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Abstract

This paper builds on the Empirical Monte Carlo simulation approach developed by
Huber et al. (2013) to study the estimation of Timing-of-Events (ToE) models. We
exploit rich Swedish data of unemployed job-seekers with information on participa-
tion in a training program to simulate placebo treatment durations. We first use
these simulations to examine which covariates are key confounders to be included
in selection models. The joint inclusion of specific short-term employment history
indicators (notably, the share of time spent in employment), together with baseline
socio-economic characteristics, regional and inflow timing information, is important
to deal with selection bias. Next, we omit subsets of explanatory variables and esti-
mate ToE models with discrete distributions for the ensuing systematic unobserved
heterogeneity. In many cases the ToE approach provides accurate effect estimates,
especially if time-varying variation in the unemployment rate of the local labor mar-
ket is taken into account. However, assuming too many or too few support points
for unobserved heterogeneity may lead to large biases. Information criteria, in par-
ticular those penalizing parameter abundance, are useful to select the number of
support points.
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1 Introduction

The Timing-of-Events (ToE) approach focuses on the effect of a treatment that may
be given during a spell in a state of interest on the rate of leaving that state, when
systematic unobserved confounders cannot be ruled out. Abbring and van den Berg
(2003) specify a bivariate Mixed Proportional Hazard (MPH) model and establish
conditions under which all parts of the model, including the treatment effect, are
non-parametrically identified. The fact that this approach allows for unobserved
confounders is one reason for which it has been applied in many settings.!

Several factors must be taken into account when using these models for empir-
ical inference. In particular, in the literature, the unknown bivariate unobserved
heterogeneity distribution is often approximated by way of a discrete distribution
(Lindsay, 1983; Heckman and Singer, 1984), and in empirical settings this can be
implemented in several ways. One is to pre-specify a (relatively low) number of
support points and increase this number until the numerical estimation routine in-
dicates that support points converge or their associated probabilities vanish, or until
computational problems arise. Alternatively, one could use an information criterion
to select the number of support points. Moreover, sample size may be a relevant
factor, since estimation of (non-linear) MPH models with many parameters may
be problematic with small samples. Time-varying covariates may make results less
dependent on functional-form assumptions (van den Berg, 2001).

In this paper, we use a new simulation design based on actual data to evaluate
these and related specification issues for the implementation of the ToE model in
practice. To this end, we adapt the Empirical Monte Carlo design (EMC) proposed
by Huber et al. (2013) and developed to compare different methods for estimating

treatment effects under unconfoundedness.? The key idea is to use actual data on

LAn early example is Abbring et al. (2005) who study the effect of benefit sanctions on the re-
employment rate, with unobserved factors such as personal motivation potentially affecting both
the time to a benefit sanction (treatment) and time in unemployment (outcome). Recent examples
include Crépon et al. (2018), Richardson and van den Berg (2013), Caliendo et al. (2016), Busk
(2016), Lindeboom et al. (2016), Holm et al. (2017), Bergemann et al. (2017) on labor market
policies; van Ours and Williams (2009, 2012), McVicar et al. (2018) on cannabis use; van Ours
et al. (2013), van den Berg and Gupta (2015), Palali and van Ours (2017) on health settings;
Bijwaard et al. (2014) on migration; Jahn and Rosholm (2013) on temporary work; and Baert
et al. (2013) on overeducation.

2Other studies using the EMC simulation design include Huber et al. (2016) on the performance of
parametric and semi-parametric estimators used in mediation analysis: Frolich et al. (2017) study
the performance of a broad set of semi- and non-parametric estimators for evaluation under con-
ditional independence; Lechner and Strittmatter (2017) compare procedures to deal with common
support problems; Bodory et al. (2016) consider inference methods for matching and weighting
methods.

IFAU — Empirical Monte Carlo Evidence on Estimation of Timing-of-Events Models 3



treated units to simulate placebo treatments and then base the simulations on these
placebo treatments. This ensures that the true effect is zero, that the selection
model is known, and that the unconfoundedness assumption holds by construction.
The fact that real data is used instead of a data generating process chosen may
make the simulations more relevant for real applications.

Previous EMC implementations have examined estimators based on conditional
independence assumptions. The present paper proposes a variant of the original
EMC approach, which enables us to study the estimation of the ToE model. In
our simulation design, we take advantage of rich administrative data on Swedish
job-seekers, with precise information on participation in a training program (the
treatment). We use this detailed information on actual treated and non-treated
units to estimate a descriptive duration model for the duration until treatment under
the assumption that all systematic determinants of the treatment assignment are
captured by the full set of observed covariates. Next, we simulate placebo treatment
dates for each non-treated unit using the estimated model. By construction, the
effect of these placebo treatments is zero and the treatment assignment process is
known. With the simulated data we then estimate various ToE models, but leave
out subsets of the variables used to simulate the placebo treatment dates. Since
the excluded variables were used to generate the placebo treatments, and since in
general they also affect the outcome duration (via the re-employment rate), we
obtain a bivariate duration model with correlated unobserved determinants, i.e. the
ToE setting. This new simulation design allows us to use real-life data to examine
a number of model specification issues.

A first long-lasting question related to the specification of ToE models is how to
best specify the distribution of unobserved heterogeneity. Initial simulation evidence
for MPH models was provided by Heckman and Singer (1984), Ridder (1987), and
Huh and Sickles (1994). More recently, Baker and Melino (2000) studied discrete
duration models with unobserved heterogeneity and duration dependence. One of
their conclusions is that model specifications that allow for too many support points
over-correct for unobserved heterogeneity (through an overdispersed unobserved het-
erogeneity distribution), which leads to bias in all model components. Gaure et al.
(2007) use simulated data to examine a bivariate duration model similar to the
one analyzed in this paper. They find that a discrete support-points approach is
generally reliable if the sample is large and there are time-varying covariates. Pre-
specifying a low number of support points for unobserved heterogeneity, or devia-

tions from the model assumptions, may cause substantial bias.
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Our study adds to this evidence by using a simulation design based on real data,
rather than on artificial simulations. This leads to several conclusions. If we leave
out a large number of variables from the model without controlling for unobserved
heterogeneity, the estimated effect of the placebo treatment is far from the true zero
effect, i.e. we generate substantial bias. However, two support points are already
able to eliminate a large share of the bias. We also find a risk of over-correcting
for unobserved heterogeneity. With too many support points, the average bias is
more than twice as large as with a few support points, and the variance increases
in the number of support points. The over-correction problem occurs because the
estimated unobserved heterogeneity distribution is overdispersed, and to fit the data,
the model compensates by generating biases in the treatment effect and duration
dependence.

Our simulation results further show that information criteria are useful for se-
lecting the number of support points. In particular, the Akaike information criterion
(AIC), Bayesian information criterion (BIC), and Hannan-Quinn information crite-
rion (HQIC) all perform well. They protect against over-correction by penalizing
parameter abundance. They also guard against under-correction by rejecting mod-
els without or with only a restricted correction for unobserved heterogeneity. On
the other hand, information criteria with little penalty for parameter abundance,
such as those solely based on the maximum likelihood (ML criterion), should be
avoided. This is because they tend to favor models with too many support points,
which leads to over-correction problems.

We mainly focus on the above-mentioned specification choices, but simulation
results also indicate that the ToE model is generally able to adjust for a significant
share of bias due to unobserved heterogeneity. Remarkably, this already holds in our
baseline model in which the only source of variation is across cross-sectional units
through time-fixed covariates. When we introduce more variation in the form of
time-varying covariates (notably, the unemployment rate in the local labor market
measured at monthly intervals), the bias is further reduced. The importance of
time-varying covariates echoes the results in Gaure et al. (2007).

The results on how to specify the distribution of unobserved heterogeneity are
not only relevant for ToE models but also for all kinds of selection models with
random effects, including univariate duration models, general competing risks mod-

els, non-parametric maximum likelihood estimators for non-duration outcomes and
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structural models with unobserved heterogeneity.?

As an additional contribution of the present paper, we address the relevance of
different sets of covariates when measuring causal effects of active labor market pro-
grams. This is important for evaluations based on conditional independence (CIA)
assumptions but is also important for identification strategies that allow for unob-
served heterogeneity, as it helps to characterize the unobserved heterogeneity that
needs to be taken into account. This contribution of our paper builds on a sizeable
literature. Part of this uses experimental data to examine the relevance of differ-
ent sets of covariates and the implications for the performance of non-experimental
methods (Dehejia and Wahba, 1999, 2002; Smith and Todd, 2005).# Another part
uses rich survey data to assess the importance of characteristics that are often not
recorded in administrative data.’

In a related study, Lechner and Wunsch (2013) use data from Germany to ex-
amine the relevance of different covariates. Their starting point is to incorporate
essentially all variables that are important for the selection process and have been
used in various CIA-based evaluations of active labor market programs. This gives
a flexible selection model that is used to simulate placebo treatments for the non-
treated. Then, to assess the relative importance of different variables, they leave out
alternative blocks of covariates and compare the size of the bias across specifications.
We use our Swedish data in a similar way. Initially, we construct variables analo-
gous to those in the German setting of Lechner and Wunsch (2013). This allows us
to examine to what extent the results in Lechner and Wunsch (2013) carry over to

other countries and programs. However, we also include additional covariates. First,

3Univariate duration models with unobserved heterogeneity have been used to study factors be-
hind duration dependence in aggregate re-employment rates. The latter may be explained by
individual-level duration dependence or dynamic sorting of unemployed with low exit probabilities
into long-term unemployment (e.g., Abbring et al., 2001). In labor economics, competing risks
models are used in studies of unemployment durations with competing exits to employment and
non-employment (e.g., Narendranathan and Stewart, 1993) as well as exits to different types of jobs
(Baert et al., 2013; Jahn and Rosholm, 2013). In health economics and epidemiology, two often
studied competing risks are disease relapse and death (e.g., Gooley et al., 1999). Non-parametric
maximum likelihood estimators have also been extensively used when modelling non-duration out-
comes, for instance in consumer choice analysis (Briesch et al., 2010) and univariate or multinomial
choice models with unobserved determinants (Ichimura and Thompson, 1998; Fox et al., 2012; Gau-
tier and Kitamura, 2013).

4Heckman et al. (1998), Heckman and Smith (1999) and Dolton and Smith (2010) find that it is im-
portant to control for regional information and labor market history in a flexible way. Mueser et al.
(2007) highlight the importance of socio-demographic characteristics and pre-treatment outcomes.

