
 
WORKING PAPER 2020:4 

 
 
 
 
 
Semi-parametric estimation of 
multi-valued treatment 
effects for the treated: 
estimating equations and 
sandwich estimators 
  
 
Johan Zetterqvist  
Ingeborg Waernbaum 
  
  

 
 

 



 

 
 

The Institute for Evaluation of Labour Market and Education Policy (IFAU) is 
a research institute under the Swedish Ministry of Employment, situated in 
Uppsala. 
 
IFAU’s objective is to promote, support and carry out scientific 
evaluations. The assignment includes: the effects of labour market and 
educational policies, studies of the functioning of the labour market and 
the labour market effects of social insurance policies. IFAU shall also 
disseminate its results so that they become accessible to different 
interested parties in Sweden and abroad. 
 
Papers published in the Working Paper Series should, according to the 
IFAU policy, have been discussed at seminars held at IFAU and at least 
one other academic forum, and have been read by one external and one 
internal referee. They need not, however, have undergone the standard 
scrutiny for publication in a scientific journal. The purpose of the Working 
Paper Series is to provide a factual basis for public policy and the public 
policy discussion. 

 
More information about IFAU and the institute’s publications can be found 
on the website www.ifau.se 
 

ISSN 1651-1166 

 

 
 
 
 
 

 



Semi-parametric estimation of multi-valued treatment
effects for the treated: estimating equations and

sandwich estimatorsa

by

Johan Zetterqvistb and Ingeborg Waernbaumc

February 14, 2020

Abstract
An estimand of interest in empirical studies with observational data is the average treat-
ment effect of a multi-valued treatment in the treated subpopulation. We demonstrate 
three estimation approaches: outcome regression, inverse probability weighting and in-
verse probability weighted regression, where the latter estimator holds a so called doubly 
robust property. Here, we define the estimators in the framework of partial M-estimation 
and derive corresponding sandwich estimators of their variances. The finite sample prop-
erties of the estimators and the proposed variance estimators are evaluated in simulations 
that reproduce designs from a previous simulation study in the literature of multi-valued 
treatment effects. The proposed variance estimators are investigated and compared to a 
bootstrap estimator.
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1 Introduction
A natural extension when considering causal parameters for a binary treatment is to define

treatments with more than two treatment levels, which we refer to as a multi-valued treat-

ment in the sequel. In this setting when there are three, or more levels of the treatment, the

causal effect parameters are usually defined as contrasts between two levels of the treat-

ment, see e.g. the review by Imbens and Wooldridge (2009). Estimators of multi-valued

treatment effects have been previously proposed and compared (Cattaneo, 2010; Linden

et al., 2016; Yang et al., 2016). For estimators using the probability of treatment given

the covariates, the propensity score is replaced with the extended generalized propensity

score (GPS), a function of the covariates predicting the discrete levels of the treatment

(Imbens, 2000; Imai and Van Dyk, 2004; Feng et al., 2012).

An estimator using a GPS weighted outcome regression model was proposed by Uysal

(2015) for the average causal effect and the average causal effect of the treated (ATT).

The estimator, henceforth referred to as the weighted ordinary least squares (WOLS)

estimator, uses parametric model assumptions for the outcome regression and the GPS

and is doubly robust, meaning that it is consistent for the true treatment effect if at least

one of the two models is correctly specified, see e.g. Bang and Robins (2005); Seaman

and Vansteelandt (2018); Tan (2010) for overviews on doubly robust estimators.

In this paper we demonstrate three estimators for the average treatment effect of the

treated: 1) an outcome regression estimator, the ordinary least squares (OLS) estimator,

2) an inverse-probability weighting estimator (IPW), and 3) the GPS-weighted OLS es-

timator WOLS. We present the regression and IPW estimator(s) for the average causal

effect of the treated in Uysal (2015) in the framework of partial M-estimators (Boos and

Stefanski, 2013, Chapter 7). Under an assumption of multinomial logistic regression for

the generalized propensity score and linear regression for the outcome we give estimat-

ing equations for the treatment effect estimators and derive their corresponding sandwich

matrices. The M-estimation framework makes it straightforward to extend the estimators

to also include estimation of several ATT parameters, thus making inference on functions

of ATT parameters possible.
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Using two simulation designs by Yang et al. (2016) we study the finite sample per-

formance of the estimators and the sandwich estimators of their respective variance. We

compare the bias and root mean squared error (RMSE) of OLS, IPW, and WOLS using

combinations of correctly and incorrectly specified models for the outcome regression and

GPS. Further, we compare the proposed sandwich estimator with a bootstrap estimator.

As a reference, we compare these values with the empirical standard errors calculated over

the simulations. Finally, we construct 95% Wald confidence intervals (CI) and evaluate

the coverage probabilities.

2 Model and Theory – parameters of interest
We consider a sample of N individuals indexed by i = 1, . . . ,N and a discrete treatment

t with levels t ∈ T = {0,1, . . . ,K}. We let the random variable Ti represent the received

treatment for individual i and use the treatment indicator Di(t) = I(Ti = t) which is equal

to 1 if individual i received treatment t and 0 otherwise. To denote the number of individ-

uals with factual treatment level t, we use Nt = ∑
N
i=1 Di(t). The potential outcomes Yi(t)

are defined for the corresponding treatment levels and we assume consistency, i.e., the ob-

served outcome is the potential outcome under the level of treatment received Yi = Yi(Ti).

We use Xi to denote a vector of covariates, which is observed for each individual i. We

also assume that every Xi are measured before treatment assigment, i.e. before Ti is re-

alized. To simplify notation, we will let 1 be the first element of Xi. Finally we let Oi

denote the observed vector Oi = (Yi,Ti,Xi). Henceforth, we will drop the index i when

not needed. We follow the notation in Uysal (2015) and define the parameter of interest as

the average causal effect of treatment l vs m for some l,m ∈T . Here, we use the notation

µl = E[Y (l)] and µm = E[Y (m)], for the expected potential outcomes when the treatment

level is set to l and m respectively. The average treatment effect of l versus m is denoted

τlm = E [Y (l)−Y (m)] = µl−µm.

Similarly, the average potential outcomes when the treatment level is set to l and m among

individuals with factual treatment level l are denoted µl|l = E[Y (l)|T = l] and µm|l =
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E[Y (m)|T = l] respectively. The average treatment effect of treatment l versus m for the

population receiving treatment T = l can then be written as

γlm|l = µl|l−µm|l = E [Y (l)−Y (m) | T = l] .

We will henceforth use l to denote the reference level of the treatment assumed in estima-

tion of the ATT parameter. Throughout we use

Assumption 1 [consistency rule]

For each individual, T = t =⇒ Y = Y (t).

We will also use

Assumption 2 [No unmeasured confounding]

Y (m)⊥⊥ D(t)|X for t = l,m ,

where m is the level of T considered as treated in the ATT parameter. We note that a

similar unconfoundedness assumption was used by Słoczyński and Wooldridge (2018),

but we made the assumption slightly weaker in that we only require the conditional in-

dependence to hold for the levels l and m involved in the target parameter γlm|l . We also

assume overlapping distributions

Assumption 3 [Overlap]

η < P(T = t|X), for some η > 0, all X and each t ∈T .

where P(T = t|X) is the GPS, i.e. the probability of receiving treatment t conditional on

the covariates. It follows from Assumptions 1 and 2 that

µt|l = E [Y (t)|T = l] = E [E(Y |T = t,X) |T = l] .

