both a Nadaraya Watson kernel estimator and a polynomial

series estimator. We use an exponential regression estimator in the illustration.

Iteration. To perform the iteration, we �rst estimate the idiosyncratic variance of log-wages σ2 as:

σ̂2 =
1

NT

N∑
i=1

T∑
t=1

(
lnWit � α̂(k̂i, jit)

)2
. (S3)

Then, individual groups are assigned as:

k̂
(2)
i = argmax

k2f1;:::;Kg

T∑
t=1

J∑
j=1

1fjit = jg

(
ln Pr

(
jit = j j ji;t�1,Ji;t�1, α̂(k,Ji;t�1), θ̂

)

+ lnφ(lnWit; α̂(k, j), σ̂2)

)
,

where φ denotes the normal density. Note that information on both wages and choices is used to

reclassify individuals.

Given group assignments, parameters can be updated as:

α̂(2)(k, j) =

∑N
i=1

∑T
t=1 1fk̂

(2)
i = kg1fjit = jg lnWit∑N

i=1

∑T
t=1 1fk̂

(2)
i = kg1fjit = jg

,

with an update for σ2 analogous to (S3), and:

θ̂
(2)

= argmax
�

N∑
i=1

T∑
t=1

J∑
j=1

1fjit = jg ln Pr
(
jit = j j ji;t�1,Ji;t�1, α̂

(2)(k̂
(2)
i ,Ji;t�1), θ

)
.

This procedure may be iterated further. Note that in the update step we do not maximize the

full likelihood as a function of parameters α, σ2, θ. Rather, we use a partial likelihood estimator by

which we �rst estimate wage parameters α and σ2, and then estimate utility and cost parameters θ.

We use this approach for computational reasons; see Rust (1994) and Arcidiacono and Jones (2003)
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for related approaches. In Section S1 we study properties of two-step grouped �xed-e�ects in a partial

likelihood setting.

S2.2 Dynamic model of location choice: additional results

In this subsection we show additional estimation results for the illustration in Section 6.

Fixed-K grouped fixed-effects: results. We start by reporting results based on �xed values

of K, from K = 2 to K = 8, in Figure S1. We see that taking K = 2 yields imprecise estimates, in

particular for ρ. In comparison, taking K = 4, K = 6 or K = 8 results in better performance. The

most accurate results are obtained taking K = 6 or K = 8 and using bias reduction and one or three

iterations. Those results are close to the ones using our method to select K (see Figure 3, where the

average value for K̂ is 7).

Fixed-effects estimation: results. In this DGP, �xed-e�ects estimation is computationally

tractable. This is due to the fact that the α’s and the structural parameters can be estimated se-

quentially. One �xed-e�ects estimation of the structural parameters is about 2.5 times slower than

one estimation of the model with 7 groups (the average value of K̂), although it becomes 9 times

slower in a sample with 10 times as many individuals. The results for the �xed-e�ects estimator,

and the bias-reduced �xed-e�ects estimator based on the half-panel jackknife method of Dhaene and

Jochmans (2015), are shown in Figure S2. We see that the results do not di�er markedly from the

grouped �xed-e�ects results in Figure 3, consistently with Theorem 1.

EM algorithm: results. As a comparison, we next report the results of random-e�ects estimation

based a �nite mixture with K = 2, K = 4, and K = 8 types, respectively. We use the EM algorithm of

Arcidiacono and Jones (2003), where wage-speci�c parameters and structural parameters are estimated

sequentially in each M-step of the algorithm. Setting a tolerance of 10�6 on the change in the likelihood,

the algorithm stops after 27, 67, and 294 iterations with K = 2, K = 4, and K = 8 types, respectively.

Estimation is substantially more time-consuming than when using two-step grouped �xed-e�ects. The

results in Figure S3 show that the estimates with K = 2 types are severely biased, and have large

variances. The quality of estimation improves substantially when taking K = 8 groups. In the latter

case, performance seems roughly comparable to the bias-corrected two-step results shown in Figure 3.
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S2.3 Firm and worker heterogeneity: estimation

Following Bonhomme et al. (2015) we exploit the following restrictions, where we denote as mi =

1fj(i, 1) 6= j(i, 2)g the job mobility indicator. For job movers, using the fact that mobility does not

depend on ε’s, and that εi1 is independent of εi2, we have:

E (Yi2 � Yi1 jmi = 1, j(i, 1), j(i, 2)) = ψj(i;2) � ψj(i;1), (S4)

Var (Yi2 � Yi1 jmi = 1, j(i, 1), j(i, 2)) = Var (εi2) + Var (εi1) = 2 s2. (S5)

Then, in the �rst cross-section we have:

E (Yi1 j j(i, 1)) = ψj(i;1) + E (ηi j j(i, 1)) = ψj(i;1) + µj(i;1), (S6)

Var (Yi1 j j(i, 1)) = Var (ηi j j(i, 1)) + Var (εi1) = σ2
j(i;1) + s2. (S7)

In estimation, we �rst compute a �rm partition fk̂jg into K groups based on �rm-speci�c empirical

distributions of log-wages (evaluated at 20 points). In the second step, we use the following algorithm:

1. Compute ψ̂(k̂j) based on sample counterparts to (S4).

2. Compute ŝ2 based on (S5).

3. Given ψ̂(k̂j), compute µ̂(k̂j) based on (S6).

4. Given ŝ2, compute σ̂2(k̂j) based on (S7). In practice we impose non-negativity of the variances

using a quadratic programming routine.

Given parameter estimates, we then estimates the variances and covariance in (22) by aggregation

across types.

The �xed-e�ects estimator in Table 1 is computed following the same algorithm, except that K is

taken equal to N . Hence, the estimates of the �rm e�ects ψj correspond to the estimator of Abowd

et al. (1999). However, instead of relying on a �xed-e�ects approach on the worker side, in this

two-period setting we rely on a correlated random-e�ects approach to deal with worker heterogeneity.

In that speci�cation, the mean and variance of worker e�ects ηi are �rm-speci�c.3

S2.4 Firm and worker heterogeneity: additional results

In this part of the supplementary appendix we report the results for additional DGPs.

3We compute the connected set in an initial step, and use sparse matrix coding for e�cient computation.
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Monte Carlo designs. We consider four additional DGPs, in addition to DGP1 reported in Table

1. In Table S1 we show the sample sizes that we use in all designs, including the average number of

movers per �rm. DGP2 has one-dimensional underlying heterogeneity, with di�erent parameter values:

the variance of �rm e�ects is larger than in DGP1, while the correlation between �rm e�ects and worker

e�ects is smaller, the relative magnitudes being close to the AKM estimates of Card et al. (2013).

DGP3 and DGP4 have two-dimensional underlying heterogeneity (ψj , Vj), where ψj is the wage �rm

e�ect and Vj drives workers’ �rm choice. (ψj , Vj) are drawn from a bivariate normal distribution,

and the mean and variance of worker e�ects in the �rm are set to µj = Vj and σ2
j = (a + bVj)

2 for

some constants a, b which are calibrated to the Swedish sample. We interpret Vj as a present value

driving workers’ mobility decisions across �rms, which may be only imperfectly correlated with ψj

in the presence of non-pecuniary attributes valued by workers (as in Sorkin, 2016). As displayed in

Table S2, the two-dimensional DGPs di�er in terms of parameter values.4 Lastly, DGP5 has discrete

heterogeneity. Speci�cally, there are K� = 10 \true" groups in the population. The groups are chosen

by approximating the �rm heterogeneity of DGP1.