SFor example, Caliendo et al. (2017) study the relevance of measures of personality traits, attitudes,
expectations, social networks and intergenerational information. They find that such factors are
indeed relevant elements in selection models, but they tend to become unimportant if the available
information in the administrative data is sufficiently rich.
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since we model treatment durations and not binary treatment indicators, we also
include previous employment and unemployment durations in the set of covariates.
This is because previous durations capture aspects related to how long one stays
unemployed in the current spell in a more natural way than non-duration history
variables. Second, to capture more general skills, we use information on parental
income, which is a commonly used proxy for general unobserved skills. Third, time-
varying covariates, such as local business cycle conditions, may play a role, especially
for longer unemployment spells.

We find that short-term labor market history variables are particularly impor-
tant to adjust for. Moreover, adjusting for employment history is relatively more
important than adjusting for unemployment, earnings and welfare history (out-of-
labor-force). We also find that adding information about long-term labor market
history (last ten years) on top of controlling for short-term history (last two years) is
unimportant. When comparing different short-term employment characteristics, we
see that the short-term employment history (in particular, the employment rate) is
important to control for, whereas the short-term unemployment history is relatively
less important.

Taken together, the insights on how to best specify the ToE model under differ-
ent types of unobserved heterogeneity and the study of the relevance of the different
covariates included in the selection model offer practical guidance on how to choose
among alternative identification strategies. When rich enough information is avail-
able to the researcher, CIA-based methods can be deemed appropriate. On the other
hand, when less rich information is available, the ToE is able to approximate well
different types of (substantial and complex) unobserved heterogeneity, especially in
settings with time-varying covariates.

Finally, it is useful to discuss our approach in the light of a recent article by Ad-
vani et al. (2019) which points out some limitations of the original EMC approaches
that were developed to compare different estimation methods for evaluation un-
der unconfoundedness. Notably, it shows that rather modest misspecifications of a
model may lead to incorrect EMC inference on what constitutes the best estimation
approach for that model in a given empirical setting. Depending on the range of mis-
specification that is considered, this is potentially relevant for our study. Therefore,
throughout the paper, we maintain the assumption that the ToE model is correct.
In particular, we do not allow for deviations of the proportionality assumptions in
the MPH specifications. This is in line with the vast empirical literature based on

the ToE approach in the past decades (see, e.g., the references above). However, we
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acknowledge that it is an interesting topic for future research to examine this issue
more closely. The critique may also affect more specific assumptions of the empirical
models that we estimate. For instance, in the presence of heterogeneous effects, a
basic ToE model with a homogeneous effect is misspecified. Another finding in Ad-
vani et al. (2019) is that in modest sample sizes such as sizes below 8,000, bootstrap
procedures often provide the most appealing approach to select the best estima-
tor. However, our samples are substantially larger (from data containing 2.6 million
unemployment spells) and our likelihood-based inference requires Swedish national
supercomputing resources, so in our view the application of bootstrap procedures
would be beyond the scope of our paper.

The paper proceeds as follows. Section 2 presents the Timing-of-Events model
proposed by Abbring and van den Berg (2003). Section 3 describes the simulation
design and the data used in the simulations, and Section 4 describes the estimated
selection model that is used to simulate the placebo treatments, and we compare
the bias when different sets of covariates are included in the model. In Section 5,

we present the EMC simulation results, and Section 6 concludes.

2 The Timing-of-Events model

This section presents the ToE approach as introduced by Abbring and van den Berg
(2003). They specify a bivariate duration model for the duration in an initial state
and the duration until the treatment of interest: 7. and T}, with t. and t, being
their realizations. The model includes individual characteristics, X, and unobserved
individual characteristics V. and V),, with realizations (x, ve, vp). Abbring and
van den Berg (2003) assume that the exit rate from the initial state, 8. (¢|D(t),z, Ve),
and the treatment rate, 6,(t|x,V,), follow the Mixed Proportional Hazard (MPH)
form:©

0 (t|z,D,Ve,tp) = InAe(t)+2'Be+dD(t)+ Ve, (1)
oy, (tjx,V,) = Indy(t)+2'Bp+ V),

where ¢ is the elapsed duration, D(t) is an indicator function taking the value one
if the treatment has been imposed before ¢, § represents the treatment effect, and

Ae(t), Ap(t) capture duration dependence in the exit duration and the treatment

6This is the most basic ToE model with time-constant and homogeneous treatment effect, but note
that Abbring and van den Berg (2003) also allow for time-varying treatment effects as well as other
extensions of this basic model.
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duration, respectively. Also, let G(V') denote the joint distribution of V¢, V}|x in the
inflow into unemployment.

Abbring and van den Berg (2003) show that all components of this model, includ-
ing the treatment effect, §, and the unobserved heterogeneity distribution, G, are
identified under the following assumptions. The first assumption is no-anticipation,
which means that future treatments are not allowed to affect current outcomes.
This holds if the units do not know the exact time of the treatment or if they do
not react on such information.” A second assumption is that X and V should be
independently distributed, implying that the observed characteristics are uncorre-
lated with the unobserved characteristics. A third assumption is the proportional
hazard structure (MPH model). We discuss these assumptions in more detail when
we describe our simulation design. Abbring and van den Berg (2003) also impose
several regularity conditions.

Identification is semi-parametric, in the sense that given the MPH structure,
the ToE model does not rely on any other parametric assumptions. Moreover,
unlike many other approaches, the ToE method does not require any exclusion
restrictions. Instead, identification of the treatment effect follows from the variation
in the moment of the treatment and the moment of the exit from the initial state.
If the treatment is closely followed by an exit from the initial state, regardless of the
time since the treatment, then this is evidence of a causal effect, while any selection
effects due to dependence of V), and V, do not give rise to the same type of quick
succession of events. However, this requires some exogenous variation in the hazard
rates. The most basic exogenous variation is generated through the time-invariant
characteristics, x, which create variation in the hazard rates across units. Strictly
speaking, this is the only variation that is needed for identification.

Previous studies suggest that covariates that change with the elapsed duration,
for instance due to business cycle variation or seasonal variation, are a useful source
of variation (Gaure et al., 2007). The intuition is that such time-varying covariates
shift the hazard rates, and this is informative on the influence of the unobserved
heterogeneity. More specifically, current factors have an immediate impact on the
exit rate, whereas past factors affect the current transition probabilities only through
the selection process (for a more detailed discussion, see van den Berg and van Ours,
1994, 1996). We therefore examine both ToE models with time-invariant covariates

only and specifications that include time-varying covariates.

"The no-anticipation assumption also implies that any anticipation of the actual time of the exit
from the initial state does not affect the current treatment rate.
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3  Simulation approach

3.1 The basic idea

The idea behind EMC designs is to simulate by using real data, as opposed to
using a data generating process entirely specified by the researcher as in a typical
Monte Carlo study. The argument is that real data is more closely linked to real
applications with real outcomes and real covariates, and thus provides arguably more
convincing simulation evidence. As a background to our simulation design, consider
the EMC design adopted by Huber et al. (2013). They use real data on jobseekers in
Germany to compare the performance of alternative estimators of treatment effects
under conditional independence. They proceed in the following way. They first
use the real data on both treated and non-treated units to capture the treatment
selection process. The estimated selection model is then used to simulate placebo
treatments for all non-treated units in the sample, effectively partitioning the sample
of non-treated units into placebo treated and placebo controls. This ensures that
the selection process used for the simulations is known and that the conditional
independence assumption holds by construction, even if the simulations are based
on real data. Moreover, by construction, the true effect of the placebo treatments
is zero. Then, Huber et al. (2013) use the resulting simulated data to analyze the
performance of various CIA-based estimators.

We tweak this simulation design in some key dimensions with the aim of using
the EMC approach to study the ToE model. We use rich Swedish administrative
register data and survey data of jobseekers, with information on participation in a
labor market training program. The outcome duration, T, is the time in unem-
ployment, while the treatment duration, 7}, is time to the training program. The
data (described below) is also used to create detailed background information for
each unit. Then, we use this data to generate placebo treatments, but we do this
in a slightly different way than Huber et al. (2013). Instead of simulating binary
treatment indicators as they do, we use a hazard model for the treatment duration,
and use this to simulate placebo treatment durations. As for the standard EMC
approach, the effect of these placebo treatments is zero by construction. Unobserved
heterogeneity is then generated by omitting blocks of the covariates that were previ-
ously used in the true selection model to produce the placebo treatment durations.
This leads to a bivariate duration model with correlated unobserved determinants,
since the excluded variables affect both the time in unemployment (the outcome)

and, by construction, the treatment duration.
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The simulated data is used for various simulation exercises. We mainly focus
on the estimation of the treatment effect. By construction, the true effect of the
placebo treatments is zero, but since we leave out variables and generate correlated
unobserved determinants, we introduce bias (estimated treatment effect non-zero).
To evaluate important specification issues related to ToE models, we study the
impact on the bias and the variance of the treatment effects estimates, but we also
study other parts of the model. Some of these issues that we study were raised by
previous Monte Carlo simulations studies (Gaure et al., 2007; Baker and Melino,
2000). This includes the specification of the unobserved heterogeneity distribution.
However, we also study specification aspects that have not been studied before. One
example is that we exclude different blocks of covariates, with the aim of studying
how the ToE approach performs with different types of unobserved heterogeneity.

One important reason to use the Swedish unemployment spell data is that there
are many examples of evaluations that estimate ToE models using this type of data
(see Section 1). In addition, unemployment durations and labor market program
entries are measured at the daily level. We treat the daily spell data as if it were
continuous, and generate placebo treatment durations measured at the daily level by
using a continuous-time selection model. Accordingly, we estimate continuous-time
ToE models.

Next, let us relate our simulated data to the assumptions made in the ToE ap-
proach. By construction, the no-anticipation assumption holds, because the units
cannot anticipate and react to placebo treatments. However, there are other ToE
assumptions that may not hold in this simulation design. First, the assumption re-
quiring independence between X and V' (random effects assumption) may not hold in
our simulations, since the excluded variables representing unobserved heterogeneity
may be correlated with the variables that were actually used in the ToE estima-
tion.® To explore this, we leave out blocks of variables that are alternatively highly
or mildly correlated with the observables. It turns out that the degree of correlation
between the observed and unobserved factors is relatively unimportant. Second, a
duration model without embedded unobserved heterogeneity is used to model the
treatment selection process. This means that although we use an extremely rich set
of variables to estimate the selection process, mimicking the information available
to caseworkers when assigning treatments, the model may be misspecified if there

are omitted characteristics.