When Assumption 3 holds, the ATT parameter γlm|l = µl|l−µm|l is therefore nonparamet-

rically identified from the data. Using a linear regression model

Assumption 4 [Outcome regression model]

µt(X ;βt) = X ′βt for t ∈T

IFAU – Semi-parametric estimation of multi-valued ATTs 5



for E(Y |X ,T = t), we can also parametrically identify γlm|l , since

γlm|l = µl|l−µm|l = E [µl(X ;βl)−µm(X ;βm) | T = l]

We will write µ̂t(X) to denote an estimator µt(X ; β̂t) of E[Y |X ,T = t], where β̂t is an

estimator of βt . As shown in Appendix A, it follows from Assumptions 1 and 2 that

µt|l =
1

Pr(T = l)
E
[

Pr(T = l | X)

Pr(T = t | X)
D(t)Y

]
,

for t ∈ {l,m}. With Assumptions 1 - 3 and a model for the GPS Pr(T = l | X), it is

therefore possible to parametrically identify γlm|l = µl|l − µm|l from the observed data,

without model assumptions about E(Y | T = t,X) for t = l,m. Following the notation in

Uysal (2015), we use r(t,X) to denote a parametric model for the GPS, Pr(T = t|X ;δ ),

indexed by a parameter δ = (δ0,δ1, . . . ,δp). In this paper, we assume that the GPS follows

the multinomial logistic regression model:

Assumption 5 [GPS model]

r(t,X) = Pr(T = t|X ;δ ) =
∑

K
s=1 I(t = s)exp(X ′δs)

∑
K
s=1 exp(X ′δs)

,

where δ0 ≡ 0. We will write r̂(t,X) = Pr(T = t|X ; δ̂ ) for an estimator of r(t,X) based on

an estimator δ̂ of δ and observed covariates X . We note that the method does not require

this particular model assumption for GPS and that an extension to other models, e.g. an

ordered logit model, is straight-forward.

3 Estimators
In the following we study three estimators of γlm|l , the average treatment effect of treat-

ment l versus treatment m for the population taking treatment l. Using the framework of

M-estimators (Boos and Stefanski, 2013, Chapter 7), we use M-estimators for the param-

eters in the GPS-model in Assumption 5 and for the parameters in the outcome regression

model in Assumption 4. By combining these estimators with partial estimators for the
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parameter γlm|l , we derive an IPW-based estimator, an outcome regression estimator and

a doubly robust estimator. Technically, this is achieved by stacking estimating equations

for the components of γ̂lm|l to construct full M-estimators for γlm|l . The doubly robust

estimator combines the IPW-based estimator and the outcome regression estimator for

γlm|l in such a way that it is consistent for the true value of γlm|l when at least one, not

necessarily both, models are correctly specified and when the corresponding partial M-

estimator is consistent for the true value of the parameter. The estimator thus provides

some protection against bias due to model misspecification of either the GPS model or

the outcome regression model.

We first define an outcome regression estimator of µt|l , for t, l ∈T , as

µ̂
ols
t|l = X̄ ′l β̂t

where X̄l = ∑
N
i=1 Di(l)Xi

/
Nl and where β̂t is the OLS estimator of the outcome regression

model parameter βt in Assumption 4 using observations where D(t) = 1. We define an

estimator γ̂ols
lm|l for the parameter γlm|l as

γ̂
ols
lm|l = µ̂

ols
l|l − µ̂

ols
m|l = X̄ ′l (β̂l− β̂m).

The estimating function corresponding to γ̂ols
lm|l , β̂l , and β̂m, as defined above, can be writ-

ten as

Mols(O;γlm|l,βl,βm) =


Mols−att(O;γlm|l,βl,βm)

Mols−l(O;βl)

Mols−m(O;βm)

 ,
where

Mols−att(O;γlm|l,βl,βm) = D(l)
[
γlm|l−X ′(βl−βm)

]
and where

Mols−t(O;βt) = D(t)X
[
Y −X ′βt

]
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are the OLS estimating functions for βt , for t = l,m. As shown in Section 4, the solution

(γ̂ols
lm|l, β̂l, β̂m) to the estimating equation

N

∑
i=1

Mols(Oi;γlm|l,βl,βm) = 0 (1)

is a consistent and asymptotically normally distributed estimator of the true parameter

vector (γlm|l,βl,βm) indexing the distribution for the data generating process when the

outcome model in Assumption 4 is correctly specified.

Next, we define weights

w(t, l) = D(t)
r(l,X)

r(t,X)
(2)

based on the working model in Assumption 5 for the GPS. Using (2), we can now define

an IPW-based estimator

µ̂
ipw
t|l =

1
Nl

N

∑
i=1

ŵi(t, l)Yi,

of µt|l , for t ∈ {l,m}, where

ŵi(t, l) = Di(t)
r̂(l,Xi)

r̂(t,Xi)

are estimated weights based on maximum likelihood estimators r̂(l,Xi) and r̂(t,Xi) of

the GPS r(l,Xi) and r(t,Xi) as defined in Assumption 5, for t ∈ {l,m}. We note that

wi(l, l) = Di(l) . Given µ̂
ipw
m|l and µ̂

ipw
l|l , an IPW estimator of the average treatment effect

among the treated γlm|l can be written as

γ̂
ipw
lm|l = µ̂

ipw
l|l − µ̂

ipw
m|l .

The estimating function corresponding to γ̂
ipw
lm|l can be written as

Mipw(O;γlm|l,δ ) =

Mipw−att(O;γlm|l,δ )

Mgps(O;δ )

 ,

8 IFAU – Semi-parametric estimation of multi-valued ATTs



where

Mipw−att(O;γlm|l,δ ) = D(l)γlm|l−D(l)Y +w(m, l)Y, (3)

where w(m, l) is defined as in (2) with t = m, and where

Mgps(O;δ ) =


X [D(1)− r(1,X)]

...

X [D(K)− r(K,X)]

 (4)

is the maximum likelihood score function for δ in the GPS-model in Assumption 5. In

Section 4, we show that the solution (γ̂ ipw
lm|l, δ̂ ) to the estimating equation

N

∑
i=1

Mipw(Oi;γlm|l,δ ) = 0, (5)

is a consistent estimator of the true parameters indexing the distribution for the data gen-

erating process when the GPS model in Assumption 5 is correctly specified.

Finally, we define the doubly robust estimator, WOLS, of γlm|l . The estimator is ob-

tained using weighted least squares estimators β̂ ∗l and β̂ ∗m of βl and βm, respectively. See

also Equation 23 in Uysal (2015). We define a doubly robust estimator of γlm|l as

γ̂
wols
lm|l = X̄ ′l (β̂

∗
l − β̂

∗
m).