Alternative DGP with one-dimensional heterogeneity: results. In Table S3 we report

the results of two-step grouped �xed-e�ects and its bias-corrected version, as well as �xed-e�ects, in

DGP2 with one-dimensional heterogeneity and a larger variance of �rm e�ects than in Table 1. The

performance of the estimators is comparable to Table 1.

Bias-corrected fixed-effects. In Table S4 we report the results of bias-corrected �xed-e�ects

estimation in DGP1 (top panel, see Table 1) and DGP2 (bottom panel). In order to implement the

bias correction we use the half-panel jackknife of Dhaene and Jochmans (2015), splitting all workers

in every �rm into two random halves, including job movers. We see that, although bias correction

improves relative to �xed-e�ects, the bias-corrected estimator is still substantially biased, even for

moderately large �rms.5

Inferring the underlying dimension of firm heterogeneity. As a motivation for consid-

ering DGPs with an underlying dimension higher than one, but still relatively low, we �rst attempt

4The last row of the table shows the correlation between the wage �rm e�ect ψj and the present value Vj in

all DGPs.
5Notice that some of the variance estimates are in fact negative. This is due to the fact that the additive

bias correction method does not enforce non-negativity.
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to learn the underlying dimension of �rm heterogeneity on the Swedish matched employer-employee

data set used in Section 7. In statistics, the literature on manifold learning aims at inferring the low

intrinsic dimension of large dimensional data; see for example Levina and Bickel (2004) and Raginsky

and Lazebnik (2005). Motivated by the method for selecting the number of groups outlined in Subsec-

tion 4.2, the method we use here consists in comparing the length of the panel T with the number of

groups K̂ estimated from (12). If the underlying dimension of ϕ(αi0) is d > 0, then we expect Q̂(K)

to decrease at a rate Op(K
� 2
d ) +Op(T

�1). This suggests that K̂
2
d and T will have a similar order of

magnitude. In such a case the underlying dimension may be inferred by plotting the relationship, for

panels of di�erent lengths, between ln K̂ and lnT , the slope of which is 2/d̂.

In Figure S4 we report the results of this exercise, taking �rms with more than 50 employees, and

then randomly selecting x% in each �rm, where x varies between 5 and 100. The left graph shows

the shape of the objective function Q̂(K) as a function of K, in logs. In each sample the estimated

number of groups K̂ lies at the intersection of that curve and the horizontal line ln(V̂h/T ).6 On the

right graph we then plot ln K̂ against the logarithm of the average �rm size in each sample. We

see that the relationship is approximately linear and the slope is close to one, suggesting that the

underlying dimension is around d̂ = 2.

Two-dimensional heterogeneity: results. In Table S5 we report the simulation results for

DGP3 with continuous two-dimensional �rm heterogeneity. The results for DGP4, with a smaller

variance of �rm e�ects, are reported in Table S7. The results are shown graphically in Figures S5 and

S6. Focusing on the �rst panel, which corresponds to our recommended choice for the selection rule

of the number of groups (that is, taking ξ = 1 in (12)), we see that the two-step estimators show more

substantial biases than in the one-dimensional case, especially for the variance of �rm e�ects and the

correlation parameter. Moreover, bias correction does not succeed at reducing the bias substantially.

This suggests that, for the selected number of groups, the approximation bias is still substantial. At

the same time, as shown by the two bottom panels of the tables, taking ξ = .5 and ξ = .25 improves the

performance of the two-step estimator.7 Performance is further improved when using the bias-reduced

6We use a slight modi�cation of the V̂h formula to deal with the fact that here the \panel" is unbalanced,

since di�erent �rms may have di�erent sizes.
7Notice that while the selected number of groups K̂ is monotone in �rm size for ξ = 1 and ξ = .5, it is not

monotone for ξ = .25. This is a �nite sample issue: when taking ξ = .25 and focusing on large �rms the number

of groups is no longer negligible with respect to the number of �rms in the sample.
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estimator.

As pointed out in Section 4, features of the model may be exploited to improve the classi�cation.

In the two-dimensional designs DGP3 and DGP4, we perform the following moment-based iteration.

The two-step method delivers estimates of the mean and variance of worker e�ects ηi in �rm group

k̂j : µ̂(k̂j) and σ̂2(k̂j), respectively. Regressing

√
σ̂2(k̂j) on µ̂(k̂j) and a constant then gives estimates

b̂ and â. Given those, we construct the (iterated) moments:

h1j = Ê(Yi1 j j)�

√
V̂ar(Yi1 j j)� ŝ2 � â

b̂
, h2j =

√
V̂ar(Yi1 j j)� ŝ2 � â

b̂
,

where Ê and V̂ar denote �rm-speci�c means and variances. Those moments will be consistent for

ψj and Vj , respectively, as T tends to in�nity. We then apply two-step grouped �xed-e�ects to the

moments h1j and h2j . In Tables S7 and S8 we report the results for the iterated estimator (only

iterated once) and its bias-corrected version, for DGP3 and DGP4, respectively. We see that the

iteration improves performance substantially for DGP3, although it has small e�ects on performance

in DGP4.

Low mobility bias and regularization. As shown by Theorem 2, a bene�t of discretizing

unobserved heterogeneity is that it can reduce the incidental parameter bias of �xed-e�ects estima-

tors. In the illustration on matched employer-employee data, �xed-e�ects estimators may be biased

due to low rates of worker mobility between �rms. In order to assess the impact of mobility rates

on the performance of �xed-e�ects and grouped �xed-e�ects estimators, in Figures S7 and S8 we re-

port the results of the estimated variance decomposition on 500 simulations, comparing �xed-e�ects,

bias-corrected �xed-e�ects, two-step grouped �xed-e�ects with bias correction, and iterated two-step

grouped �xed-e�ects with bias correction. We perform simulations for di�erent number of job movers

per �rm, from 2 to 10 (shown on the x-axis), and a �xed �rm size of 50. The two �gures show the

results for the two-dimensional DGPs: DGP3 and DGP4, respectively. We see a striking di�erence

between �xed-e�ects and grouped �xed-e�ects: while the former is very sensitive to the number of job

movers, the latter is virtually insensitive. In particular, for low numbers of job movers �xed-e�ects

and its bias-corrected counterpart are severely biased, while the biases of grouped �xed-e�ects remain

moderate. This is in line with Theorem 2. It is worth noting that the average number of job movers

per �rm is around 0.5 in the original Swedish sample. This suggests that, at least in short panels, the

discrete regularization achieved in grouped �xed-e�ects may result in practical improvements relative
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to �xed-e�ects in data sets of realistic dimensions.

Discrete heterogeneity: results. Finally, in Table S9 we report results for a discrete DGP

(DGP5) where all �rm population parameters are constant within groups k̂j , with K� = 10. In this

case the results of two-step grouped �xed-e�ects with K = K� turn out to be quite similar to those

obtained in the continuous DGP in Table 1. However, as the last column in the table shows, in this

discrete DGP misclassi�cation frequencies are sizable: 69% misclassi�cation when �rm size equals 10,

and still 23% when size is 100.8 This suggests that, for this DGP, an \oracle" asymptotic theory based

on the premise that group misclassi�cation is absent in the limit may not provide reliable guidance for

�nite sample inference, even when the true number of groups is known. Lastly, the table shows some

evidence that bias correction (where the number of groups is estimated in every simulation) improves

the performance of the estimator in this setting too.