8Likewise, indicators of past individual labor market outcomes included in the vector of covariates
may be stochastically dependent on unobserved heterogeneity.
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3.2  The relevance of different covariates

The analysis of the ToE model specification is the main contribution of our pa-
per. However, by leaving out different blocks of covariates, we can also evaluate
the relevance of different observables when measuring causal effects of active labor
market programs. To this end, we use the simulated data with placebo treated and
non-treated units, for which the “true' treatment effect is known to be zero. To
assess the relative importance of different covariates, we leave out alternative blocks
of observables and compare the bias size across the resulting specifications.

These analyses benefit from the rich Swedish data. We first follow Lechner and
Wunsch (2013), who create variables that capture essentially all covariates claimed
to be important for the selection process and used in various CIA-based evaluations
of active labor market programs. Lechner and Wunsch use German data, and we
use Swedish databases to re-construct similar covariates. However, we also include
additional covariates not used by Lechner and Wunsch (2013). First, since we model
treatment durations and not binary treatment indicators, we also include covariates
that capture the duration aspect of employment and unemployment histories. The
idea is that information on previous durations may capture aspects related to how
long one stays unemployed in a better way than non-duration history variables. By
comparing with other unemployment and employment history variables, such as the
employment rate, we can see if indeed previous durations matter more for current
duration outcomes.

Second, the covariates in Lechner and Wunsch (2013) reflect important aspects of
labor market attachment, skills and benefit variables, but more general unobserved
skills may also be relevant. To study this, we use parental income, a commonly
used proxy for such general unobserved skills. Third, since we model treatment
durations, certain time-varying covariates may be important factors. In particular,
we consider business cycle conditions, which might change over time, especially for
longer unemployment spells. Another difference compared Lechner and Wunsch
(2013) is that here we consider a duration outcome framework, and use duration
models to study the relevance of different blocks of covariates.

Note that this procedure holds under the assumption of CIA with the full set
of covariates. Lechner and Wunsch (2013) provide good arguments as to why CIA
should be valid in their German setting when they use their full set of covariates,
and Vikstrom (2017) provides similar arguments for Sweden. This can of course
always be questioned, for instance, because treatment selection is based on unob-

served motivation and skills. Thus, we study the relevance of the different observed
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covariates, keeping in mind that there may also be important information that is

not included in our data.

3.3  The training program
One often-studied treatment for job seekers is labor market training. This moti-
vates our use of data on a Swedish vocational training program called AMU (Ar-
betsmarknadsutbildning). The program and the type of administrative data that
we use resemble those of other countries. The main purpose of the program, which
typically lasts for around 6 months, is to improve the skills of the jobseekers so as to
enhance their chances of finding a job. Training courses include manufacturing, ma-
chine operator, office/warehouse work, health care, and computer skills. The basic
eligibility criterion is to be at least 25 years old. During the training, participants
receive a grant. Those who are entitled to unemployment insurance (UI) receive a
grant equal to their Ul benefits level, while for those not entitled to Ul the grant is
smaller. In all cases, training is free of charge.

Previous evaluations of the effects of the AMU training program on unemploy-
ment include Harkman and Johansson (1999), de Luna et al. (2008), Richardson
and van den Berg (2013), and van den Berg and Vikstrom (2019). These papers

describe the training program in great detail.

3.4 Data sources and sampling

We combine data from several administrative registers and surveys. The Swedish
Public Employment Service provides daily unemployment and labor market program
records of all unemployed in Sweden. We use this information to construct spell data
on the treatment duration (time to the training program) and the outcome duration
(time to employment), both measured in days. We sample all unemployment spells
starting during the period of 2002-2011. Any ongoing spells are right-censored on
December 31, 2013.

The analyses are restricted to the prime-age population (age 25-55), since younger
workers are subject to different labor market programs and to avoid patterns due
to early retirement decisions of older workers. We also exclude disabled workers. In
total, there are 2.6 million sampled spells, of which 3% involve training participa-
tion. The mean unemployment duration in the sample is 370 days. In case a job
seeker enters into training multiple times, only the first instance is considered.

For each spell, we construct detailed information on individual-level character-

istics. We start by constructing similar covariates as in the German data in Lech-
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ner and Wunsch (2013).° The population register LOUISE provides basic socio-
economic information, such as country of origin, civil status, regional indicators and
level of education. Matched employer-employee data (RAMS) and wage statistics
from Statistics Sweden are used to construct information on the characteristics of
the last job (wages, type of occupation, skill-level), and to retrieve information on
the characteristics of the last firm (firm size, industry and average worker charac-
teristics). From Unemployment Insurance (UI) records we obtain information on Ul
eligibility.

The data from the Public Employment Service is also used to construct unem-
ployment history variables, and to construct information on the regional unemploy-
ment rate. Earnings records and information on welfare participation are used to
construct employment, out-of-labor force and earnings histories. For the history
variables, we construct both short-run history (last two years) and more long-run
history (last ten years). Altogether, this captures many aspects of the workers
employment and earnings history in the last two or ten years.

As already mentioned, we also include additional covariates not used by Lechner
and Wunsch (2013). These include previous unemployment and employment du-
rations, the idea being that previous durations may capture the current ones in a
better way than the above-mentioned employment history variables. To this aim, we
construct time spent in the last employment spell, time in the last unemployment
spell as well as indicators for no previous unemployment /employment spell. We also
study the relevance of controlling for the mother’s and father’s income, under the
assumption that parental income may capture general unobserved skills. Here, we
exploit the Swedish multi-generational register (linking children to parents) together
with income registers to create information on parental income (father and mother
income, averaged over age 35-55 of the parent). Finally, we also explore time-varying
covariates, and include the local unemployment rate in the region during each month
as a time-varying covariate (Sweden has 21 regions).

The outcome considered in this paper is the re-employment rate. We consider as
an exit to employment a transition to a part-time or full-time job that is maintained
for at least 30 days.

All covariates that are used in the analyses are summarized in Table 1. The

statistics in the table show that immigrants from outside Europe, males, married and

9There are some differences between the Swedish and German data. The classification of occupations
differs, we lack some firm-level characteristics, and we have less information on UI claims. We also
use welfare benefits transfers to construct measures of out-of-labor-force status.
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the less educated jobseekers are over-represented among the training participants.
Training participants also also more likely to be employed in firms with lower wages,
and there are fewer previous managers and more mechanical workers among the
treated workers. All labor market history measures point in the same direction:
training participants have worse unemployment and welfare characteristics in the

last two and ten years.

3.5 Simulation details

Selection model. The first step of the EMC design is to estimate the treatment
selection model. We use a continuous-time parametric proportional hazard model
for the treatment hazard, 6,(t|z), at time, ¢, conditional on a set of covariates, z,
which includes time-fixed covariates and time-varying monthly regional unemploy-

ment rate:!°
0p(t|z) = Ap(t) - exp(xBp). (2)

The baseline hazard, A,(t), is taken as piecewise constant, with In\,(t) = o, for
t € [tm—1,tm), where m is an indicator for the m™ time interval. We use eight time
intervals, with splits after 31, 61, 122, 183, 244, 365 and 548 days. The included
covariates are listed in Table 1. The model estimates, also reported in Table 1,
show that the daily treatment rate peaks after roughly 300 days. They also confirm
the same patterns found for the sample statistics: immigrants, younger workers,
males, high-school graduates, and Ul recipients are more likely to be treated. Short-
and long-term unemployment and employment history variables are also important
determinants of treatment assignment.

After estimating the selection model by using the full population of actual treated
and controls (i.e. the never treated), the treated units are discarded and play no fur-
ther role in the simulations. Next, we use equation (2) to simulate the placebo times
to treatment for each non-treated, Ts, which is generated according to (dropping x

to simplify the notation):

exp (— /OTp QP(T)dT> =U, (3)

where U ~ U[0,1]. Since ,(t) > 0Vt, the integrated hazard f(;[p 0, (7)dr is strictly

10 Alternatively, one could use a semi-parametric single-index estimator for the hazard rate of T, X,
for example the Ggrgens (2006) estimator. However, this would be numerically cumbersome and
since this does not impose a PH structure the resulting model may not be compatible with any
ToE model.
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increasing in 7),. By first randomly selecting U for each unit and then finding the
unique solution to (3), we can retrieve T}, for each observation.!!

Simulated treatments that occur after the actual exit from unemployment are
ignored. Thus, the placebo treated units are those with a placebo treatment realized
before the exit to job. During this procedure, ép(t|xi) is multiplied by a constant -,
which is selected such that the share of placebo treated is around 20%. This ensures
that there is a fairly large number of treated units in each sample, even if the sample
size is rather small. A similar approach is adopted by Huber et al. (2013).

Simulations. The placebo treatments are simulated for all non-treated units.
Next, we draw random samples of size N from this full sample (independent draws
with replacement). We set N = 10,000, 40,000 and 160,000 because ToE models are
rarely estimated with small sample sizes. If the estimator is N-convergent, increasing
the sample size by a factor of 4 (by going from 10,000 to 40,000, or from 40,000 to
160,000) should reduce the standard error by 50%. For each ToE specification we

perform 500 replications.

3.6 Implementation of the bivariate duration model

We estimate a continuous-time ToE model for the treatment and outcome hazards as
defined in equation (1). The unknown distribution of the unobserved heterogeneity
is approximated by a discrete support points distribution (Lindsay, 1983; Heckman
and Singer, 1984; Gaure et al., 2007).