The full estimating function corresponding to γ̂wols
lm|l can be written as

Mwols(O;γlm|l,βl,βm,δ ) =


Mwols−att(O;γlm|l,βl,βm)

Mwols−l(O;βl,δ )

Mwols−m(O;βm,δ )

Mgps(O;δ )

 ,

where

Mwols−att(O;γlm|l,βl,βm) = D(l)
[
γlm|l−X ′(βl−βm)

]

IFAU – Semi-parametric estimation of multi-valued ATTs 9



is the estimating function for γlm|l ,

Mwols−t(βt ,δ ) = Xw(t, l)
(
Y −X ′βt

)
is the WOLS estimating function for βt , t = l,m and Mgps(δ ) is the ML score function

for δ as defined in (4).

As demonstrated in Uysal (2015), the estimator γ̂wols
lm|l , obtained as the first element of

the solution (γ̂wols
lm|l , β̂

∗′
l , β̂ ∗

′
m , δ̂ ′)′ to the estimating equation

N

∑
i=1

Mwols(Oi;γlm|l,βl,βm,δ ) = 0, (6)

is a doubly robust estimator of E [Y (l)−Y (m)|T = l]. This means that, given that assump-

tions 1, 2 and 3 hold γ̂wols
lm|l is consistent for E [Y (l)−Y (m)|T = l] when one of the model

assumptions 4 and 5 holds, not necessarily both.

4 Large sample properties of the estimators
In order to show that the estimators are consistent and asymptotically normal, we utilize

theory of M-estimation (Boos and Stefanski, 2013).

According to standard theory of M-estimation, given an estimating function M(O;θ),

observations O1, . . . ,ON , and a distribution PO such that the solution θ0 to the equation

∫
M(o;θ)dPO(o) = 0 (7)

exists and is unique, the solution θ̂ to the estimating equation

N

∑
i=1

M(Oi;θ) = 0 (8)

is a consistent estimator of θ0 when PO is the true distribution underlying the observed

data. Further,
√

N(θ̂ −θ0) is asymptotically normal with variance Σ that can be consis-
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tently estimated by

Σ̂N =
[
AN(θ̂)

]−1
BN(θ̂)

{[
AN(θ̂)

]−1
}′

, (9)

where

AN(θ̂) =
1
N

N

∑
i=1

∂M(Oi;θ)

∂θ

∣∣∣∣
θ=θ̂

(10)

and

BN(θ̂) =
1
N

N

∑
i=1

M(Oi; θ̂)M(Oi; θ̂)′. (11)

The expression Σ̂N/N is usually referred to as the sandwich estimator of the variance of

θ̂ . We note that this variance estimator is correct for the true value of the variance of θ̂ ,

assuming that there exists a unique solution to

E [M(O;θ)] =
∫

M(o;θ)dPO(o) = 0. (12)

This is then true regardless of what model assumptions the estimating functions M are

based on. When one or more of the model assumptions are incorrect, we may not be able

to interpret θ̂ as an estimator of a parameter in our assumed model. However, the variance

estimator in (9) is still consistent for Σ.

In the next section, we verify consistency for the estimators γ̂ols
lm|l , γ̂

ipw
lm|l , and γ̂wols

lm|l , de-

fined as first elements of the solutions to estimating equations of the form (8), by veri-

fying that the corresponding equations of the form (7) hold when PO, indexed by θ , is

the distribution for the data generating process. Although consistency of γ̂ols
lm|l , γ̂

ipw
lm|l , and

γ̂wols
lm|l , have been shown elsewhere, no expression for the asymptotic variance of γ̂

ipw
lm|l , and

γ̂wols
lm|l have previously been presented. By stacking estimating equations corresponding to

partial M-estimators, we derive analytical expression for the asymptotic variance of the

estimators.

4.1 Consistency of γ̂ols
lm|l, γ̂

ipw
lm|l, and γ̂wols

lm|l

Throughout this section, we assume that Assumptions 2 and 3 hold. We first assume that

the outcome regression model assumption in 4 is correctly specified with true parameters

IFAU – Semi-parametric estimation of multi-valued ATTs 11



βl and βm. It now follows from standard theory of least squares estimation that

E
[
Mols−t(O;βt)

]
=
∫

Mols−t(o;βt)dPO(o) = 0

for any distribution PO such that Assumption 4 hold for t = l,m. It also follows from

Assumption 4 that

E
[
D(l)X ′βt

]
= Pr(T = l)E

(
X ′βt |T = l

)
= Pr(T = l)E [Y (t)|T = l]

for t ∈T . It follows that

E
[
Mols−att(O;γlm|l,βl,βm)

]
= Pr(T = l)

{
γlm|l−E [Y (l)−Y (m)|T = l]

}
= 0,

when γlm|l is the true parameter. We conclude that

E[Mols(O;γlm|l,βl,βm) = 0.

Therefore, the solution (γ̂ols
lm|l, β̂l, β̂m) to the estimating equations

N

∑
i=1

Mols(Oi;γlm|l,βl,βm) = 0

is a consistent estimator for the true parameter vector (γlm|l,βl,βm) for the data generating

process. Thus, the estimator γ̂ols
lm|l is consistent for γlm|l .

Next, we assume that the distribution PO is such that the GPS model in Assumption 5

is correctly specified, with δ being the true parameter vector for the GPS. It follows from

standard theory of maximum likelihood estimation that

E [Mgps(O;δ )] =
∫

Mgps(o;δ )dPO(o) = 0.

12 IFAU – Semi-parametric estimation of multi-valued ATTs



In Appendix A, we further demonstrate that E
[
Mipw−att(O;γlm|l,δ )

]
= 0 when (γlm|l,δ )

is the true parameters for the data generating process. We conclude that the solution to

(γ̂ ipw
lm|l, δ̂ ) to the estimating equations

N

∑
i=1

Mipw(Oi;γlm|l,δ ) = 0

is consistent for the true value of the parameter vector (γlm|l,δ ) for the data generating

process.

As shown in Appendix A,

E
[
Mwols−att (O;γlm|l,βl,βm,δ

)]
= 0

when the GPS model in Assumption 5 is correct with true parameter value δ or when the

outcome model in Assumption 4 is correctly specified with true parameter values βl and

βm. Under mild conditions the equation

E
[
Mols−t(O;βt)

]
= 0

has a solution β ∗t , for t = l,m, regardless of whether the outcome model Assumption 4 is

correct or not. Likewise, the equation

E [Mgps(O;δ )] = 0

has a solution δ ∗, regardless of whether the GPS model Assumption 5 is correct or not.

It follows that the first component γ̂wols
lm|l of the solution (γ̂wols

lm|l , β̂
∗
l , β̂

∗
m, δ̂ ) to the estimating

equations
N

∑
i=1

M(Oi;γlm|l,βl,βm,δ ) = 0

is consistent for the true value of the ATT parameter γlm|l when at least one of the models

in Assumptions 4 and 5 is true, not necessarily both. We conclude that γ̂wols
lm|l is doubly

IFAU – Semi-parametric estimation of multi-valued ATTs 13



robust.

4.2 Asymptotic variance

In order to derive the asymptotic variances of the estimators γ̂ols
lm|l , γ̂

ipw
lm|l , and γ̂wols

lm|l , we need

the gradients of (1), (5), and (6), with respect to their parameters.