8We computed misclassi�cation frequencies by solving a linear assignment problem using the simplex algo-

rithm in every simulation.
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Table S1: Firm and worker e�ects, sample sizes

Firm size Number �rms Number job movers

per �rm

10 10000 2

20 5000 4

50 2000 10

100 1000 20

200 500 40

Notes: Sample sizes for di�erent �rm sizes, all DGPs.

Table S2: Di�erent DGPs

small V ar(ψ) large V ar(ψ)

1D 2D 1D 2D

V ar(ψ) 0.0017 0.0017 0.0204 0.0204
2.0% 2.0% 21.2% 21.2%

V ar(η) 0.0758 0.0758 0.0660 0.0660
85.2% 85.2% 68.4% 68.4%

Cov(ψ, η) 0.0057 0.0057 0.0050 0.0050
12.8% 12.8% 10.4% 10.4%

Corr(ψ, η) 0.4963 0.4963 0.1373 0.1373
V ar(ε) 0.0341 0.0341 0.0341 0.0341

Corr(V, ψ) 1.0000 0.7130 1.0000 0.2540

Notes: The four columns show the parameter values and overall shares of variance in DGP1, DGP4,

DGP2, and DGP3, respectively.
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Table S3: Estimates of �rm and worker heterogeneity across simulations, one-dimensional �rm

heterogeneity, large variance of �rm e�ects

Firm size Var (ηi) Var
(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) K̂

true values

- 0.0660 0.0204 0.0050 0.1373 0.0341

two-step estimator

10 0.0605 0.0124 0.0078 0.2868 0.0422 3.0
[0.059,0.062] [0.012,0.013] [0.008,0.008] [0.275,0.300] [0.041,0.043] [3,3]

20 0.0626 0.0155 0.0068 0.2178 0.0392 4.0
[0.061,0.064] [0.015,0.016] [0.006,0.007] [0.205,0.230] [0.038,0.040] [4,4]

50 0.0645 0.0180 0.0058 0.1714 0.0365 6.0
[0.063,0.066] [0.017,0.019] [0.005,0.006] [0.158,0.183] [0.036,0.037] [6,6]

100 0.0653 0.0191 0.0054 0.1542 0.0354 8.0
[0.064,0.066] [0.018,0.020] [0.005,0.006] [0.141,0.166] [0.035,0.036] [8,8]

200 0.0657 0.0198 0.0052 0.1448 0.0348 10.9
[0.065,0.067] [0.019,0.021] [0.005,0.006] [0.132,0.157] [0.034,0.035] [10,12]

two-step estimator, bias-corrected

10 0.0650 0.0149 0.0056 0.1445 0.0397
[0.064,0.066] [0.014,0.016] [0.005,0.006] [0.127,0.163] [0.039,0.041]

20 0.0647 0.0185 0.0057 0.1499 0.0361
[0.063,0.066] [0.018,0.019] [0.005,0.006] [0.133,0.167] [0.035,0.037]

50 0.0656 0.0202 0.0053 0.1416 0.0344
[0.064,0.067] [0.019,0.021] [0.005,0.006] [0.126,0.155] [0.034,0.035]

100 0.0661 0.0202 0.0050 0.1371 0.0344
[0.065,0.067] [0.019,0.021] [0.005,0.005] [0.122,0.150] [0.034,0.035]

200 0.0661 0.0204 0.0050 0.1361 0.0342
[0.065,0.067] [0.020,0.021] [0.005,0.005] [0.123,0.149] [0.033,0.035]

�xed-e�ects estimator

10 0.1252 0.0528 -0.0273 -0.3357 0.0173
[0.123,0.127] [0.051,0.055] [-0.029,-0.026] [-0.346,-0.324] [0.017,0.018]

20 0.0908 0.0318 -0.0063 -0.1165 0.0256
[0.090,0.092] [0.031,0.033] [-0.007,-0.006] [-0.127,-0.105] [0.025,0.026]

50 0.0752 0.0242 0.0013 0.0301 0.0307
[0.074,0.076] [0.023,0.025] [0.001,0.002] [0.019,0.041] [0.030,0.031]

100 0.0705 0.0222 0.0033 0.0827 0.0324
[0.069,0.072] [0.021,0.023] [0.003,0.004] [0.071,0.095] [0.032,0.033]

200 0.0683 0.0213 0.0041 0.1085 0.0333
[0.067,0.069] [0.021,0.022] [0.004,0.005] [0.096,0.120] [0.033,0.034]

Notes: See notes to Table 1. Results for DGP2.
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Table S4: Bias-corrected �xed-e�ects estimators, one-dimensional �rm heterogeneity

Firm size Var (ηi) Var
(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1)

one-dimensional, small �rm e�ect

- 0.0758 0.0017 0.0057 0.4963 0.0341

�xed-e�ects, bias-corrected

10 0.0065 -0.0717 0.0791 -0.0976 0.0300
[-0.004,0.016] [-0.082,-0.064] [0.071,0.089] [-0.125,-0.072] [0.029,0.031]

20 0.0645 -0.0098 0.0172 0.0973 0.0339
[0.062,0.067] [-0.011,-0.008] [0.016,0.019] [0.073,0.125] [0.033,0.035]

50 0.0733 -0.0007 0.0082 0.3069 0.0341
[0.072,0.075] [-0.001,-0.000] [0.008,0.009] [0.279,0.335] [0.033,0.035]

100 0.0748 0.0007 0.0067 0.4173 0.0341
[0.073,0.076] [0.000,0.001] [0.006,0.007] [0.388,0.447] [0.033,0.035]

200 0.0753 0.0012 0.0062 0.4822 0.0341
[0.074,0.077] [0.001,0.002] [0.006,0.007] [0.451,0.512] [0.033,0.035]

one-dimensional, large �rm e�ect

- 0.0660 0.0204 0.0050 0.1373 0.0341

�xed-e�ects, bias-corrected

10 -0.0036 -0.0533 0.0788 -0.0077 0.0301
[-0.013,0.006] [-0.062,-0.045] [0.070,0.088] [-0.034,0.019] [0.029,0.031]

20 0.0547 0.0089 0.0166 0.1163 0.0339
[0.053,0.057] [0.007,0.011] [0.015,0.018] [0.096,0.137] [0.033,0.035]

50 0.0636 0.0180 0.0075 0.1561 0.0341
[0.062,0.065] [0.017,0.019] [0.007,0.008] [0.139,0.173] [0.033,0.035]

100 0.0650 0.0194 0.0061 0.1554 0.0341
[0.064,0.066] [0.019,0.020] [0.006,0.007] [0.139,0.171] [0.033,0.035]

200 0.0656 0.0199 0.0055 0.1487 0.0341
[0.064,0.067] [0.019,0.021] [0.005,0.006] [0.133,0.164] [0.033,0.035]

Notes: Means and 95% con�dence intervals. Unobserved heterogeneity is continuously distributed in

the DGP. Bias correction is based on splitting both job movers and job stayers into two sub-samples.