Likelihood function. For each unit + =1,..., N we formulate the conditional
likelihood contribution, L;(v), conditional on the vector of unobserved variables v =
(ve,vp). Then, the individual likelihood contribution, L;, is obtained by integrating
Li(v) over the distribution of the unobserved heterogeneity, G(V'). For the duration
dependence (Ac(t), Ap(t)), we use a piecewise constant specification with As(t) =
exp(agmy) where the spell-duration indicators are agy, = 1[t € [ty—1,tm)], for m =
1,...,M cut-offs. We fix the cut-offs to 31,61,122,183,244,365,548,2160. In the

HThe actual distribution for the integrated hazard will depend on the specification of the selection
model in equation (2). In the simple case where all covariates are time-fixed and the placebo
treatments are generated by using a proportional hazard model that has two piecewise constant
parts, with 69 for ¢ € [0,¢1) and 6} for ¢ > ¢;:

T exp —fOTS GEdT) if U>exp (f fgl 92d7’>
exp | — Os(T)dr | = 0 T o .
0 exp (— Jo O5dT— [, HsdT) otherwise
This can be easily extended to the case where the baseline hazard has more than two locally

constant pieces and where X contains time-varying covariates (in both cases, the integrated hazard
shifts in correspondence of changes in such covariates over calendar- or duration-time).
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section we discuss the observed variables used in the model.

To set up L;i(v), we split the spells into parts where all right-hand side variables
in equation (1) are constant. Splits occur at each new spell-duration indicator
and when the treatment status changes. In all baseline ToE specifications, the
covariates specified are calendar-time constant. In additional specifications where
the time-varying local unemployment rate is included, calendar-time variation leads
to additional (monthly) splits. Spell part j for unit ¢ is denoted by ¢;;, and has
length [;;. Let C; be the set of spell parts for unit i. FEach part, ¢;;, is fully
described in terms of l;;, agm, 7; and the outcome indicator, y4;;, which equals one
if the spell part ends with a transition to state s and zero otherwise. There are
two such possible states (employment and treatment). Then, with approximately

continuous durations, L;(v) is:

Li(?}) = H

Cij Gci

exp (—lij Z es(t,aii,Dit,Us|-)) X H 93(t|‘)y3ij], (4)

SES;t s€ S

with
Ae(t) exp(x;fe) exp(dDjt) ve
)‘p(t) exp(fvéﬁp) Up-

L; is obtained by integrating L;(v) over G(V'). Let p,, be the probability associ-

0411 =

ated with support point, w, with w=1,...,W, such that > _,w p, = 1. Then, the

log-likelihood function is:

N N
L=> (prlnL (vw)) =L (5)
i—1 \w=1 ;

Search algorithm. To estimate the discrete support points, we use the iterative
search algorithm in Gaure et al. (2007). For each replication we estimate models
with up to W support points. We can then select the appropriate model using
alternative information criteria (see below). Let dy be the maximum likelihood

(ML) estimate with W support points. The search algorithm is:

Step 1: Set W =1 and compute the ML estimate 1§W-

Step 2: Increment W by 1. Fix all ¥y elements but (vy, pw) to 1§W—1- Use the
simulated annealing method (Goffe et al., 1994) to search for an additional

support point, and return the (y, pyy) values for the new support point.
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Step 3: Perform ML maximization with respect to the full parameters vector
Yw = (6,v,p) by using Jw_1 and (Ow,pw) as initial values. Return
Dy

Step 4: Store {@W, E(ﬁw)} If W < W return to Step 2, else stop.

Step 1 corresponds to a model without unobserved heterogeneity, since © cannot
be distinguished from the intercept in X. In Step 2 the algorithm searches for a
new support point in the [—3, 3] interval.'? In this step, all other parameters of the
model are fixed. This explains why in Step & we perform a ML maximization over
all parameters, including the new support point. At the end of the procedure we
obtain T maximum likelihood estimates: {dyy, £(1§W)}%:1.

Information criteria. We use different approaches to choose between the W
estimates. First, we report results where we pre-specify the number of support points
(up to six points). An alternative approach is to increase the number of support
points until there is no further improvement in the likelihood (ML criterion). Tt is
defined as M L = E(@W), where only likelihood increases greater than 0.01 are consid-
ered. We also use information criteria that penalize parameter abundance. Specif-
ically, the Akaike information criterion (AIC), the Bayesian information criterion
(BIC) and the Hannan-Quinn information criterion (HQIC). The latter two are more
restrictive since they impose a larger penalty on parameter abundance. Formally,
AIC = L(Oyw) —k, BIC = L(w) —0.5k-InN and HQIC = L(Jw) — k- In(In N),
where k = k(W) is the number of estimated model parameters and N is the total
number of spell parts used in the estimation.'3

All criteria are calculated for each replication, so that the selected number of
support points may vary both across replications and criteria. This allows us to

compute the average bias and the mean square error for all information criteria.

4 Available covariates and evaluations of ALMPs

We now evaluate the relevance of different types of covariates. Specifically, we leave
out various blocks of covariates and compare the size of the bias — the difference
between the estimated treatment effect and the true zero effect of the placebo treat-

ments — across specifications. All covariates are a subset of those used to generate

12 A5 starting values we set vy = 0.5 and py = exp (—4). The simulated annealing is stopped once it
finds a support point with a likelihood improvement of at least 0.01. In most cases, the algorithm
finds a likelihood improvement within the first 200 iterations.

13We follow Gaure et al. (2007) and use the grand total number of spell parts. N can be alternatively
used, but our simulations indicate that this is of minor importance in practice.
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the placebo treatments. For each specification, the full sample of placebo treated
and placebo non-treated units is used to estimate a parametric proportional hazard
(PH) model. Here, the baseline hazard is specified in the same way as for the model
used to simulate the placebo treatments.'* Table 1 lists all covariates in each block.
The main results are given in Table 2. In each panel of the table, we start
with the covariates from the proceeding panels and add additional information to
the covariates already in the model, so that the model is extended sequentially by
adding blocks of covariates one by one. This will, for instance, reveal the relevance
of adding information on long-term labor market history on top of the more basic
covariates such as short-term history and baseline socio-economic characteristics.™
In Panel A, we start with a baseline model with a set of baseline socio-economic
characteristics, which returns a positive and sizable bias of around 6.9%. That is, the
estimated treatment effect is 0.069 when the true effect of these placebo treatments
is equal to zero. Additionally controlling for calendar time (inflow year and month
dummies) and regional information (regional dummies and local unemployment rate
at inflow) reduces the bias from 6.9% to 6.2%.19 Since the corresponding excluded
covariates include short- and long-term labor market history, the positive bias means
that training participants tend to have more favorable labor market histories.
Panel B compares the relevance of short-term employment, unemployment, earn-
ings and welfare benefit histories. Here, we compare the relevance of entire blocks of
covariates, while later we do so for individual variables, such as previous employment
rates against employment durations. All blocks of short-term history covariates re-
duce the bias. However, adjusting for short-term employment history is relatively
more important than adjusting for unemployment, earnings and welfare history (out-
of-labor-force status). If we adjust for unemployment history and earnings history,
the bias drops to 5.0% and 4.0%, respectively, whereas if the model includes em-
ployment history the bias is much closer to zero. In fact, the sign of the bias is even
reversed (slightly negative, -1.4%) when adjusting for short-term employment his-
tory. These results indicate that participants in labor market training are to a large
extent selected based on their previous employment records. One explanation may

be that caseworkers aim to select jobseekers with an occupational history aligned

14We have also estimated the bias using other duration models, including a Cox-model, leading to
similar results.

15We add the covariates in a similar order as Lechner and Wunsch (2013), who argue that the order
resembles the ease, likelihood and cost of obtaining the respective information.

16For completeness, we also report estimates when using these time and regional variables only,
without including the baseline socio-economic characteristics. This leads to larger bias.
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with the vocational training program.

We next examine what specific aspects of employment and unemployment that
are the most important to adjust for. We control for either past employment dura-
tion, different measures of the share of time spent in employment (employment rate),
employment status at a given point in time, or other history variables. A reason for
this exercise is that we model treatment durations and not a binary treatment sta-
tus. Accordingly, it may be the case that previous durations capture aspects of the
ongoing unemployment spell in a better way than previous employment rates and
employment status at a given point in time. Table 3 shows that information on pre-
vious employment duration reduces the bias considerably: from 6.2% in the baseline
specification to 3.9% (Panel A). However, adding information on past employment
rates or other short-term employment history variables reduces the bias even more,
leading to biases of -0.04% and 0.2%, respectively (Panel B and C). In particular,
Panel B shows that all covariates measuring past employment rate single-handedly
capture a large part of the bias. We also note that the bias is positive or close to
zero in all cases, so that the reversal of the bias sign that was observed in Panel B of
Table 2 occurs only once all short-term employment variables are included together.
That is, even if some short-term history variables are more relevant, they all cap-
ture different aspects of the selection process, so that adjusting for both previous
employment durations and rates is important.

Panels D to F of Table 3 report estimates from a similar exercise where we
control for the short-term unemployment history and duration variables one at a
time. This confirms that unemployment history variables have a modest impact on
the estimated bias compared to the employment history variables. All in all, this
suggests that for training programs with emphasis on human capital accumulation,
the most important characteristics to control for are those related to employment
history.1718
Next, let us return to Table 2. Here, Panel C shows that adding information on

long-term labor market history (last ten years) on top of short-term history (last 2

ITWe also tried to additionally include past employment and unemployment durations more flexibly,
by specifying them on logarithmic- and quadratic-scale, and by including information from the
previous two spells. The bias is only slightly reduced compared to the information reported in
Table 3, and qualitatively all patterns are unaffected.

181t may be argued that aspects of past unemployment experience are good indicators of the unob-
served heterogeneity term V. in the current spell. For example, in MPH duration models, the log
mean individual duration is additive in V.. This would suggest that inclusion of such aspects as
covariates strongly reduces the bias. However, note that the actual bias in the estimated treatment
effect also depends on the extent to which these aspects affect treatment assignment over and above
the included determinants of the latter.
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years) has minor impact on the bias of the estimated treatment effect. The same
holds when in Panel D we adjust for various characteristics of the last job (e.g.,
previous wage and occupation) as well as for detailed information about the last
firm (e.g., industry and composition of worker). Lechner and Wunsch (2013) also
find that, after controlling for calendar time, regional conditions and short-term la-
bor market history, including additional covariates such as long-term labor market
history is relatively unimportant. This is also consistent with the results in Heck-
man et al. (1998), Heckman and Smith (1999), Mueser et al. (2007), and Dolton
and Smith (2010), who find that it is important to control for regional information,
labor market history and pre-treatment outcomes. However, one difference com-
pared to Lechner and Wunsch (2013) is that in this setting adjusting for short-term
employment history is enough to obtain small bias, whereas Lechner and Wunsch
(2013) find that it is important to also adjust for all aspects of the short-term history
(employment, unemployment, out-of-labor-force status, earnings).