The asymptotic variance of γ̂ols
lm|l

The gradient of Mols(Oi;γlm|l,βl,βm) with respect to the vector (γlm|l,β
′
l ,β
′
m) can be writ-

ten as

∂Mols(Oi;γlm|l,βl,βm)

∂ (γlm|l,β
′
l ,β
′
m)

=


Di(l) −Di(l)X ′i Di(l)X ′i

0 −Di(l)XiX ′i 0

0 0 −Di(m)XiX ′i

 .
By substituting Mols for M, (γlm|l,β

′
l ,β
′
m) for θ ′, and (γ̂lm|l, β̂

′
l , β̂
′
m) for θ̂ in (10) and (11),

an estimator of the variance of γ̂ols
lm|l can be obtained as the first diagonal element of Σ̂N/N,

where Σ̂N is defined as in (9).

The asymptotic variance of γ̂
ipw
lm|l

The gradient of Mipw(Oi;γlm|l,δ ) with respect to (γlm|l,δ
′) can be written as

∂Mipw(Oi;γlm|l,δ )

∂ (γlm|l,δ ′)
=

Di(l)
∂Mipw−att(Oi;γlm|l ,δ )

∂δ ′

0 ∂Mgps(Oi;δ )
∂δ ′

 , (13)

where

∂Mipw−att(Oi;γlm|l,δ )

∂δ ′
=

[
∂Mipw−att(Oi;γlm|l ,δ )

∂δ ′1
. . .

∂Mipw−att
i (Oi;γlm|l ,δ )

∂δ ′K

]

with

∂Mipw−att(Oi;γlm|l,δ )

∂δ ′s
=


X ′i wi(m, l)Yi for s = l

−X ′i wi(m, l)Yi for s = m

0 otherwise

,

for s ∈ T and where ∂Mgps(Oi;δ )
∂ δ̂ ′

is the gradient of the estimating function corresponding

to the GPS model with respect to the GPS parameter δ . In Appendix A, we derive an
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expression for ∂Mgps(Oi;δ )
∂ δ̂ ′

when Mgps is the maximum likelihood score function for the

multinomial model defined in Assumption 5. By substituting Mipw for M, (γlm|l,δ
′) for

θ ′, and (γ̂lm|l, δ̂
′) for θ̂ in (10) and (11), an estimator of the variance of γ̂

ipw
lm|l can be

obtained as the first diagonal element of Σ̂N/N, where Σ̂N is defined as in (9).

The asymptotic variance of γ̂wols
lm|l

The gradient of Mwols(Oi;γlm|l,βl,βm,δ ) with respect to (γlm|l,β
′
l ,β
′
m,δ

′) can be written

as

∂Mwols(Oi;γlm|l,βl,βm,δ )

∂ (γlm|l,β
′
l ,β
′
m,δ

′)

=


Di(l) −Di(l)X ′i Di(l)X ′i 0

0 −Di(l)XiX ′i 0 0

0 0 −wi(m, l)XiX ′i
∂Mwols−m(Oi;γlm|l ,βl ,βm,δ )

∂δ ′

0 0 0 ∂Mgps(Oi;δ )
∂δ ′

 (14)

where

∂Mwols−m(Oi;γlm|l,βl,βm,δ )

∂δ ′s
=


wi(m, l)XiX ′i (Yi−X ′i βm) when s = l

−wi(m, l)XiX ′i (Yi−X ′i βm) when s = m

0 otherwise

,

for s∈ {1, . . . ,K}. As for the IPW estimator γ̂
ipw
lm|l , Mgps(Oi;δ ) is the maximum likelihood

score function based on the GPS model in Assumption 5. By substituting Mwols for M,

(γlm|l,β
′
l ,β
′
m,δ

′) for θ ′, and (γ̂lm|l, β̂
′
l , β̂
′
m, δ̂

′) for θ̂ in (10) and (11), an estimator of the

variance of γ̂wols
lm|l can be obtained as the first diagonal element of Σ̂N/N, where Σ̂N is

defined as in (9).

5 Simulation studies
To assess the properties of the WOLS estimator and the sandwich estimator of its vari-

ance, we performed two simulation studies comparing the WOLS estimator with the IPW
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and the OLS estimator. For the purpose of transparency, we used a study design from a

previous study (Yang et al., 2016).

5.1 Model for the pretreatment variables

In both simulation studies, the pretreatment variables were simulated under the model

(X1,X2,X3) ∼ MVN(0,Σ)

Σ =


2 1 −1

1 1 −0.5

−1 −0.5 1


X4 ∼ U(−3,3)

X5 ∼ χ2(1)

X6 ∼ Be(0.5)

X = (1,X1,X2,X3,X4,X5,X6)

.

Treatment levels were then simulated according to a multinomial model

T ∼ Multinom[p(t0|X), p(t2|X), . . . , p(tK|X)]

p(t|X) = exp(X ′δt)/∑
K
s=0 exp(X ′δs) for t = 0,1, . . . ,K

for coefficient vectors δ0,δ1, . . . ,δK , with δ0 ≡ 0. For each treatment level t, we also

simulated a potential outcome

Y (t) = X ′βt + ε

ε ∼ N(0,1),

for some parameter vectors β0, . . . ,βK . We let Y = ∑
K
t=0 I{T = t}Y (t) represent the ob-

served outcome. For each sample, the ATT parameter of interest, γlm|l was calculated

using OLS, IPW and WOLS. For IPW and WOLS, we either used the correct working

models

δt0 +δt1X1 +δt2X2 +δt3X3 +δt4X4 +δt5X5 +δt6X6
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or the incorrect working models

δt0 +δt1X1 +δt2X2 +δt3X3 +δt5X5

for the linear predictor in the multinomial distribution for each treatment level t. Similarly,

for OLS and WOLS, we either used the correct working models

βt0 +βt1X1 +βt2X2 +βt3X3 +βt4X4 +βt5X5 +βt6X6

or the incorrect working models

βt0 +βt1X1 +βt2X2 +βt3X3 +βt5X5

for the linear predictor in the outcome regressions models for each treatment level t. In

both misspecified models, we thus left out the uniformly distributed covariate X4 and the

Bernoulli distributed covariate X6. Since both of these variables are uncorrelated with the

other covariates, we expect this misspecification to cause biased estimates of γlm|l . Since

we are replicating previous simulation studies containing only first order terms in the

data generating process, we choosed to misspecifiy the working models by omitting con-

founding variables instead of misspecifying the functional forms of the models, thereby

generating more substantial bias when the working models are misspecified. For each

combination of working models and estimation methods the mean bias, the mean esti-

mated standard error, and the root mean sqare error (RMSE) of γ̂lm|l were calculated over

the samples. For comparison, the nonparametric bootstrap standard error of of γ̂lm|l was

calculated for each sample based on 500 bootstrap replicates for each sample. We used

the empirical standard errors calculated over the simulations as approximations of the true

standard errors, and compared these values with the mean estimated and the mean boot-

strap standard errors. For each sample and each model, a Wald-based 95% confidence

interval was calculated using both the sandwich and the bootstrap estimates of the stan-

dard error. The coverage probabilities were calculated for the two kinds of confidence

intervals. In the calculations of the RMSE and the coverage probabilities, the true value
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of γlm|l was approximated by using simulated values of Y (l) and Y (m) among those with

treatment level T = l in a sample with 10,000,000 observations.