The top panel shows the results on DGP1, with a small variance of �rm e�ects, while the bottom panel

shows the results for DGP2, with a larger variance of �rm e�ects. 500 simulations.
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Table S5: Firm and worker e�ects, two-dimensional �rm heterogeneity, large V ar(ψ), di�erent choices of ξ

two-step estimator two-step estimator, bias corrected

Firm size Var (ηi) Var
(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) K̂ Var (ηi) Var

(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) K̂

true values true values

- 0.0660 0.0204 0.0050 0.1373 0.0341 0.0660 0.0204 0.0050 0.1373 0.0341

ξ = 1.0 ξ = 1.0

10 0.0513 0.0098 0.0124 0.5500 0.0448 4.0 0.0529 0.0112 0.0115 0.4574 0.0434 4.2
[0.050,0.053] [0.009,0.010] [0.012,0.013] [0.539,0.563] [0.044,0.045] [4,4] [0.050,0.055] [0.010,0.012] [0.011,0.012] [0.437,0.486] [0.042,0.044] [4,5]

20 0.0515 0.0112 0.0124 0.5180 0.0433 5.7 0.0514 0.0126 0.0125 0.4856 0.0420 7.4
[0.049,0.053] [0.010,0.012] [0.012,0.013] [0.498,0.536] [0.042,0.044] [5,6] [0.049,0.053] [0.011,0.014] [0.012,0.013] [0.454,0.509] [0.041,0.043] [6,8]

50 0.0514 0.0123 0.0124 0.4939 0.0423 8.9 0.0513 0.0131 0.0125 0.4797 0.0415 11.8
[0.049,0.054] [0.012,0.013] [0.012,0.013] [0.471,0.512] [0.041,0.043] [8,9] [0.049,0.054] [0.012,0.014] [0.012,0.013] [0.451,0.505] [0.041,0.043] [10,12]

100 0.0519 0.0128 0.0124 0.4796 0.0416 13.3 0.0520 0.0133 0.0123 0.4664 0.0411 17.9
[0.049,0.054] [0.012,0.014] [0.012,0.013] [0.453,0.503] [0.041,0.043] [13,14] [0.049,0.055] [0.013,0.014] [0.011,0.013] [0.436,0.496] [0.040,0.042] [17,20]

200 0.0548 0.0147 0.0104 0.3683 0.0399 21.4 0.0579 0.0165 0.0089 0.2713 0.0381 30.1
[0.051,0.058] [0.014,0.016] [0.009,0.012] [0.303,0.426] [0.039,0.041] [20,23] [0.053,0.062] [0.015,0.018] [0.006,0.011] [0.168,0.374] [0.037,0.040] [28,33]

ξ = 0.5 ξ = 0.5

10 0.0498 0.0110 0.0134 0.5730 0.0435 12.8 0.0386 0.0126 0.0123 0.5385 0.0419 14.0
[0.048,0.053] [0.010,0.012] [0.013,0.014] [0.555,0.589] [0.043,0.044] [12,13] [0.031,0.046] [0.012,0.013] [0.012,0.013] [0.494,0.578] [0.041,0.043] [12,15]

20 0.0510 0.0123 0.0125 0.4997 0.0423 16.1 0.0520 0.0136 0.0116 0.4297 0.0410 19.7
[0.049,0.052] [0.012,0.013] [0.012,0.013] [0.482,0.519] [0.041,0.043] [16,17] [0.049,0.054] [0.013,0.014] [0.011,0.012] [0.402,0.460] [0.040,0.042] [19,22]

50 0.0536 0.0140 0.0113 0.4134 0.0407 26.0 0.0556 0.0152 0.0104 0.3484 0.0394 34.4
[0.052,0.056] [0.013,0.015] [0.011,0.012] [0.389,0.437] [0.040,0.042] [24,28] [0.053,0.058] [0.015,0.016] [0.010,0.011] [0.312,0.378] [0.039,0.040] [30,38]

100 0.0563 0.0153 0.0099 0.3371 0.0392 38.8 0.0589 0.0168 0.0086 0.2635 0.0377 52.9
[0.053,0.059] [0.014,0.016] [0.009,0.011] [0.300,0.376] [0.038,0.040] [36,41] [0.056,0.062] [0.016,0.018] [0.007,0.010] [0.205,0.314] [0.036,0.039] [48,57]

200 0.0596 0.0171 0.0085 0.2662 0.0375 53.2 0.0626 0.0187 0.0070 0.1948 0.0359 71.8
[0.056,0.063] [0.016,0.018] [0.007,0.010] [0.214,0.314] [0.037,0.039] [49,57] [0.058,0.067] [0.018,0.020] [0.005,0.009] [0.129,0.247] [0.035,0.037] [65,78]

ξ = 0.25 ξ = 0.25

10 0.0595 0.0119 0.0132 0.4988 0.0428 125.6 0.0504 0.0136 0.0117 0.4379 0.0411 152.6
[0.058,0.062] [0.011,0.013] [0.013,0.014] [0.477,0.514] [0.042,0.043] [121,130] [0.047,0.054] [0.013,0.014] [0.011,0.012] [0.400,0.465] [0.040,0.042] [145,160]

20 0.0567 0.0134 0.0119 0.4318 0.0412 138.3 0.0536 0.0149 0.0106 0.3677 0.0397 163.7
[0.055,0.058] [0.013,0.014] [0.011,0.012] [0.409,0.447] [0.040,0.042] [132,143] [0.051,0.057] [0.014,0.016] [0.010,0.011] [0.335,0.394] [0.039,0.040] [153,172]

50 0.0574 0.0155 0.0099 0.3316 0.0391 154.0 0.0582 0.0170 0.0085 0.2622 0.0376 190.1
[0.055,0.059] [0.015,0.016] [0.009,0.011] [0.300,0.357] [0.038,0.040] [146,163] [0.055,0.061] [0.016,0.018] [0.007,0.009] [0.217,0.301] [0.037,0.039] [177,204]

100 0.0601 0.0171 0.0083 0.2598 0.0374 151.1 0.0624 0.0186 0.0069 0.1932 0.0359 186.1
[0.057,0.063] [0.016,0.018] [0.007,0.010] [0.222,0.303] [0.037,0.038] [142,163] [0.059,0.066] [0.018,0.019] [0.006,0.008] [0.151,0.240] [0.035,0.037] [172,202]

200 0.0626 0.0186 0.0069 0.2027 0.0361 133.7 0.0649 0.0199 0.0056 0.1512 0.0348 162.3
[0.058,0.066] [0.018,0.020] [0.005,0.009] [0.156,0.251] [0.035,0.037] [127,141] [0.060,0.069] [0.019,0.021] [0.004,0.007] [0.095,0.205] [0.034,0.036] [151,176]

Notes: Means and 95% con�dence intervals. Unobserved heterogeneity is continuously distributed in the DGP, with underlying dimension

equal to 2. The number of groups K is estimated in every replication, with di�erent choices for ξ in (12). 500 simulations. Results for

DGP3.
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Table S6: Firm and worker e�ects, two-dimensional �rm heterogeneity, small V ar(ψ), di�erent choices of ξ

two-step estimator two-step estimator, bias corrected

Firm size Var (ηi) Var
(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) K̂ Var (ηi) Var