Panel D examines the relevance of parental income, which we use to proxy for
general unobserved skills. This may be important if unobserved skills are not cap-
tured by the covariates discussed so far, which are mainly related to labor market
attachment. However, parents’ income turns out to have limited impact on the
bias, at least once we control for both short- and long-term labor market history
variables. This indicates that labor market histories are also able to capture more

general unobserved skills.!?

5 Specification of ToE models

This section presents the main simulation results. The main focus is on the (placebo)
treatment effects. We study to what extent the ToE model is able to adjust for the
bias observed in the previous section, and which specification of the model leads
to the best results in terms of average bias, variance of the placebo estimates, and

mean squared error (MSE).

5.1 Baseline results
Table 4 reports results from the baseline simulations where we compare different
specifications of the discrete unobserved heterogeneity distribution. In these simu-

lations we adjust for baseline socio-economic characteristics, inflow time dummies,

19This is consistent with the results in Caliendo et al. (2017), which finds that once one controls for
rich observables of the type that we include here, additional (usually unobserved) characteristics
measuring personality traits and preferences become redundant.
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regional indicators and unemployment rate (the covariates in Panels A-B, Table
1). Here, we control for time-fixed regional unemployment rate (measured as the
month of inflow into unemployment). Later, in Table 8, we estimate ToE models
with time-varying regional unemployment rate.

First, consider the results for a sample size of 10,000 in Columns 1-3. In Panel
A, we fix the number of support points to a pre-specified number in all replications.
The first row shows that the baseline model without unobserved heterogeneity (one
support point) leads to large bias (6.0%).2° This confirms that under-correcting for
unobserved heterogeneity may lead to substantial bias. However, already with two
support points the bias is reduced from 6.0% to 2.7%.2! For three or more support
points, the average bias is even larger and keeps increasing in the same direction
when adding additional support points. In fact, with six support points the average
bias (6.4%) is more than twice as large as the average bias with two support points
(2.7%). Moreover, both the variance and the MSE increase in the number of support
points (Columns 2-3).

The increased bias due to too many support points is consistent with the re-
sults from Baker and Melino (2000), which argue that specifications with too many
(spurious) support points tend to over-correct for unobserved heterogeneity. This
happens because too many support points lead to an overly-dispersed distribution
of unobserved heterogeneity. Thus, in order to fit the data, the model compensates
this with changes (bias) in the treatment effect, and presumably also in the duration
dependence. This pattern contradicts the general intuition that one should always
adjust for unobserved heterogeneity in the most flexible way in order to avoid bias
due to unaccounted unobserved heterogeneity.

To better understand the over-correction pattern, Figure 1 shows the distribution
of the treatment effect estimates for one, two and six support points. With one
support point, the estimates are centered around a bias of around 6% and the
variance of the estimates is relatively low. With two support points the entire
distribution shifts towards zero (although the average bias is non-zero), but the
variance gets larger than for one support point. With six support points, there is a

further increase in the variance. Perhaps more importantly, the entire distribution of

20This is roughly the same bias as in the corresponding model estimated with the full sample in
Panel A of Table 2. The minor difference is due to sampling variation since here we report the
average bias from random drawings, whereas estimates in Table 2 are obtained from the full set of
placebo treated and non-treated observations.

21Here, we focus on the bias of the treatment effect, but previous simulation studies using simulated
data show that failing to account for unobserved heterogeneity also leads to bias in the spell-
duration component and in the covariate effects (Gaure et al., 2007).
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the estimates shifts to the right (larger positive bias). This shows that the increased
bias is not explained by a few extreme estimates.

Interestingly, the problem with over-correcting for unobserved heterogeneity does
not occur to the same extent in the simulated data used by Gaure et al. (2007). They
highlight that the main problem is under-correction with too few support points.
Our simulation results that are based on real data, instead, suggest that both under-
and over-correction are important problems when estimating ToE models. Thus,
finding a way to select the appropriate number of support points appears to be

important. We explore this in the next section.??

5.2 Information criteria
Panel B of Table 4 provides simulation results when the distribution of the unob-
served heterogeneity (number of support points) is specified by using alternative
information criteria. Panel C reports the average number of support points that are
selected according to each criterion. The ML criterion, where the number of support
points is increased as long as the likelihood is improved, leads to 4.11 support points
on average. The bias and variance are large compared to simply pre-specifying two
or three support points. Hence, the ML criterion tends to select too many support
points, leading to an over-correction problem (too many spurious support points
are included). This pattern is confirmed in all simulation settings presented below.
As a result, criteria with little penalty for parameter abundance, such as the ML
criterion, should be avoided altogether when selecting the number of mass points.

The results for AIC, BIC and HQIC are much more encouraging. All three
criteria produce models with rather few unobserved heterogeneity support points
(often two support points). In this setting, this corresponds to the specifications
with the lowest bias achieved when pre-specifying a low number of support points.
We conclude that these more restrictive information criteria protect against over-
correction problems due to too many support points. They do so by penalizing
the number of parameters in the discrete heterogeneity distribution. They also
guard against under-correction problems (too few support points) by favoring models
with unobserved heterogeneity over models without unobserved heterogeneity (one
support point).

A comparison between the AIC, BIC and HQIC criteria reveals rather small

differences. As expected, the two more restrictive information criteria (BIC and

22In their main simulations, Gaure et al. (2007) find no evidence that too many support points
over-correct for unobserved heterogeneity. However, when they reduce the sample size they also
find evidence of some over-correction.
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HQIC) lead to models with fewer support points, and the average bias is slightly
lower than for the less restrictive AIC criterion. The variance is also slightly lower
for BIC and HQIC than for AIC. This is because these more restrictive criteria tend
to select fewer support points and the variance of the estimated treatment effects is
increasing in the number of support points. However, later we will see that none of
the three criteria is superior in all settings. All three penalize parameter abundance,
and this protects against problems of over-correction due to spurious support points.
In some cases, the risk of under-correcting is relatively more important, and this
favors the less restrictive AIC criterion. In other cases, the opposite holds, and this
favors the more restrictive BIC and HQIC criteria. Thus, using all three criteria and
reporting several estimates as robustness check appears to be a reasonable approach.

The main interest here is in providing background information on the alternative
specification choices. However, Table 4 also provides some insights on the overall
idea of using ToE models to adjust for unobserved heterogeneity. In general, the
table shows that the ToE approach corrects for a large share of the bias, which
is reduced from 6.0% for the model without unobserved heterogeneity to around
2.7% when information criteria are used to select the number of support points
(see Column 1 of Table 4). This holds even though the only source of exogenous
variation derives from time-fixed observed covariates. In subsequent analyses, we
explore whether additional sources of exogenous variation in the form of time-varying

covariates further reduce the bias.

5.3 Sample size

In Columns 4-6 and 7-9 of Table 4, the sample size is increased to 40,000 and
160,000 observations, respectively. For both these sample sizes we see that two
support points are associated with the lowest bias, but here the increase in the bias
after three support points is smaller than for 10,000 observations. For instance, with
10,000 observations, going from two to six support points increases the bias from
2.7% to 6.4%, and with 40,000 observations, it increases from 2.2% to 3.7%. For the
largest sample with 160,000 observations, the increase in the bias when going from
two to six support points is even smaller. It shows that over-correction, due to too
many support points, mainly is a problem with small sample sizes. However, note
that what constitutes a small sample size most likely differs across applications.
For instance, it might be related to the number of parameters in the model, the
fraction of treated units, the number of exit states, and the variation in the observed

variables.
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Another result is that for larger sample sizes there are smaller differences between
the different information criteria. For instance, with a sample size of 160,000, there

are virtually no differences in the average bias between the four criteria.

5.4 Excluded covariates

We next vary the unobserved heterogeneity by excluding different sets of covari-
ates when estimating the ToE models. In the baseline simulations, the ToE model
includes baseline socio-economic characteristics, inflow time dummies and regional
information. Here, we generate more unobserved heterogeneity by excluding addi-
tional covariates (all the socio-economic characteristics in Panel A of Table 1) and
less heterogeneity by excluding fewer covariates (earnings history in Panel F of Table
1). Table 3 shows that these models generate a bias of 9.5% and 4.0%, respectively,
in the full sample of placebo treated and controls (Panels A and B). These values
can be compared to the bias of 6.2% in the baseline setting.

Columns 1-3 of Table 5 report the results for the model with more extensive
unobserved heterogeneity. Again, the ToE model adjusts for a large share of the
bias due to unobserved heterogeneity. For instance, with a sample size of 10,000,
the bias for the specification without unobserved heterogeneity is 9.4%, but it drops
to 2-3% when we adjust for unobserved heterogeneity using the AIC, BIC or HQIC
criteria (Panel A). As before, these more restrictive criteria return the lowest bias,
whereas the ML criterion leads to a model with too many support points.?? Again,
this is consistent with previous results.

Overall, the specification with less substantial unobserved heterogeneity, ob-
tained by excluding fewer covariates, produces similar patterns (Columns 4-6 of
Table 5). The main difference concerns the relative performance of the AIC, BIC
and HQIC criteria. Consider the results for a sample size of 40,000. With more
extensive unobserved heterogeneity (Columns 1-3), the bias for the AIC criterion
is 0.9%, whereas it is 1.8% and 1.9% for the BIC and HQIC criteria, respectively.
This suggests that the more restrictive information criteria (BIC and HQIC) may
under-correct for the substantial unobserved heterogeneity by favoring models with
too few support points, and this leads to larger bias. This pattern is reversed when
we create less substantial unobserved heterogeneity by excluding fewer covariates
(Columns 4-6). Here, the average bias is lower for the more restrictive BIC and
HQIC criteria than for AIC. This is because for this specification, there likely is a

23We obtain similar results with 40,000 observations, but here the difference between the ML criterion
and the other criteria is smaller.
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larger risk of over-correcting for unobserved heterogeneity, favoring criteria with a
larger penalty for parameter abundance. From all this, we conclude that neither

one of the information criteria is superior in all settings.