5.2 Simulation study 1

In the first simulation study, we simulated three treatment levels according to the multi-

nomial model

T ∼ Multinom[p(0|X), p(1|X), p(2|X)]

p(t|X) = exp(X ′δt)/∑
2
s=0 exp(X ′δs) for t = 0,1,2

δ0 = (0,0,0,0,0,0,0)

δ1 = 0.7× (0,1,1,1,−1,1,1)

δ2 = 0.4× (0,1,1,1,1,1,1).

In contrast to the simulation study by Yang et al. (2016), we did not fix the numbers

of treated for each treatment level. Instead, the proportions were determined from the

pretreatment variables X and the conditional distribution of T given X . When using the

model in Subsection 5.1 for the pretreatment variables X1, . . . ,X6, we get the marginal

probabilities p(T = 0)≈ 0.19, p(T = 1)≈ 0.48 and p(T = 2)≈ 0.33.

The potential outcomes were simulated using the linear model

Y (t) = X ′βt + ε

ε ∼ N(0,1)

β0 = (−1.5,1,1,1,1,1,1)

β1 = (−3,2,3,1,2,2,2)

β2 = (1.5,3,1,2,−1,−1,−1).

This gave us the theoretical values

γ10|1 = E[Y (1)−Y (0)|T = 1] ≈ −0.00970

γ20|2 = E[Y (2)−Y (0)|T = 2] ≈ −2.35

γ21|2 = E[Y (2)−Y (1)|T = 2] ≈ −3.55
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of the ATT parameters. For each observation, we let Y = ∑
2
t=0 I{T = t}Y (t) represent the

observed outcome. Using this design 1000 samples of 1000 observations were generated.

For each sample we estimated γ10|1, γ20|2, and γ21|2 using OLS, IPW and WOLS using

both correctly and incorrectly specified models. The results are shown in Tables 1, 3,

and 5. When the outcome model is correctly specified, the OLS estimators of the ATT

parameters γ10|1, γ20|2, and γ21|2 are unbiased, which we see in the first row in Tables 1, 3,

and 5. The mean estimates of the standard errors obtained from the sandwich estimator

are close to the mean bootstrap standard errors and the empirical standard errors. This

results in coverage probabilities close to 0.95 and a low RMSE for all three ATT param-

eter estimates. When the working model for the outcome is misspecified, the parameter

estimates from OLS are severely biased. The estimated standard errors are still close to

the empirical and the bootstrap standard errors. However, a consequence of the biases is

small coverage probabilities for the CI:s and high RMSE:s.

When both the exposure model and the outcome model are correctly specified, the IPW

estimator of the ATT parameters is more biased compared to the OLS estimator, particu-

larly for the smaller sample size. Further, the standard errors from the sandwich estimator

is substantially smaller than both the bootstrap and the empirical standard error, indicating

that the sandwich estimator might yield optimistic inference. This is most clearly seen in

Tables 1 and 3, where the biases are larger for the IPW estimator compared to the OLS

estimator. Since the estimated standard error is also underestimated, this results in confi-

dence intervals with less than 95% coverage. Interestingly, the OLS and IPW estimates

are more similar when their respective models are incorrectly specified.

When both the exposure and outcome models are correctly specified, the bias of the

WOLS estimator is similar to the bias obtained from OLS. We see only a slight increase

in RMSE. The mean standard error of γ̂10|1 is slightly overestimated by the sandwich es-

timator, but remains close to both the mean bootstrap and the empirical standard error

for γ̂20|2 and γ̂21|2. Thus the coverage probabilities of the 95% CI:s is also close to the

nominal values.
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The same is true when only the outcome model is correct, with similar results as when

both models are correct. Thus the misspecification of the exposure model only had a mi-

nor impact on the bias and the variance.

In contrast, when only the exposure model is correctly specified, we see an increase in

bias of both the ATT estimates and their variances for WOLS. The results are slightly

worse than the corresponding results using IPW with correct exposure model. However,

since the standard error of the WOLS estimator is smaller than the IPW standard error,

we see a decrease in RMSE for the WOLS estimator compared to the IPW estimator in

this case.

When both working models are incorrectly specified, the bias of the WOLS estimator

for the ATT parameters are similar to the corresponding ones for OLS and IPW.

To see in what extent the observed biases in the estimates of the ATT parameters and

their standard errors decreased with larger sample size, we repeated simulation study 1

with n = 5000. The results are shown in Tables 2, 4, and 6. The larger sample sizes con-

tributed to smaller mean biases and smaller empirical standard errors, resulting in smaller

RMSE for all estimators.

Again, we see that the results for OLS and WOLS are very similar when the outcome

working model is correctly specified. The RMSE:s for the WOLS ATT estimates are only

slightly larger compared to the corresponding OLS ATT estimates. Both the sandwich

and the bootstrap estimates of the standard errors are close to the empirical standard error.

Thus the coverage probabilities are close to 95%.

Compared to the smaller sample size, the bias of the IPW estimator is reduced when

the exposure model is correctly specified. The sandwich estimates of the standard errors

remain underestimated, resulting in coverage probability lower than 95%. This is most
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prominent in Table 2 for γ10|1. However, the sandwich estimates of the standard error are

similar to the bootstrap estimates.

When only the exposure model is correctly specified, also the WOLS estimator is less

biased. Since this estimator has lower standard error compared to the IPW estimator, the

RMSE is also smaller. However, the bias of the sandwich estimator remains. Therefore

the coverage probability of a 95% CI is smaller than 95%.

When both working models are incorrect, the bias and RMSE is similar for all estima-

tors of the ATT parameters.

The instability of IPW-based estimators have been noted by several authors (Little and

Rubin, 2019; Lefebvre et al., 2008; Cole and Hernán, 2008). This is mainly caused by

few observations in some strata, leading to small values of the propensity scores for some

strata, which in turn leads to large IPW weights for these observations. These observa-

tions will therefore have a large impact on the estimate. The IPW and WOLS estimators

of the ATT parameters and their standard errors depend on the weights

w(m, l) = D(m)
r(l,X)

r(m,X)

for m = 0,1,2 and reference levels l = 1,2. Observations with T = l will have weights

w(l, l) = 1, regardless of whether the working exposure model is correct or not. Obser-

vations with T = 0 will have weights that depend on the working exposure model as well

as the estimated values of r(l,X) and r(m,X). Observations where r(l,X) is small and

where r(m,X) is large will have a small impact on the ATT estimates and their standard

errors. Observations where r(l,X) is large and where r(m,X) is small will have a large

impact on the ATT estimates and theirs standard errors. This has a direct analogue to

propensity scores close to 0 when estimating the ATE and when the treatment is binary.

In Figures 1, 2, and 3 we see the distribution of the logarithms of weights ŵ(0,1), ŵ(0,2),

and ŵ(1,2) used in the IPW and WOLS estimators of γ10|1, γ20|2, and γ21|2, respectively,
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when the exposure model is correctly specified. Since some weights had very large val-

ues, the logarithms of the weights were used instead. Only non-zero values of ŵ(l,m)

were exluded. We see a few influential values in the graphs, particularly in Figure 1. The

largest value of ŵ(1,0) is 137, corresponding to a value of 4.9 for log[ŵ(1,0)]. We also

observe some influential values for log[ŵ(2,0)] and log[ŵ(2,1)] in Figures 2 and 3, re-

spectively. In the histograms, we see a lot of small values, particularly in Figures 2 and 3.