(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) K̂

true values true values

- 0.0758 0.0017 0.0057 0.4963 0.0341 0.0758 0.0017 0.0057 0.4963 0.0341

ξ = 1.0 ξ = 1.0

10 0.0759 0.0008 0.0056 0.7010 0.0350 4.0 0.0760 0.0009 0.0056 0.6487 0.0349 4.0
[0.074,0.078] [0.001,0.001] [0.005,0.006] [0.691,0.709] [0.034,0.036] [4,4] [0.074,0.078] [0.001,0.001] [0.005,0.006] [0.636,0.660] [0.034,0.036] [4,4]

20 0.0754 0.0009 0.0059 0.6927 0.0349 5.5 0.0749 0.0011 0.0061 0.6846 0.0348 6.9
[0.073,0.077] [0.001,0.001] [0.005,0.006] [0.680,0.707] [0.034,0.036] [5,6] [0.073,0.077] [0.001,0.001] [0.006,0.007] [0.666,0.705] [0.034,0.035] [6,8]

50 0.0750 0.0011 0.0061 0.6877 0.0348 8.0 0.0747 0.0011 0.0062 0.6841 0.0347 10.0
[0.073,0.078] [0.001,0.001] [0.006,0.007] [0.674,0.701] [0.034,0.035] [8,8] [0.072,0.078] [0.001,0.001] [0.006,0.007] [0.669,0.701] [0.034,0.035] [10,10]

100 0.0752 0.0011 0.0062 0.6848 0.0347 11.1 0.0750 0.0011 0.0063 0.6816 0.0347 14.2
[0.072,0.079] [0.001,0.001] [0.006,0.007] [0.668,0.701] [0.034,0.035] [11,12] [0.072,0.078] [0.001,0.001] [0.006,0.007] [0.660,0.702] [0.034,0.035] [14,16]

200 0.0746 0.0011 0.0062 0.6765 0.0347 15.2 0.0745 0.0012 0.0062 0.6720 0.0347 19.3
[0.069,0.079] [0.001,0.001] [0.006,0.007] [0.654,0.697] [0.034,0.035] [14,16] [0.069,0.079] [0.001,0.001] [0.006,0.007] [0.647,0.694] [0.034,0.035] [17,21]

ξ = 0.5 ξ = 0.5

10 0.0748 0.0010 0.0062 0.7333 0.0349 12.2 0.0731 0.0011 0.0062 0.6905 0.0348 12.7
[0.073,0.076] [0.001,0.001] [0.006,0.007] [0.720,0.746] [0.034,0.036] [12,13] [0.070,0.076] [0.001,0.001] [0.006,0.007] [0.664,0.715] [0.034,0.035] [12,14]

20 0.0747 0.0010 0.0062 0.7076 0.0348 15.1 0.0746 0.0011 0.0063 0.6814 0.0347 18.0
[0.073,0.076] [0.001,0.001] [0.006,0.007] [0.696,0.717] [0.034,0.035] [15,16] [0.073,0.076] [0.001,0.001] [0.006,0.007] [0.664,0.695] [0.034,0.035] [18,20]

50 0.0744 0.0011 0.0062 0.6858 0.0347 21.6 0.0744 0.0012 0.0062 0.6717 0.0347 27.0
[0.072,0.077] [0.001,0.001] [0.006,0.007] [0.671,0.700] [0.034,0.035] [20,23] [0.072,0.077] [0.001,0.001] [0.006,0.007] [0.643,0.691] [0.034,0.035] [24,30]

100 0.0743 0.0011 0.0062 0.6709 0.0347 28.2 0.0743 0.0012 0.0062 0.6584 0.0347 35.7
[0.071,0.078] [0.001,0.001] [0.006,0.007] [0.649,0.690] [0.034,0.035] [26,31] [0.071,0.078] [0.001,0.001] [0.006,0.007] [0.626,0.684] [0.034,0.035] [32,40]

200 0.0751 0.0012 0.0062 0.6542 0.0347 35.0 0.0751 0.0012 0.0062 0.6409 0.0346 44.0
[0.071,0.079] [0.001,0.001] [0.006,0.007] [0.631,0.683] [0.034,0.035] [31,39] [0.071,0.080] [0.001,0.001] [0.006,0.007] [0.603,0.681] [0.034,0.035] [38,50]

ξ = 0.25 ξ = 0.25

10 0.0796 0.0012 0.0062 0.6355 0.0346 124.3 0.0699 0.0013 0.0061 0.6190 0.0345 148.7
[0.078,0.082] [0.001,0.001] [0.006,0.007] [0.605,0.657] [0.034,0.035] [121,127] [0.066,0.073] [0.001,0.002] [0.006,0.007] [0.566,0.658] [0.034,0.035] [142,154]

20 0.0758 0.0013 0.0061 0.6242 0.0346 131.0 0.0721 0.0014 0.0060 0.6086 0.0345 150.3
[0.074,0.078] [0.001,0.001] [0.006,0.007] [0.602,0.643] [0.034,0.035] [125,137] [0.070,0.074] [0.001,0.002] [0.006,0.006] [0.567,0.647] [0.034,0.035] [140,160]

50 0.0752 0.0014 0.0061 0.6020 0.0345 134.7 0.0749 0.0014 0.0060 0.5800 0.0344 159.0
[0.072,0.077] [0.001,0.002] [0.006,0.007] [0.572,0.624] [0.034,0.035] [127,142] [0.072,0.077] [0.001,0.002] [0.006,0.006] [0.529,0.622] [0.034,0.035] [146,171]

100 0.0752 0.0014 0.0061 0.5879 0.0345 125.1 0.0752 0.0015 0.0060 0.5651 0.0344 146.7
[0.072,0.078] [0.001,0.002] [0.006,0.006] [0.562,0.614] [0.034,0.035] [116,132] [0.072,0.078] [0.001,0.002] [0.006,0.006] [0.516,0.611] [0.034,0.035] [132,158]

200 0.0754 0.0014 0.0060 0.5781 0.0344 105.4 0.0755 0.0015 0.0060 0.5569 0.0344 121.7
[0.071,0.079] [0.001,0.002] [0.005,0.007] [0.545,0.606] [0.034,0.035] [99,113] [0.071,0.079] [0.001,0.002] [0.005,0.006] [0.498,0.604] [0.034,0.035] [107,134]

Notes: Means and 95% con�dence intervals. Unobserved heterogeneity is continuously distributed in the DGP, with underlying dimension

equal to 2. The number of groups K is estimated in every replication, with di�erent choices for ξ in (12). 500 simulations. Results for

DGP4.
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Table S7: Firm and worker e�ects, two-dimensional �rm heterogeneity, large V ar(ψ), di�erent choices of ξ, iterated estimators

iterated estimator iterated estimator, bias corrected

Firm size Var (ηi) Var
(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) K̂ Var (ηi) Var

(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) K̂

true values true values

- 0.0660 0.0204 0.0050 0.1373 0.0341 0.0660 0.0204 0.0050 0.1373 0.0341

ξ = 1.0 ξ = 1.0

10 0.0661 0.0045 0.0050 0.2847 0.0501 4.0 0.0592 0.0079 0.0084 0.4058 0.0468 4.2
[0.063,0.073] [0.002,0.006] [0.001,0.006] [0.115,0.329] [0.049,0.053] [4,4] [0.055,0.073] [0.003,0.010] [0.001,0.010] [0.085,0.482] [0.045,0.052] [4,5]