5.5 Degree of correlation between X and V

Since we use single-spell data, identification of the ToE model requires indepen-
dence between the included covariates and the unobserved heterogeneity (random
effects assumption). This may not hold in our setting, since we create unobserved
heterogeneity by leaving out certain blocks of covariates, and these excluded co-
variates may be correlated with those that we include when we estimate the ToE
model. We therefore perform additional simulation exercises leaving out different
blocks covariates from the model. We consider three settings with strongly positive,
mildly positive and negative correlation between the covariates used in the ToE
model and the excluded covariates, respectively.?* We select covariates to include
in the model such that the starting bias, corresponding to the specifications with
one support point (no unobserved heterogeneity), is similar across the alternative
degrees of correlation (between 4.4% and 4.8%).

Panel A of Table 6 shows the simulation results with samples of size 10,000.
Overall, the information criteria perform similarly as before. The ML criterion
selects a larger number of support points which leads to larger bias, and the AIC,
BIC and HQIC criteria select more parsimonious models characterized by lower
bias than for the ML criterion. Importantly, this holds regardless of the degree of
correlation between the observed and the unobserved variables. This is reassuring:
even when the variables left out from the model are largely related with those left in
the ToE model, the relative performance of the information criteria does not appear

to be affected. We obtain similar results when drawing samples of size 40,000 (Panel

B of Table 6).

5.6 Estimation of the unobserved heterogeneity distribution
So far we have focused on the treatment effect, but the overall performance of the
ToE model can be also checked by inspecting to what extent the estimated discrete

distributions for the unobserved heterogeneity approximates the true one. To exam-

24To compute the correlation, we use the estimates from the selection model with all covariates
reported in Table 1. Then, for each cross-sectional unit, the estimated parameters are used to
compute the linear predictor of the excluded covariates. This linear predictor equals V in the
simulations. Finally, we correlate this with the observed covariates used in the model (by using the
linear predictor of all included covariates). This produces one measure of the correlation between
the observed and unobserved covariates in the model.

20 IFAU — Empirical Monte Carlo Evidence on Estimation of Timing-of-Events Models



ine this, we focus on the unobserved heterogeneity for the treatment duration, 7).
For this duration, the true unobserved heterogeneity, V), is known since we generate
it by leaving out certain blocks of covariates. However, since we do not simulate the
outcome durations, the exact composition of V, is unknown.

Specifically, for each actual treated and control unit, we use the coefficients of
the estimated selection model reported in Table 1 to compute the linear predictor
of the variables left out from the model. This linear predictor corresponds to V}, in
the model. We compare the first two moments of this true unobserved heterogeneity
with the corresponding moments for the estimated unobserved heterogeneity from
the ToE models (with samples of size 10,000).

The results from this exercise are shown in Table 7. The table reports results for
the true unobserved heterogeneity (Panel A) and the estimated unobserved hetero-
geneity (Panels B-C). Panel B shows that a larger number of support points tend
to overestimate the dispersion of the unobserved heterogeneity. The mean of the
unobserved heterogeneity distribution tends to be slightly underestimated. Panel
C indicates that the ML criterion returns an unobserved heterogeneity with too
large variance when compared to the true variance, whereas for the more restric-
tive information criteria (AIC, BIC and HQIC) the variance is too small. However,
overall, the ToE model appears to approximate well the true underlying unobserved

heterogeneity distribution of the selection model.?®

5.7 Time-varying covariates

Identification of the ToE model relies on variation in the observed exogenous co-
variates. This was the only source of exogenous variation exploited in the baseline
simulations above. One result was that the ToE model adjusts for a large part of the
selection due to unobserved heterogeneity, but it did not eliminate the bias entirely.
We now examine if an additional variation in the form of time-varying covariates
(local unemployment rate) can further reduce the bias. The idea is that time-varying
covariates should be useful for identification since they generate exogenous shifts in
the hazard rates that help to recover the distribution of the unobserved heterogene-
ity. Specifically, the time-varying covariate used is time-varying unemployment rate
measured at the monthly level for each county (ldn). We refer to it as local unem-

ployment rate. This time-varying covariate was included in the selection model to

25Note that all information criteria select the number of support points based on the joint assessment
of the treatment and outcome equations. This complicates the interpretation of whether a given
model fits the unobserved heterogeneity in the best way, since as mentioned we do not know the
true unobserved heterogeneity distribution for the outcome equation.
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simulate the placebo treatments. Here, the samples are of size 10,000.

The results from this exercise are presented in Table 8. The first row of Panel
A shows that the bias without adjusting for unobserved heterogeneity (one support
point) is 5.6%. As before, additional support points are then stepwise included
(Panel A). The results confirm what was found in the baseline simulations: both
under-correcting and over-correcting for unobserved heterogeneity leads to bias; the
ML criterion tends to select models with an overly-dispersed unobserved heterogene-
ity, whereas the three criteria that penalize parameter abundance (AIC, BIC and
HQIC) all perform well.

One important difference compared to the baseline simulations is that the aver-
age bias for the BIC and HQIC are now closer to zero. This confirms that exploiting
time-varying covariates greatly helps identifying the model parameters. Note that
this result holds even though we have generated substantial and complex hetero-
geneity by omitting a large number of covariates, including a wide range of short-
and long-term labor market history variables, as well as firm characteristics and
attributes of the last job. This produced substantial bias in the model without
unobserved heterogeneity. The importance of variation induced by time-varying co-
variates echoes the results from Gaure et al. (2007), who reach a similar conclusion,
the only difference being that they use calendar-time dummies whereas we exploit

time-varying local unemployment rate.

6 Conclusions

In this paper, we modified a recently proposed simulation technique, the Empirical
Monte Carlo approach, to evaluate the Timing-of-Events model. It has resulted
in several conclusions on how to specify ToE models. Our simulations show that
information criteria are a reliable way to specify the number of support points that
approximate the unobserved heterogeneity distribution of the model. This result
holds as long as the criteria include a substantial penalty for parameter abundance.
Information criteria with little penalty for parameter abundance, such as the ML
criterion, should be avoided altogether. Three criteria, which all perform well, are
the Akaike information criterion (AIC), the Bayesian information criterion (BIC)
and the Hannan-Quinn information criterion (HQIC). All three protect both against
over-correction for unobserved heterogeneity (due to the inclusion of spurious sup-
port points) and against under-correction due to insufficient adjustment for unob-

served heterogeneity. But, none of the three criteria is superior in all settings.
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Another result is that the ToE model is able to adjust for substantial unob-
served heterogeneity generated by omitting large numbers of relevant and diverse
covariates. The model is also able to approximate well the true underlying un-
observed heterogeneity distribution of the treatment equation. As long as an ap-
propriate information criterion is used, these patterns are robust across alternative
specifications. Adding time-varying covariates (local unemployment rate) on top of
time-invariant covariates, improves the performance of the ToE estimator.

We have also examined which observed covariates that are important confounders
when evaluating labor market programs. Here, one conclusion is that it is important
to adjust for short-term labor market histories, whereas adding long-term labor mar-
ket histories appears to be less important. Controlling for short-term employment
histories appears to be more effective than controlling for short-term unemploy-
ment histories. We also conclude that variables measuring the share of time spent
in employment in the near past are valuable. Other types of short-term employ-
ment history variables, such as previous employment durations, also turn out to be

important, but relatively less so.
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Tables and Figures

Table 1: Sample statistics and estimates from the selection model using the full sample of

actual treated and non-treated

Treated  Control Selection model
Est. Std. Er.
Number of observations 76,302 2,564,561 2,640,863
Panel A: Baseline socio-economic characteristics
Country of origin: Not Europe 0.20 0.16 0.0910*** (0.0120)
Age 25-29 0.23 0.26 0.1366*** (0.0126)
Age 30-34 0.20 0.20  0.1188%%* (0.0117)
Age 40-44 0.16 0.15 -0.0363*** (0.0123)
Age 45-49 0.12 0.11 -0.1441*** (0.0137)
Age 50-54 0.09 0.09 -0.3510*** (0.0160)
Male 0.67 0.51 0.4719%** (0.0091)
Married 0.35 0.34 0.0017  (0.0089)
Children: At least one 0.43 0.43 0.1265*** (0.0100)
Children: No. of children in age 0-3 0.20 0.20 0.0565*** (0.0116)
Education: Pre-high school 0.18 0.17  -0.1432*** (0.0253)
Education: High school 0.57 0.50 0.0624**  (0.0248)
Education: University College or higher 0.22 0.31 -0.0490**  (0.0250)
Panel B: Inflow time and regional information
Beginning of unemployment: June-August 0.26 0.30 -0.0135  (0.0084)
Inflow year: 2003-2005 0.30 0.35 -0.3952*** (0.0217)
Inflow year: 2006-2007 0.16 0.18 -0.2562*** (0.0230)
Inflow year: 2008-2009 0.23 0.18  -0.3304*** (0.0233)
Inflow year: 2010-2011 0.18 0.17 -0.2455%** (0.0240)
Region: Stockholm 0.13 0.21  -0.3412*** (0.0158)
Region: Gothenborg 0.13 0.16  -0.3634*** (0.0127)
Region: Skane 0.12 0.14 -0.2910*** (0.0129)
Region: Northern parts 0.21 0.15 0.1647*%* (0.0112)
Region: Southern parts 0.14 0.12 0.0111  (0.0126)
Monthly regional unemployment rate 10.54 9.77 0.0234*** (0.0021)
Panel C: Short—term employment history (2 years) and employment duration
Time employed in last spell 859.82 831.20 0.0000  (0.0000)
Missing time employed in last spell 0.20 0.17  0.0493*%%* (0.0150)
Months employed in last 6 months 3.37 3.54 -0.0003  (0.0039)
Months employed in last 24 months 12.79 13.50  0.0040*** (0.0013)
No employment in last 24 months 0.22 0.19  -0.1354*** (0.0250)
Time since last employment if in last 24 months 2.31 2.42  -0.0069*** (0.0015)
Number of employers in last 24 months 1.66 1.79  0.0115*** (0.0035)
Employed 1 year before 0.59 0.59 0.0353*** (0.0122)
Employed 2 years before 0.59 0.59 0.0207*  (0.0122)
Panel D: Short—term unemployment history (2 years) and unemployment duration
Time unemployed in last spell 107.11 89.43 0.0000  (0.0000)
Missing time unemployed in last spell 0.53 0.51 0.0213*  (0.0130)
Days unemployed in last 6 months 18.94 14.79  0.0008*** (0.0002)
Days unemployed in last 24 months 143.53 120.87  0.0003*** (0.0000)
No unemployment in last 24 months 0.44 0.44  -0.0511*** (0.0150)
Days since last unempl. if in last 24 months 15.12 14.76 0.0001  (0.0001)
Number of unempl. spells in last 24 months 0.82 0.88 0.0033  (0.0060)