These observations have very little impact on the IPW and WOLS estimates of the ATT

parameters. It is also of interest how misspecification of the working exposure model

influences the weights, since such weights are used for the estimation of some values in

Tables 1-6. In particular, such weights will affect the properties of the WOLS estima-

tor, which is consistent as long as the working outcome model is correct. Therefore, we

also plotted the distribution of the logarithms of the weights under exposure model mis-

specification in Figures 4, 5, and 6. The results are similar to the ones in Figures 1, 2,

and 3, where a number of large influential values are seen for log[ŵ(0,1)] and log[ŵ(0,2)].

The weights w(m, l) depend on the conditional probabilities Pr(T = m|T ∈ {m, l},X).

In particular, the IPW estimator is expected to be sensitive to values of Pr(T = m|T ∈

{m, l},X) close to 0. Therefore, in Appendix B, we have added plots of estimates P̂r(T =

m|T ∈{l,m},X) of these probabilities, along with their complements P̂r(T = l|T ∈{l,m},X),

for each ATT parameter γlm|l using either the correct or the incorrect working model for

the exposure, see Figures 11, 12, and 13. Since only individuals with T = m contribute to

the estimators, we only show these observations. In Figures 11 and 12, we observe a satis-

fying overlap, corresponding to the contrasts γ10|1 and γ20|2. In contrast, Figure 13 shows

a substantial lack of overlap when the correct working model for the GPS is used. In par-

ticular, the probability of having treatment level T = 2 is low compared to the probability

of having treatment level T = 1. A consequence of this is that the parameter estimates

of β2 is based on fewer observations. This is reflected in the relatively high variance for

the OLS and WOLS estimates when the outcome regression model is correct. It is also

reflected in the high variance of the IPW estimates when the exposure model is correct.

For all estimates, it leads to more uncertainty in the estimation of µ2|2 and also to more
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uncertainty in the estimation of γ21|2. When the GPS model is misspecified, no lack of

overlap can be seen in Figure 13. In this case, the misspecification leads to more stable

estimation when using WOLS. The lack of overlap is a feature of the simulation design

by Yang et al. (2016) and gives us a hint on what to expect when this lack of overlap is

seen in applications.

5.3 Simulation study 2

In the second simulation study, again replicating Yang et al. (2016), we used the same

distribution for the six pretreatment variables, but doubled the number of treatment levels

to six according to the model

T ∼ Multinom[p(0|X), p(1|X), p(2|X), p(3|X), p(4|X), p(5|X)]

p(t|X) = exp(X ′δt)/∑
5
s=0 exp(X ′δs) for t = 0, . . . ,5

δ0 = 0

δ1 = 0.4× (0,1,1,2,1,1,1)

δ2 = 0.6× (0,1,1,1,1,1,−5)

δ3 = 0.8× (0,1,1,1,1,1,5)

δ4 = 1.0× (0,1,1,1,−2,1,1)

δ5 = 1.2× (0,1,1,1,−2,−1,1).

As in Simulation study 1, we let the distribution of T be determined by the pretreatment

variables X and the conditional distribution of T given X , thus again deviating slightly

from the simulation design by Yang et al. (2016). When using the model in Subsection

5.1 for the pretreatment variables X1, . . . ,X6, we get the marginal probabilities p(T =

0) ≈ 0.048, p(T = 1) ≈ 0.059, p(T = 2) ≈ 0.067, p(T = 3) ≈ 0.42, p(T = 4) ≈ 0.25,

and p(T = 5)≈ 0.15.
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Potential outcomes Y (0), . . . ,Y (5) where generated according to the model

Y (t) = X ′βt + ε for t = 0, . . . ,5

ε ∼ N(0,1)

β0 = (−1.5,1,1,1,1,1,1)

β1 = (−3,2,3,1,2,2,2)

β2 = (3,3,1,2,−1,−1,−4)

β3 = (2.5,4,1,2,−1,−1,−3)

β4 = (2,5,1,2,−1,−1,−2)

β5 = (1.5,6,1,2,−1,−1,−1).

We focused on the two ATT parameters γ10|1 and γ54|5, where the overlap were best and

where there were least influential observations as displayed in the plots of log weights

log[ŵ(m, l)]. The theoretical values of these two parameters are

γ10|1 = E[Y (1)−Y (0)|T = 1] ≈ −1.40

γ54|5 = E[Y (5)−Y (4)|T = 5] ≈ 0.279.

Observed outcomes were defined as Y = ∑
5
s=0 I{T = s}Y (s). Using this design, 1000

samples of 1000 observations were generated. For each sample, these parameters were

estimated using OLS, IPW and WOLS with both correctly and incorrectly specified mod-

els. The results are shown in Tables 7 and 9. When both working models are correct, the

OLS and WOLS estimators have similar bias and RMSE. The smallest RMSE:s are ob-

served for the OLS estimator. The IPW estimator displays the greatest bias and variability,

although the performance is not too far from the results from OLS and WOLS estimation.

The sandwich estimates of the standard error are close to the empirical standard error. In

this scenario, the sandwich estimator performs slightly better than the bootstrap estimator.

When only the exposure working model is misspecified, the IPW estimators are biased.

However, the standard errors are close to the empirical standard error. In contrast, the

WOLS estimators is largely unaffected by this misspecification, although we see some
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bias in the sandwich estimate of the standard error. Thus the coverage probability differ

from the nominal value of 95%.

Misspecification of the outcome working model leads to bias for the OLS estimator of

the ATT parameters. In contrast, the sandwich estimates of the standard error is close to

the empirical standard errors. The WOLS estimators, which are assumed to be consis-

tent for the ATT estimators in this scenario, displays only slightly more bias than when

the outcome model is correctly specified. The sandwich estimate of the standard error of

γ̂10|1 is slightly above the empirical standard error.

When both working models are incorrect, the WOLS estimators have more bias, although

these biases are smaller in magnitude than the bias for the IPW estimators. This is partic-

ularly apparent for γ54|5 in Table 9. We also see some bias for the sandwich estimators of

the standard errors.

Since we allow more levels for the treatment in simulation study 2, three times more

parameters are estimated for the same sample size compared to simulation study 1. This

likely affects the precision of the estimators. To assess whether the observed bias can

be attributed to small sample bias, we increased the sample size to 5000 observations in

each sample. The results are shown in Tables 8 and 10. As expected, the biases are also

reduced for all estimators when both working models are correctly specified. The least

reduction in bias can be seen for the WOLS estimates of γ10|1, where the biases with the

larger sample sizes are about one fourth of the corresponding ones for the smaller sample

sizes. decreasing from 0.086 with the smaller sample size to 0.020 with the larger sam-

ple size. Since the estimators are consistent, the empirical standard errors were reduced.

Compared to the estimates based on the smaller sample size the empirical standard errors

and the RMSE:s were more than halved. The observed biases of the sandwich estimators

of the standard errors of γ̂10|1 seen with n = 1000, were greatly reduced with n = 5000.

However, no improvements were observed for the estimators of the standard errors of

γ̂54|5. Likewise, no substantial differences for either ATT parameter were seen regarding
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the coverage probabilities for the 95% CI when comparing the results with the two sample

sizes.