20 0.0632 0.0080 0.0066 0.2928 0.0466 5.7 0.0592 0.0117 0.0085 0.3192 0.0429 7.4
[0.061,0.065] [0.007,0.009] [0.006,0.007] [0.265,0.319] [0.046,0.048] [5,6] [0.055,0.063] [0.010,0.014] [0.007,0.011] [0.257,0.421] [0.040,0.045] [6,8]

50 0.0608 0.0127 0.0077 0.2785 0.0420 8.9 0.0589 0.0163 0.0086 0.2702 0.0383 11.8
[0.058,0.064] [0.012,0.013] [0.007,0.009] [0.251,0.312] [0.041,0.043] [8,9] [0.056,0.062] [0.015,0.017] [0.007,0.010] [0.222,0.316] [0.037,0.040] [10,12]

100 0.0617 0.0152 0.0074 0.2424 0.0392 13.3 0.0624 0.0179 0.0071 0.2044 0.0366 17.9
[0.059,0.065] [0.014,0.016] [0.006,0.009] [0.207,0.286] [0.038,0.040] [13,14] [0.059,0.065] [0.017,0.019] [0.006,0.009] [0.158,0.256] [0.036,0.038] [17,20]

200 0.0628 0.0174 0.0064 0.1932 0.0371 21.4 0.0642 0.0196 0.0057 0.1552 0.0350 30.1
[0.059,0.066] [0.017,0.018] [0.004,0.008] [0.139,0.242] [0.036,0.038] [20,23] [0.061,0.068] [0.018,0.021] [0.004,0.008] [0.098,0.210] [0.034,0.036] [28,33]

ξ = 0.5 ξ = 0.5

10 0.0549 0.0093 0.0106 0.4708 0.0452 12.8 0.0473 0.0141 0.0144 0.5393 0.0404 14.0
[0.053,0.057] [0.009,0.010] [0.010,0.011] [0.451,0.489] [0.044,0.046] [12,13] [0.038,0.053] [0.012,0.017] [0.012,0.018] [0.433,0.684] [0.037,0.042] [12,15]

20 0.0555 0.0117 0.0102 0.4027 0.0429 16.1 0.0560 0.0141 0.0100 0.3396 0.0405 19.7
[0.054,0.057] [0.011,0.012] [0.010,0.011] [0.385,0.424] [0.042,0.044] [16,17] [0.054,0.058] [0.013,0.015] [0.009,0.011] [0.311,0.375] [0.039,0.041] [19,22]

50 0.0579 0.0148 0.0092 0.3135 0.0399 26.0 0.0599 0.0170 0.0082 0.2436 0.0376 34.4
[0.055,0.060] [0.014,0.015] [0.008,0.010] [0.288,0.349] [0.039,0.041] [24,28] [0.057,0.062] [0.016,0.018] [0.007,0.009] [0.210,0.287] [0.037,0.039] [30,38]

100 0.0605 0.0167 0.0077 0.2437 0.0378 38.8 0.0630 0.0188 0.0065 0.1780 0.0358 52.9
[0.057,0.063] [0.016,0.018] [0.006,0.009] [0.206,0.281] [0.037,0.039] [36,41] [0.060,0.066] [0.018,0.020] [0.005,0.008] [0.135,0.221] [0.035,0.037] [48,57]

200 0.0631 0.0185 0.0067 0.1976 0.0362 53.2 0.0653 0.0200 0.0056 0.1505 0.0346 71.8
[0.059,0.067] [0.018,0.019] [0.005,0.008] [0.147,0.248] [0.036,0.037] [49,57] [0.061,0.069] [0.019,0.021] [0.004,0.008] [0.097,0.209] [0.034,0.035] [65,78]

ξ = 0.25 ξ = 0.25

10 0.0653 0.0118 0.0129 0.4641 0.0428 125.6 0.0391 0.0141 0.0121 0.4642 0.0405 152.6
[0.063,0.068] [0.011,0.012] [0.012,0.013] [0.443,0.481] [0.042,0.044] [121,130] [0.034,0.045] [0.013,0.015] [0.011,0.013] [0.432,0.494] [0.040,0.041] [145,160]

20 0.0574 0.0137 0.0114 0.4078 0.0409 138.3 0.0496 0.0155 0.0100 0.3537 0.0391 163.7
[0.056,0.060] [0.013,0.014] [0.011,0.012] [0.391,0.425] [0.040,0.042] [132,143] [0.047,0.053] [0.015,0.016] [0.009,0.011] [0.326,0.380] [0.038,0.040] [153,172]

50 0.0583 0.0162 0.0090 0.2939 0.0384 154.0 0.0599 0.0180 0.0073 0.2117 0.0365 190.1
[0.056,0.060] [0.016,0.017] [0.008,0.010] [0.262,0.321] [0.037,0.039] [146,163] [0.057,0.063] [0.017,0.019] [0.006,0.008] [0.174,0.245] [0.036,0.037] [177,204]

100 0.0618 0.0179 0.0074 0.2222 0.0366 151.1 0.0646 0.0195 0.0058 0.1549 0.0350 186.1
[0.059,0.065] [0.017,0.019] [0.006,0.009] [0.186,0.270] [0.036,0.037] [142,163] [0.062,0.068] [0.019,0.020] [0.004,0.008] [0.115,0.205] [0.034,0.036] [172,202]

200 0.0642 0.0193 0.0061 0.1734 0.0354 133.7 0.0663 0.0205 0.0050 0.1306 0.0342 162.3
[0.060,0.068] [0.018,0.020] [0.004,0.008] [0.127,0.225] [0.035,0.036] [127,141] [0.062,0.070] [0.020,0.022] [0.003,0.007] [0.082,0.186] [0.033,0.035] [151,176]

Notes: Means and 95% con�dence intervals. Unobserved heterogeneity is continuously distributed in the DGP, with underlying dimension

equal to 2. The number of groups K is estimated in every replication, with di�erent choices for ξ in (12). 500 simulations. Results for

DGP3.

23



Table S8: Firm and worker e�ects, two-dimensional �rm heterogeneity, small V ar(ψ), di�erent choices of ξ, iterated estimators

iterated estimator iterated estimator, bias corrected

Firm size Var (ηi) Var
(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) K̂ Var (ηi) Var

(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) K̂

true values true values

- 0.0758 0.0017 0.0057 0.4963 0.0341 0.0758 0.0017 0.0057 0.4963 0.0341

ξ = 1.0 ξ = 1.0

10 0.0866 0.0000 0.0003 0.1290 0.0358 4.0 0.0867 0.0000 0.0002 0.1169 0.0358 4.0
[0.085,0.088] [0.000,0.000] [0.000,0.000] [0.108,0.150] [0.035,0.036] [4,4] [0.085,0.089] [-0.000,0.000] [0.000,0.000] [0.075,0.153] [0.035,0.036] [4,4]

20 0.0845 0.0002 0.0013 0.2921 0.0356 5.5 0.0823 0.0004 0.0024 0.4556 0.0354 6.9
[0.081,0.087] [0.000,0.000] [0.000,0.002] [0.149,0.420] [0.035,0.036] [5,6] [0.078,0.087] [0.000,0.001] [0.000,0.005] [0.174,0.709] [0.035,0.036] [6,8]