Continue to next page
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Table 1 — continued from previous page

Treated  Control Selection model
Est. Std. Err.
Unemployed 6 months before 0.20 0.16 0.0171  (0.0151)
Unemployed 24 months before 0.24 0.22  -0.0327*** (0.0121)
Any program in last 24 months 0.03 0.02 0.0579**  (0.0291)
Panel E: Short—term welfare history (2 years)
Welfare benefits -1 year 4928.00  3742.27 0.0318*** (0.0078)
Welfare benefits -2 years 4258.73  3542.66 0.0075  (0.0095)
On welfare benefits -1 year 0.19 0.14 0.0028  (0.0166)
On welfare benefits -2 years 0.17 0.14  -0.0720%** (0.0163)
Panel F: Earnings history (2 years)
Earnings 1 year before 111684.78 110247.91 0.0095*  (0.0055)
Earnings 2 years before 111858.48 110612.95 -0.0157*  (0.0094)
Panel G: Long-term employment history (10 years)
Months employed in last 10 years 58.19 62.91  -0.0022*** (0.0002)
Number of employers in last 10 years 4.72 5.12 0.0119*** (0.0012)
Cumulated earnings 5 years before 533484.45 530466.42 0.0629*** (0.0114)
Panel H: Long-term unemployment history (10 years)
Days unemployed in last 10 years 788.31 693.41  -0.0001*** (0.0000)
No unemployment in last 10 years 0.18 0.17  -0.0890*** (0.0158)
Days since last unemployment if in last 10 years  256.77 290.49  -0.0000*** (0.0000)
Number of unemployment spells in last 10 years 3.63 3.83 0.0074*** (0.0018)
Average unemployment duration 95.31 90.15  -0.0001*** (0.0000)
Duration of last unemployment spell 180.26 154.83  -0.0001*** (0.0000)
Any program in last 10 years 0.15 0.12 0.0348  (0.0227)
Any program in last 4 years 0.06 0.05 0.0509**  (0.0243)
Number of programs in last 10 years 0.19 0.15 0.0342**  (0.0157)
Panel I: Long-term welfare history, out-of-labor-force (10 years)
Yearly average welfare benefits last 4 years 4239.77  3533.38 -0.0213  (0.0142)
Yearly average welfare benefits last 10 years 3918.49  3448.42 -0.0828*** (0.0086)
No welfare benefits last 4 years 0.69 0.75  -0.0824*** (0.0150)
No welfare benefits last 10 years 0.51 0.59  -0.0946*** (0.0109)
Panel J: Characteristics of the last job
Wage 18733.31 18860.58 -0.0597*** (0.0052)
Wage missing 0.54 0.52 -0.0215  (0.0337)
Occupation:
Manager 0.04 0.07  -0.3102*%** (0.0388)
Requires higher education 0.04 0.06  -0.1240*** (0.0375)
Clerk 0.04 0.05 -0.0037  (0.0374)
Service, care 0.09 0.13 -0.0047  (0.0357)
Mechanical, transport 0.13 0.07  0.2107*** (0.0352)
Building, manufacturing 0.06 0.05 0.0597  (0.0371)
Elementary occupation 0.05 0.05 -0.0044  (0.0375)
Panel K: Characteristics of the last firm
Firm size 2523.01  3873.70  0.0000** (0.0000)
Age of firm 1295  14.13  0.0006  (0.0009)
Average wage 21588.62 21517.77  0.0007  (0.0048)
Wage missing 0.62 0.58 -0.0459  (0.0541)

Continue to next page
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Table 1 — continued from previous page

Treated  Control Selection model
Est. Std. Err.
Mean tenure of employees 3.43 3.68 -0.0029  (0.0024)
Age of employees 27.74 29.44  -0.0033*** (0.0009)
Share of immigrants 0.12 0.13  -0.1709*** (0.0255)
Share of females 0.26 0.34  -0.4736*** (0.0236)
No previous firm 0.28 0.24  -0.4104*** (0.0428)
Most common occupation:
Manager 0.04 0.06  -0.1260** (0.0571)
Higher education 0.04 0.04 -0.0294  (0.0572)
Clerk 0.03 0.03 0.0633 (0.0579)
Service, care 0.10 0.17 0.0396  (0.0554)
Building, manufacturing 0.04 0.03 -0.0574  (0.0574)
Mechanical, transport 0.11 0.06 0.0581  (0.0554)
Elementary occupation 0.02 0.02 -0.0817  (0.0602)
Industry:
Agriculture, fishing, mining 0.01 0.01 -0.0906**  (0.0406)
Manufacturing 0.17 0.10  0.2257%%F (0.0253)
Construction 0.05 0.06  -0.2065*** (0.0292)
Trade, repair 0.06 0.07  -0.1552*** (0.0270)
Accommodation 0.02 0.03  -0.2239*** (0.0336)
Transport, storage 0.06 0.04 0.1663*** (0.0278)
Financial, real estate 0.08 0.08 -0.0127  (0.0265)
Human health, social work 0.06 0.12  -0.1581*** (0.0298)
Other - public sector 0.04 0.08 -0.2254*** (0.0308)
Other 0.06 0.07  -0.1207*** (0.0277)
Panel L: Unemployment insurance
UL Daily benefit level in SEK 384.11 277.33  0.2316%%* (0.0118)
UL Eligible 0.84 0.83 -0.0134  (0.0136)
UL No benefit claim 0.37 0.54 0.2181*** (0.0238)
UI 1 year before 1271271 13211.32  -0.0086  (0.0054)
UI 2 years before 12779.13 13181.89  0.0056  (0.0059)
Cumulated UI 5 years before 62624.69 63758.25 -0.0929*%** (0.0075)
Panel M: Parents’ previous income
Mother’s past income (age 35-55) 659.10 772.63 -0.0061  (0.0052)
Father’s past income (age 35-55) 856.04  1039.85 -0.0505*** (0.0055)
Missing mother’s past income 0.39 0.34 0.0185  (0.0138)
Missing father’s past income 0.47 042  -0.0517*** (0.0137)
Panel N: Duration dependence
Baseline hazard, part 2 0.2653*** (0.0186)
Baseline hazard, part 3 0.5528*** (0.0161)
Baseline hazard, part 4 0.6408*** (0.0169)
Baseline hazard, part 5 0.6466*** (0.0178)
Baseline hazard, part 6 0.6843*** (0.0166)
Baseline hazard, part 7 0.5186*** (0.0171)
Baseline hazard, part 8 -0.0601*** (0.0162)

Notes: Columns 1-2 report sample averages for the full sample with actual treated and non-treated.
Columns 3-4 estimates and standard errors from the corresponding selection model. *, ** and ***
denote significance at the 10, 5 and 1 percent levels. All earnings and benefits are in SEK and
inflation-adjusted.
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Table 2: Estimated bias of the treatment effect when controlling for different blocks of
covariates

Est. SE
Panel A: Baseline
Baseline socio-economic characteristics 0.0693""  (0.00241)
Calendar time (inflow dummies) 0.1107"  (0.00239)
Region dummies 0.0912  (0.00240)
Local unemployment rate 0.1174™"  (0.00239)
All the above 0.0616™"  (0.00243)
Panel B: Baseline and:
Employment history (last 2 years) and duration -0.0144™"  (0.00244)
Unemployment history (last 2 years) and duration 0.0503""  (0.00243)
Earnings history (last 2 years) 0.0401"  (0.00243)
Welfare benefit history (last 2 years) 0.0469™"  (0.00243)
All of the above -0.0228™"  (0.00244)
Panel C: Baseline, short-term history and:
Employment history (last 10 years) -0.0239™"  (0.00244)
Unemployment history (last 10 years) -0.0289"  (0.00244)
Welfare benefit history (10 years) -0.0190"  (0.00244)
All of the above -0.02417"(0.00244)

Panel D: Baseline, short-term history, long-term history and:

Last wage -0.0266™"  (0.00244)
Last occupation dummies -0.0246™"  (0.00244)
Firm characteristics (last job) -0.0228™"  (0.00245)
Unemployment benefits 0.0153""  (0.00244)
Parents income -0.0231°  (0.00244)
All of the above 0.0090™  (0.00246)

Notes: Estimated biases using the full sample of placebo treated and non-treated with
control for for different blocks of covariates. The number of observations is 2,564,561. Hazard
rate estimates for time in unemployment using a parametric proportional hazard model with
piecewise constant baseline hazard (8 splits). *, ** and *** denote significance at the 10, 5
and 1 percent levels.

38 IFAU — Empirical Monte Carlo Evidence on Estimation of Timing-of-Events Models



Table 3: Estimated bias of the treatment effect when controlling for different short-term labor

market history variables

Est. SE

Baseline 0.0616™"  (0.00243)
Panel A: Employment duration

Time employed in last spell 0.0394™"  (0.00243)
Panel B: Short-term employment rates (2 years)

Months employed in last 6 months 0.0168""  (0.00243)

Months employed in last 24 months 0.0091""  (0.00243)

No employment in last 24 months 0.01217"  (0.00243)

All variables -0.0004 (0.00244)
Panel C: Other short-term employment history (2 years)

Employed 1 year before 0.0160™"  (0.00243)

Employed 2 years before 0.0265"  (0.00243)

Time since last employment if in last 24 months 0.0598™"  (0.00243)

Number of employers in last 24 months 0.0427  (0.00243)

All variables 0.0022 (0.00243)
Panel D: Unemployment duration

Time unemployed in last spell 0.0547"  (0.00243)
Panel E: Short-term unemployment rates (2 years)

Days unemployed in last 6 months 0.0632™" (0.00243)

Days unemployed in last 24 months 0.0616™"  (0.00243)

No unemployment in last 24 months 0.06117"  (0.00243)

All variables 0.0564""  (0.00243)
Panel F: Other short-term unemployment history (2 years)

Days since last unemployment if in last 24 months 0.0616™"" (0.00243)

Number of unemployment spells in last 24 months 0.0560™"" (0.00243)

Unemployed 6 months before 0.0632""  (0.00243)

Unemployed 24 months before 0.0590""  (0.00243)

Any program in last 24 months 0.0618™"  (0.00243)