When only the working outcome model was misspecified, we observed similar bias of

the ATT parameters and their estimated standard errors when comparing the results for

the two different sample sizes. The coverage probabilities of the 95% CI:s for the OLS

estimates were farther from the nominal value of 0.95 with the larger sample size, which

is a consequence of the lower standard errors with the larger sample size.

When only the working exposure model was misspecified, the sandwich estimates of

the standard errors of the ATT parameter were close to the empirical standard error. Due

to the misspecification of the working exposure model, the estimators obtained through

IPW were biased. Since the standard errors were smaller for the larger sample size, we

also see a smaller coverage of the 95% CI for the IPW estimates. In contrast, the bias

of the ATT estimates obtained with WOLS decreased with the larger sample size, thus

demonstrating the doubly robustness property of the WOLS estimator. The standard er-

ror of γ̂10|1 obtained by the sandwich estimator was improved by the larger sample size,

leading to coverage probabilities being closer to 0.95. In contrast, the sandwich estimates

of the standard error of γ̂54|5 are still below the empirical standard error. Therefore, the

coverage probabilities are also lower than 0.95.

When both working models are incorrect, we observe similar biases for both samples

sizes, both in terms of absolute bias for the ATT parameters and for the relative bias of

the estimators standard errors. Due to the smaller standard errors in the larger sample, we

also see lower coverage probabilities.

In order to visualize influential observations, we use graphs of the logarithms of the

weights ŵ(0,1), and ŵ(4,5) used for the IPW and the WOLS estimators for n = 5000.

We also do this using both a correct and an incorrect working model for the exposure.

The histograms of the log weights based on a correct working model are shown in Fig-
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ures 7 and 8. In Figure 7, we see some influential observations. However, the magnitude

of these influential weights are not as extreme as the ones we saw in simulation study

1. In Figure 8, we saw few influential weights, but some weights are instead very small

and will therefore contribute very little in the estimation of γ54|5 using IPW and WOLS.

In Figures 9 and 10, we see the histogram of the logarithm of the weights ŵ(0,1) and

ŵ(4,5) where the working model for the exposure is misspecified by the omission of two

covariates. As in simulation study 1, we calculated the estimated conditional probabilities

P̂r(T = m|T ∈ {m, l},X) based both on a correct and an incorrect model for the exposure.

These probabilities are plotted, along with their complements P̂r(T = m|T ∈ {l,m},X),

for each ATT parameter γlm|l . We only show observations with T = m. The results are

shown in Appendix C (Figures 14 and 15). We observe that there is a substantial overlap

in Figure, 14and that there are few values of P̂r(T = 0|X ,T ∈ {0,1}) close to 0. In Figure

14, we see overlap. However, Figure 15, the probabilities of having treatment level T = 5

are close to 0. This leads to more variability when estimating µ5|5, as it is based on fewer

observations. No apparent difference where observed when comparing graphs based on

correct and incorrect working models for the exposure.

6 Discussion
We have derived the asymptotic variance for the IPW estimator and the WOLS estima-

tor of the ATT, proposed by Uysal (2015). In the framework of M-estimation, we have

presented estimators of both the ATT parameters and the sandwich estimators for their

variances for the case when the GPS can be described by a multinomial logistic regres-

sion model and when the outcome model is linear. Using the presented formulas, it is

straightforward to implement the estimators in standard statistical software such as R,

Stata, or SAS.

Using two simulation designs previously used by Yang et al. (2016), we compared the

estimators with OLS estimation of the same ATT parameters. In the first design, the treat-

ment had three levels. In the second design, the number of levels increased to six. In both

designs, different contrasts of the treatment levels were compared. To assess the robust-
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ness properties and the variance estimators under model misspecification, we estimated

the parameters under both correctly and incorrectly specified working models for the ex-

posure or for the outcome. The sandwich estimators of the variance, were evaluated by

comparing the mean estimated standard errors of the ATT estimators with the mean stan-

dard errors obtained by bootstrapping and with empirical standard errors calculated over

the simulations. To assess the consequence of bias on inference, coverage probabilities we

calculated for 95% CI:s, where the true value of the standard error is approximated by the

empirical standard error. When both working models were misspecified, the estimators

were consistent for values that are different from the true value of the target parameter, i.e.

the ATT. The sandwich estimator as well as the bootstrap estimator of the standard error

are then still consistent estimators of the true standard error of this other parameter. As

we want to make inference about the true ATT parameter, underestimation of the standard

errors in this situation is more likely lead to incorrect conclusions than when the stan-

dard errors are overestimated. As model misspecification of the working models, both in

terms of the functional form and in terms of omitted confounding variables, is likely to be

present at some degree in most real applications, underestimation of the standard errors

are undesirable.

In both simulation studies, the proposed sandwich estimator of the standard errors of the

IPW estimators gives optimistic, i.e. smaller, standard errors compared to the empirical

standard errors calculated over the simulations. This is particularly apparent for estimates

of the parameter γ10|1 in both simulations studies. The underestimated standard errors also

led to coverage probabilities of the Wald-based 95% CI:s to be below 0.95. The relative

difference in standard error when comparing the empirical standard error with the mean

standard error obtained from the sandwich estimator does not improve with bigger sam-

ple size. In contrast, the bootstrap estimates of the standard errors of the IPW-estimator

were generally larger than the sandwich estimates and were therefore closer to the em-

pirical standard error. In some scenarios, the bootstrap estimates of the standard errors

were even overly pessimistic, leading conservative, i.e. too wide, 95% CI:s with coverage

probabilities above 0.95.

In both simulation studies, the double robustness property of the WOLS estimator was

28 IFAU – Semi-parametric estimation of multi-valued ATTs



clearly seen, although the small sample biases were larger when the outcome model was

misspecified compared to when the GPS model was misspecified. In most simulated sce-

narios when using WOLS, the sandwich estimator gave standard errors which were lower

than the empirical standard errors. In contrast, the bootstrap estimates of the standard

errors were closer to the empirical standard error. As a consequence, the coverage prob-

ability of the 95 % CI:s based the bootstrap estimate of the standard error were closer to

0.95.

Although the results of these simulations showed that most cases were not in favour of

our proposed sandwich estimators, there were scenarios in which they are similar or bet-

ter than the bootstrap estimator. As there might be other scenarios where our sandwich

estimator works better, we do not want to make a general recommendation. An obvious

advantage of the sandwich estimator is computational speed.

Estimating an ATT parameter γlm|l using the WOLS estimator, as formulated by Uysal

(2015), involves estimating the parameters for the full GPS distribution. However, when

the treatment variable T follows a multinomial distribution as defined in Assumption 5,

we have seen in Appendix A that to calculate thee weights, we only need to estimate the

difference δ ∗ = δm−δl thus reducing the dimension of the parameter space. Further, only

observations with factual treatment level T = m or T = l are required in the estimation of

the ATT parameter γlm|l . When only one ATT parameter γlm|l is of interest, the ordinary

IPW and WOLS estimators of the ATT using only the subset of the observation where

T = m and T = l may be more efficient. In the form that we have presented the estima-

tors, the full GPS distribution is estimated, involving estimation of all GPS parameters

δ0, . . . ,δK . This is useful when assessing several ATT parameters involving all levels of

the treatment variable T .