50 0.0791 0.0007 0.0041 0.5444 0.0352 8.0 0.0761 0.0010 0.0056 0.6584 0.0349 10.0
[0.077,0.082] [0.001,0.001] [0.004,0.005] [0.516,0.573] [0.035,0.036] [8,8] [0.073,0.079] [0.001,0.001] [0.005,0.006] [0.609,0.709] [0.034,0.036] [10,10]

100 0.0775 0.0009 0.0050 0.6035 0.0349 11.1 0.0756 0.0011 0.0060 0.6600 0.0347 14.2
[0.074,0.081] [0.001,0.001] [0.004,0.006] [0.583,0.627] [0.034,0.036] [11,12] [0.072,0.079] [0.001,0.001] [0.005,0.007] [0.626,0.694] [0.034,0.035] [14,16]

200 0.0759 0.0011 0.0055 0.6174 0.0348 15.2 0.0750 0.0012 0.0060 0.6345 0.0347 19.3
[0.071,0.080] [0.001,0.001] [0.005,0.006] [0.589,0.648] [0.034,0.035] [14,16] [0.070,0.079] [0.001,0.001] [0.005,0.007] [0.593,0.674] [0.034,0.035] [17,21]

ξ = 0.5 ξ = 0.5

10 0.0799 0.0006 0.0037 0.5408 0.0353 12.2 0.0777 0.0008 0.0047 0.6157 0.0351 12.7
[0.078,0.082] [0.000,0.001] [0.003,0.004] [0.520,0.559] [0.035,0.036] [12,13] [0.075,0.080] [0.001,0.001] [0.004,0.006] [0.536,0.751] [0.034,0.036] [12,14]

20 0.0780 0.0008 0.0046 0.5940 0.0351 15.1 0.0760 0.0010 0.0056 0.6482 0.0349 18.0
[0.076,0.080] [0.001,0.001] [0.004,0.005] [0.578,0.613] [0.034,0.036] [15,16] [0.074,0.078] [0.001,0.001] [0.005,0.006] [0.619,0.676] [0.034,0.035] [18,20]

50 0.0760 0.0010 0.0054 0.6299 0.0349 21.6 0.0748 0.0011 0.0060 0.6568 0.0347 27.0
[0.073,0.079] [0.001,0.001] [0.005,0.006] [0.613,0.650] [0.034,0.036] [20,23] [0.072,0.077] [0.001,0.001] [0.005,0.007] [0.630,0.685] [0.034,0.035] [24,30]

100 0.0753 0.0011 0.0057 0.6364 0.0348 28.2 0.0746 0.0012 0.0061 0.6457 0.0347 35.7
[0.072,0.079] [0.001,0.001] [0.005,0.006] [0.612,0.660] [0.034,0.035] [26,31] [0.071,0.078] [0.001,0.001] [0.006,0.007] [0.607,0.674] [0.034,0.035] [32,40]

200 0.0756 0.0012 0.0059 0.6231 0.0347 35.0 0.0753 0.0013 0.0061 0.6137 0.0346 44.0
[0.071,0.080] [0.001,0.001] [0.005,0.007] [0.594,0.656] [0.034,0.035] [31,39] [0.071,0.080] [0.001,0.002] [0.006,0.007] [0.569,0.657] [0.034,0.035] [38,50]

ξ = 0.25 ξ = 0.25

10 0.0781 0.0011 0.0059 0.6217 0.0347 124.3 0.0650 0.0014 0.0063 0.6481 0.0345 148.7
[0.076,0.080] [0.001,0.001] [0.005,0.006] [0.602,0.642] [0.034,0.035] [121,127] [0.057,0.072] [0.001,0.002] [0.006,0.007] [0.602,0.692] [0.034,0.035] [142,154]

20 0.0755 0.0012 0.0059 0.6122 0.0346 131.0 0.0731 0.0014 0.0060 0.5983 0.0345 150.3
[0.074,0.077] [0.001,0.001] [0.006,0.006] [0.586,0.635] [0.034,0.035] [125,137] [0.071,0.075] [0.001,0.002] [0.006,0.006] [0.556,0.641] [0.034,0.035] [140,160]

50 0.0754 0.0013 0.0060 0.5928 0.0345 134.7 0.0752 0.0014 0.0059 0.5713 0.0344 159.0
[0.073,0.078] [0.001,0.002] [0.005,0.006] [0.568,0.619] [0.034,0.035] [127,142] [0.073,0.078] [0.001,0.002] [0.005,0.007] [0.529,0.619] [0.034,0.035] [146,171]

100 0.0754 0.0014 0.0060 0.5806 0.0345 125.1 0.0753 0.0015 0.0060 0.5597 0.0344 146.7
[0.072,0.078] [0.001,0.002] [0.006,0.006] [0.547,0.609] [0.034,0.035] [116,132] [0.072,0.078] [0.001,0.002] [0.006,0.006] [0.503,0.609] [0.034,0.035] [132,158]

200 0.0755 0.0014 0.0060 0.5704 0.0344 105.4 0.0756 0.0015 0.0059 0.5499 0.0343 121.7
[0.071,0.080] [0.001,0.002] [0.005,0.006] [0.532,0.602] [0.034,0.035] [99,113] [0.071,0.080] [0.001,0.002] [0.005,0.007] [0.490,0.604] [0.034,0.035] [107,134]

Notes: Means and 95% con�dence intervals. Unobserved heterogeneity is continuously distributed in the DGP, with underlying dimension

equal to 2. The number of groups K is estimated in every replication, with di�erent choices for ξ in (12). 500 simulations. Results for

DGP4.
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Table S9: Firm and worker e�ects, discrete �rm heterogeneity (K� = 10)

Firm size Var (ηi) Var
(
ψj
)

Cov
(
ηi, ψj

)
Corr

(
ηi, ψj

)
Var (εi1) % missclass.

true values

- 0.0758 0.0017 0.0057 0.4963 0.0341

two-step with K = K� = 10

10 0.0758 0.0013 0.0057 0.5770 0.0346 69.0%
[0.074,0.077] [0.001,0.001] [0.005,0.006] [0.566,0.586] [0.034,0.035] [0.678,0.705]

20 0.0758 0.0015 0.0057 0.5355 0.0344 58.5%
[0.074,0.077] [0.001,0.002] [0.005,0.006] [0.525,0.546] [0.034,0.035] [0.560,0.614]

50 0.0759 0.0016 0.0056 0.5083 0.0342 39.3%
[0.075,0.077] [0.001,0.002] [0.005,0.006] [0.499,0.517] [0.034,0.035] [0.338,0.476]

100 0.0759 0.0017 0.0056 0.4981 0.0342 22.6%
[0.075,0.077] [0.001,0.002] [0.005,0.006] [0.489,0.507] [0.033,0.035] [0.171,0.359]

200 0.0759 0.0017 0.0056 0.4945 0.0341 7.5%
[0.074,0.077] [0.002,0.002] [0.005,0.006] [0.484,0.504] [0.033,0.035] [0.050,0.115]

bias corrected with estimated K

10 0.0778 0.0013 0.0047 0.4527 0.0346
[0.076,0.079] [0.001,0.002] [0.004,0.005] [0.441,0.465] [0.034,0.035]