All variables 0.0539™"  (0.00243)

Notes: All models also include the baseline covariates (socio-economic characteristics, inflow
year dummies, regional indicators and local unemployment rate). Estimated biases using
the full sample of placebo treated and non-treated with control for for different blocks of
covariates. The number of observations is 2,564,561. Hazard rate estimates for time in un-
employment using a parametric proportional hazard model with piecewise constant baseline
hazard (8 splits). *, ** and *** denote significance at the 10, 5 and 1 percent levels.
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Table 4: Bias and variance of the estimated treatment effect for a pre-specified number of
support points and support points according to model selection criteria

Sample size
10,000 40,000 160,000

Bias SE MSE Bias SE MSE Bias SE MSE
1n @ © 4 () (6 ™ ® 9

Panel A: Number of pre-specified support points

1 0.060 (0.039) 0.0052 0.057 (0.020) 0.0037 0.058 (0.009) 0.0034

2 0.027 (0.064) 0.0048 0.022 (0.031) 0.0014 0.023 (0.014) 0.0007

3 0.046 (0.089) 0.0101 0.030 (0.042) 0.0026 0.028 (0.019) 0.0011

4 0.057 (0.098) 0.0128 0.035 (0.043) 0.0031 0.032 (0.021) 0.0015

5 0.062 (0.097) 0.0133 0.037 (0.044) 0.0033 0.033 (0.021) 0.0015

6 0.064 (0.099) 0.0138 0.037 (0.044) 0.0033 0.033 (0.021) 0.0015
Panel B: Model selection criteria

ML 0.064 (0.099) 0.0139 0.037 (0.044) 0.0033 0.033 (0.021) 0.0015

AIC 0.032 (0.076) 0.0068 0.024 (0.036) 0.0018 0.026 (0.018) 0.0010

BIC 0.027 (0.064) 0.0048 0.022 (0.031) 0.0014 0.023 (0.014) 0.0007

HQIC 0.027 (0.064) 0.0048 0.022 (0.031) 0.0014 0.023 (0.014) 0.0007
Panel C: Average # support points, by selection criteria

ML 4.11 3.99 4.10

AIC 2.14 221 2.53

BIC 1.99 2.00 2.00

HQIC 2.01 2.00 2.04

Notes: Estimated bias, variance and mean squared error of the treatment effect from a ToE model with
different specifications of the discrete support point distribution. Simulations using 500 replications
with random drawings from the full sample with placebo treated and placebo non-treated. Hazard
rate estimates for time in unemployment. Each model uses a piecewise constant baseline hazard
(8 splits) and the observed covariates include socio-economic characteristics, inflow year dummies,
regional indicators and local unemployment rate.
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Figure 1: Distribution of the bias of the estimated treatment effect for a pre-specified number
of support points, by number of support points

Mean: 0.0603; Std. Err.: 0.0390
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Note: Distribution of the estimated bias of the treatment effect from a ToE model with different specifications
of the discrete support point distribution. Simulations using 500 replications with 10,000 random drawings from
the full sample of placebo treated and placebo non-treated. Hazard rate estimates for time in unemployment.
Each model uses a piecewise constant baseline hazard (8 splits) and the observed covariates include socio-economic
characteristics, inflow year dummies, regional indicators and local unemployment rate.
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Table 5: Bias and variance of the estimated treatment effect when excluding different sets of
covariates, by model selection criteria and sample size

Exclude more covariates Exclude fewer covariates
Bias SE MSE Bias SE MSE
(1) (2) (3) (4) (5) (6)

Panel A: 10,000 observations

ML 0.091 (0.162) 0.0344 0.073 (0.122) 0.0201

AlIC 0.029 (0.010) 0.0108 0.035 (0.114) 0.0142

BIC 0.024 (0.067) 0.0051 0.005 (0.063) 0.0039

HQIC 0.024 (0.068) 0.0052 0.013 (0.091) 0.0085
Average # support points, by selection criteria

ML 4.78 5.20

AIC 2.34 3.12

BIC 2.00 2.20

HQIC 2.01 2.62
Panel B: 40,000 observations

ML 0.025 (0.068) 0.0053 0.049 (0.060) 0.0060

AlIC 0.009 (0.049) 0.0025 0.029 (0.062) 0.0047

BIC 0.019 (0.034) 0.0015 0.005 (0.039) 0.0016

HQIC 0.018 (0.036) 0.0016 0.010 (0.050) 0.0026
Average # support points, by selection criteria

ML 4.88 5.59

AlIC 2.65 4.22

BIC 2.00 3.16

HQIC 2.04 3.62

Notes: The “exclude more covariates” model excludes baseline socio-economic characteristics and
the “exclude fewer covariates” adds control for short-term earnings history from the baseline model
which includes baseline socio-economic characteristics, inflow year dummies, regional indicators and
local unemployment rate. Estimated bias, variance and mean squared error of the treatment effect
from a ToE model with different specifications of the discrete support point distribution. Simulations
using 500 replications with random drawings from the full sample with placebo treated and placebo
non-treated. Hazard rate estimates for time in unemployment. Each model uses a piecewise constant
baseline hazard (8 splits).
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Table 6: Bias and variance of the estimated treatment effect when augmenting the baseline

model with covariates more or less correlated with those left in the error term

Degree of correlation Positive Small positive Negative
Bias SE MSE Bias SE MSE Bias SE MSE
n @ G 4 () (6 ™ © (9
Correlation 0.278 0.049 -0.257
Panel A: 10,000 observations
ML 0.063 (0.093) 0.0127 0.063 (0.100) 0.0140 0.044 (0.099) 0.0119
AlC 0.035 (0.076) 0.0070 0.033 (0.087) 0.0087 0.021 (0.081) 0.0070
BIC 0.027 (0.060) 0.0043 0.028 (0.070) 0.0057 0.019 (0.065) 0.0046
HQIC 0.027 (0.060) 0.0043 0.029 (0.071) 0.0059 0.017 (0.066) 0.0046
Average # support points, by selection criteria
ML 4.19 4.48 4.27
AIC 2.17 2.28 2.20
BIC 2.00 1.99 1.95
HQIC 2.01 2.01 2.01
Panel B: 40,000 observations
ML 0.042 (0.041) 0.0034 0.036 (0.047) 0.0035 0.019 (0.046) 0.0025
AIC 0.025 (0.036) 0.0019 0.025 (0.045) 0.0026 0.011 (0.039) 0.0016
BIC 0.022 (0.029) 0.0013 0.024 (0.034) 0.0018 0.013 (0.032) 0.0012
HQIC 0.022 (0.030) 0.0014 0.024 (0.035) 0.0018 0.013 (0.032) 0.0012
Average # support points, by selection criteria
ML 3.99 4.62 4.34
AlC 2.24 2.62 2.28
BIC 2.00 2.00 2.00
HQIC 2.01 2.04 2.01

Notes: The three model specifications correspond to the baseline model of Table 4 augmented with
Welfare benefit history (last 2 years), Previous firm most common occupation dummies and Last
occupation dummies, for the positive correlation, small positive correlation and negative correlation
specifications, respectively. Correlation coefficients computed from the outcome model using all actual
treated and control units, by correlating the linear predictor of the covariates included in the model
with the linear predictor of all covariates left in the error term. Estimated bias, variance and mean
squared error of the treatment effect from a ToE model with different specifications of the discrete
support point distribution. Simulations set as for Table 4.
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Table 7: Comparison between the actual and the estimated distribution of the unobserved
heterogeneity for the treatment duration

44

Mean exp(V,) SE exp(V})

Panel A: Actual distribution

0.00056 0.00023
Panel B: Estimated using a fived number of support points
2 0.00047 0.00003
3 0.00047 0.00020
4 0.00046 0.00023
5 0.00047 0.00027
6 0.00047 0.00031
Panel C: Estimated using section criteria
ML 0.00047 0.00030
AIC 0.00047 0.00003
BIC 0.00047 0.00010
HQIC 0.00047 0.00003

Notes: Mean and standard error of the actual and the estimated dis-
tribution of the unobserved heterogeneity for the treatment duration.

The actual distribution is based on linear predictor of the covariates
left in the error term. The estimated distribution is based on the esti-
mated discrete distributions from the ToE models (averaged across 500
replications, each with a sample of 10,000 units). Both the actual and
approximated unobserved heterogeneity distributions include the con-
stant. The ToE model includes baseline socio-economic characteristics,
inflow year dummies, regional indicators and local unemployment rate.
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Table 8: Bias and variance of the estimated treatment effect with time-varying local unem-

ployment rate, by model selection criteria and sample size

Time-varying unemployment rate
Specification Bias SE MSE
(1) (2) (3)
Panel A: 10,000 observations
Number of pre-specified support points

1 0.056 (0.039) 0.0046
2 0.016 (0.066) 0.0046
3 0.056 (0.100) 0.0132
4 0.074 (0.109) 0.0174
5 0.082 (0.108) 0.0185
6 0.084 (0.109) 0.0189
Model selection criteria
ML 0.084 (0.109) 0.0189
AIC 0.033 (0.090) 0.0093
BIC 0.016 (0.066) 0.0046
HQIC 0.017 (0.069) 0.0051
Average # support points, by selection criteria
ML 4.46
AIC 2.25
BIC 1.99
HQIC 2.01
Panel B: 40,000 observations
Number of pre-specified support points
1 0.053 (0.020) 0.0032
2 0.010 (0.032) 0.0012
3 0.036 (0.053) 0.0040
4 0.052 (0.055) 0.0057
5 0.056 (0.053) 0.0060
6 0.057 (0.053) 0.0060
Model selection criteria
ML 0.057 (0.053) 0.0060
AIC 0.026 (0.050) 0.0032
BIC 0.010 (0.032) 0.0012
HQIC 0.011 (0.035) 0.0014
Average # support points, by selection criteria
ML 4.69
AIC 2.40
BIC 2.00
HQIC 2.01

Notes: Simulations with 10,000 observations. Estimated bias, variance and mean squared
error of the treatment effect from a ToE model with different specifications of the discrete
support point distribution. Simulations using 500 replications with random drawings from
the full sample with placebo treated and placebo non-treated. Hazard rate estimates for
time in unemployment. Each model uses a piecewise constant baseline hazard (8 splits).
The ToE model also includes baseline socio-economic characteristics, inflow year dummies,
regional indicators and local unemployment rate.
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