20 0.0762 0.0016 0.0055 0.4917 0.0342
[0.075,0.078] [0.001,0.002] [0.005,0.006] [0.478,0.502] [0.034,0.035]

50 0.0760 0.0017 0.0056 0.4906 0.0342
[0.075,0.077] [0.001,0.002] [0.005,0.006] [0.478,0.503] [0.033,0.035]

100 0.0759 0.0017 0.0057 0.4909 0.0341
[0.074,0.077] [0.002,0.002] [0.005,0.006] [0.480,0.501] [0.033,0.035]

200 0.0757 0.0018 0.0057 0.4930 0.0341
[0.074,0.077] [0.002,0.002] [0.005,0.006] [0.483,0.503] [0.033,0.035]

Notes: Means and 95% con�dence intervals. Unobserved heterogeneity is discretely distributed in the

DGP, with K� = 10 groups. In the top panel the true number of groups is used. The last column

shows frequencies of misclassi�cation. In the bottom panel the number of groups is estimated in every

replication. 500 simulations. Results for DGP5.
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Figure S1: Parameter estimates across simulations, �xed K

ρ̂ (utility), K=8 ĉ (cost), K=8 â (stayer pr., intercept), K=8 b̂ (stayer pr., slope), K=8
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Notes: See note to Figure 3. K is kept �xed. 500 replications.
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Figure S2: Parameter estimates across simulations, �xed-e�ects and bias-corrected �xed-e�ects

estimators
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Notes: Solid is �xed-e�ects, dotted is bias-corrected �xed-e�ects. The vertical line indicates the true

parameter value. N = 1889, T = 16. Unobserved heterogeneity is continuously distributed in the

DGP. 500 replications.
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Figure S3: Parameter estimates across simulations, random-e�ects estimators
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Notes: Solid is K = 2, dotted is K = 4, dashed is K = 8. The vertical line indicates the true

parameter value. N = 1889, T = 16. Unobserved heterogeneity is continuously distributed in the

DGP. 500 replications.
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Figure S4: Dimension of �rm heterogeneity

A. Estimation of K B. K̂ against �rm size
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Notes: Source Swedish administrative data. Left graph shows the logarithm of Q̂(K) as a function

of K, for di�erent average �rm sizes T . Horizontal lines show the corresponding value of ln(V̂h/T ).

The right graph shows the relationship between the log of K̂ and the log of the average �rm size in the

sample, across samples.
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Figure S5: Estimates of �rm and worker heterogeneity across simulations, two-dimensional �rm

heterogeneity, large variance of �rm e�ects
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Notes: Means (solid line) and 95% con�dence intervals. � indicates the two-step bias-corrected grouped

�xed-e�ects estimator and N indicates the iterated bias-corrected grouped �xed-e�ects estimator. The

di�erent columns represent di�erent values of ξ (that is, di�erent selection rules for the number of

groups). Unobserved heterogeneity is continuously distributed in the DGP. The number of groups K

is estimated in every replication. 500 replications. Results for DGP3.
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Figure S6: Two-dimensional �rm heterogeneity, small variance of �rm e�ects
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Notes: See the notes to Figure S5. Results for DGP4.
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Figure S7: Estimates of �rm and worker heterogeneity across simulations, two-dimensional �rm

heterogeneity, large variance of �rm e�ects, di�erent number of job movers per �rm
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Notes: Means (solid line) and 95% con�dence intervals. � indicates the two-step bias-corrected grouped

�xed-e�ects estimator, N the iterated bias-corrected grouped �xed-e�ects estimator, # the �xed-e�ects

estimator, and  the bias-corrected �xed-e�ects estimator. The di�erent columns represent di�erent

values of ξ (that is, di�erent selection rules for the number of groups). Unobserved heterogeneity is

continuously distributed in the DGP. The number of groups K is estimated in every replication. 500

replications. Results for DGP3. 32



Figure S8: Estimates of �rm and worker heterogeneity across simulations, two-dimensional �rm

heterogeneity, small variance of �rm e�ects, di�erent number of job movers per �rm
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S3 Additional simulation exercises

S3.1 Time-varying unobserved heterogeneity

Let Yit = αi0(t) + Uit. We focus on the mean squared error (MSE):

1

N

N∑
i=1

T∑
t=1

(
α̂(k̂i, t)� αi0(t)

)2
.

We use the following speci�cation: Uit are i.i.d standard normal, and:

αi0(t) = ξi1 + ξi2

��1
(

t
T+1

)
��1

(
T
T+1

) ,
where � is the standard normal cdf, ξi1 is standard normal, and ln ξi2 � N (.2, .04) independent of ξi1.

We vary the sample size from T = 5 to T = 40, take N = T 2, and set K = T in every sample.

Figure S9 shows the results for the grouped �xed-e�ects estimator where the kmeans algorithm is

applied to the vectors of Yit’s in the �rst step. The graph shows means and pointwise 95% con�dence

bands across 100 replications. The results align closely with Theorem 3. Indeed, according to (16)

the rate of convergence consists of three terms: a term Op(K/N) = Op(1/T ) re
ecting the estimation

of the KT group-speci�c parameters, a term Op(B�(K)/T ) re
ecting the approximation bias, which

in this two-dimensional case will be Op(1/K) = Op(1/T ), and a term Op((lnK)/T ) = Op((lnT )/T )

re
ecting the noise in estimating group membership for every individual. In this DGP the latter term

is thus the dominant one. In Figure S9 the dashed line shows (ĉ lnT )/T as a function of T , where ĉ

is �tted to the solid line. We see that the MSE of grouped �xed-e�ects and the theoretical �t align

closely. This suggests that the upper bound on the rate in (16) is very informative for this DGP.

S3.2 “Double grouped fixed-effects” in a probit model

An alternative estimator, in linear or index models, is \double" grouped �xed-e�ects. As an example,

consider the static probit model:

Yit = 1fX 0itθ0 + αi0 + Uit � 0g,

where Uit are i.i.d standard normal, and Xit = µi0 + Vit, Vit i.i.d, independent of µi0, αi0, Uis.

Consider the moments hi = (Y i, X
0
i)
0. In the �rst step, we discretize each component of hi sepa-

rately. In the second step, we estimate the probit model by including all group indicators additively.
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Figure S10 shows the results in two cases: one-dimensional (panel A) and two-dimensional heterogene-

ity (panel B). The results compare two-step grouped �xed-e�ects with \double" grouped �xed-e�ects

estimators. For the sake of illustration, we set the number of groups K = b
p
T c in every sample. This

leads to a large approximation bias in the two-dimensional case, as shown by panel B. We see that

double grouped �xed-e�ects performs signi�cantly better than grouped �xed-e�ects in this environ-

ment.

Figure S9: Time-varying unobserved heterogeneity
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Notes: Mean squared errors. Solid and dashed lines are the means and 95% con�dence bands of

grouped �xed-e�ects across 100 replications. The dashed line is the �t based on a (lnT )/T rate.

N = T 2,K = T .
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Figure S10: Two-step grouped �xed-e�ects and double grouped �xed-e�ects in a static probit

model

A. αi0 = µi0 B. Corr(αi0, µi0) = .5
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Notes: Averages over simulations. The dashed horizontal line is the true value. The curve further

away from it is two-step grouped �xed-e�ects, the curve closer to it is double grouped �xed-e�ects.

N = 100, 100 replications. K = b
p
T c.
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