IFAU – Semi-parametric estimation of multi-valued ATTs 29
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Appendix A

The expected value of D(t)U |V

A fact that will be used repeatedly in this appendix is that, for all t ∈ T and any random

variables U and V ,

E [D(t)U |V ]

=Pr [D(t) = 1|V ]E [D(t)U |D(t) = 1,V ]

+Pr [D(t) = 0|V ]E [D(t)U |D(t) = 0,V ]︸ ︷︷ ︸
=0

(LIE)

=Pr [D(t) = 1|V ]E [U |D(t) = 1,V ] , (15)
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where the law of iterated expectation (LIE) was used in the first equality. Since D(t) =

1⇔ T = t we will also use the formulation

E [D(t)U |V ] = Pr [T = t|V ]E [U |T = t,V ] (16)

The expected value of D(l)Y used in IPW and WOLS estimation

Using the facts stated in the previous subsection, we have that,

E [D(l)Y ]

=Pr [T = l]E [Y |T = l] by (16)

=Pr [T = l]E [Y (l)|T = l] by Assumption 1

=Pr [T = l]µl|l (17)
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The expected value of w(m, l)Y used in IPW and WOLS estimation

By the law of iterated expectations and Assumptions 1 and 2,

E
[

D(m)
Pr(T = l | X)

Pr(T = m | X)
Y
]

=E
{

E
[

D(m)
Pr(T = l | X)

Pr(T = m | X)
Y
∣∣∣∣X]} (LIE)

=E
{

Pr(T = l | X)

Pr(T = m | X)
E
[
D(m)Y

∣∣X]}
=E

{
Pr(T = l | X)

Pr(T = m | X)
Pr
[
T = m

∣∣X]E
[
Y
∣∣T = m,X

]}
by (16)

=E
{

Pr
[
T = l

∣∣X]E
[
Y
∣∣T = m,X

]}
=E

{
Pr
[
T = l

∣∣X]E
[
Y (m)

∣∣T = m,X
]}

by Assumption 1

=E
{

E
[
D(l)

∣∣X]E
[
Y (m)

∣∣D(m) = 1,X
]}

since T = t⇔ D(t) = 1

=E
{

E
[
D(l)

∣∣X]E
[
Y (m)

∣∣X]} by Assumption 2

=E
{

E
[
D(l)Y (m)

∣∣X]} by Assumption 2

=E [D(l)Y (m)] by (LIE)

=Pr [T = l]E [Y (m) | T = l] by (16)

=Pr [T = l]µm|l. (18)

Now, assume that the GPS model in Assumption 5 is correctly specified. Then

r(t,X) = Pr(T = t|X) for t ∈T

and

w(m, l) = D(m)
r(l,X)

r(m,X)
= D(m)

Pr(T = l|X)

Pr(T = m|X)
.

It then immediately follows that

E [w(m, l)Y ] = Pr(T = l)µm|l (19)
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The expected value of the IPW estimating function

Assuming that the GPS model in Assumption 5 is correct, it follows from (17) and (19)

that

E
[
Mipw−att(γlm|l,δ )

]
=E

{
D(l)γlm|l− [D(l)Y −w(m, l)Y ]

}
=Pr(T = l)

{
γlm|l−

[
µl|l−µm|l

]}
= 0

when γlm|l and δ in Assumption 5 are the true parameters of the data generating process.

The solution to the estimating equations for βl and βm

For t ∈ {l,m}, let β̃t be the unique solution to the equation

E
[
Mwols−t(βt ,δ )

]
= E

[
Xw(t, l)(Y −X ′βt)

]
= 0 .

We note that such solutions β̃l and β̃m exist under fairly mild regularity conditions (Boos

and Stefanski, 2013), regardless of whether the outcome model in Assumption 4 is cor-

rectly specified or not. Then, since 1 is the first element of X , it follows that

E [w(t, l)Y ] = E
[
w(t, l)X ′β̃t

]
for t ∈ {l,m} (20)

Estimating Pr(T = l)µl|l

Since w(l, l) = D(l), it follows from (20) and (17) that

E
[
D(l)X ′β̃l

]
= E [D(l)Y ] = Pr(T = l)µl|l, (21)

regardless of whether the outcome model in Assumption 4 is correctly specified or not.
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Estimating Pr(T = l)µm|l

Now, assume that the GPS model in Assumption 5 is correct with true parameter δ . Then

it follows that

E
[
D(l)X ′β̃m

]
=E

{
E
[
D(l)X ′β̃m|X

]}
(LIE)

=E
{

E [D(l)|X ]X ′β̃m

}
=E

[
Pr(T = l|X)X ′β̃m

]
since D(l) = 1⇔ T = l

=E
[

Pr(T = l|X)

Pr(T = m|X)
Pr(T = m|X)X ′β̃m

]
=E

{
Pr(T = l|X)

Pr(T = m|X)
E[D(m)|X ]X ′β̃m

}
since D(m) = 1⇔ T = m

=E
{

E
[

D(m)
Pr(T = l|X)

Pr(T = m|X)
X ′β̃m

∣∣∣∣X]}
=E

{
E
[
w(m, l)X ′β̃m

∣∣∣X ]
}

by Assumption 5

=E
[
w(m, l)X ′β̃m

]
(LIE)

=E [w(m, l)Y ] by (20)

=Pr(T = l)µm|l by (19) and Assumption 5.

The expected value of the WOLS estimating function when the GPS model is

correctly specified

When the GPS model in Assumption 5 is correct, it follows from the two previous sections

that

E[Mwols−att(γlm|l, β̃l, β̃m,δ )]

=E
{

D(l)
[
γlm|l−

(
X ′β̃l−X ′β̃m

)]}
=Pr(T = l)

[
γlm|l−

(
µl|l−µm|l

)]
=0

when γlm|l is the true value of the ATT.
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The expected value of the WOLS estimating function when the outcome model

is correctly specified

We note that, under mild regularity conditions (Boos and Stefanski, 2013), the equation

E [Mgps(O;δ )] = 0

has a unique solution, δ̃ . The working models r(t,X) for Pr(T = t|X) in Assumption 5

are therefore defined, regardless of whether the GPS model is correctly specified or not.

Now, assume that the outcome model in Assumption 4 is correct, such that, for t = l,m,

the solution β̃t to the equation

E
[
Mwols−t(O;βt ,δ )

]
= 0

is also the true parameter βt in the model in Assumption 4. In other words, for t ∈T ,

E(Y |T = t,X) = X ′βt = X ′β̃t .

Then

E
[
Xw(t, l)

(
Y −X ′βt

)]
=E

{
E
[
Xw(t, l)

(
Y −X ′βt

)
|X
]}

(LIE)

=E
{

X
r(l,X)

r(t,X)
E
[
D(t)

(
Y −X ′βt

)
|X
]}

by the definition of w(t, l)

=E
(

X
r(l,X)

r(t,X)

{
Pr[D(t) = 1|X ]E

[
D(t)

(
Y −X ′βt

)
|D(t) = 1,X

]
+ Pr[D(t) = 0|X ]E

[
D(t)

(
Y −X ′βt

)
|D(t) = 0,X

]︸ ︷︷ ︸
=0


 (LIE)

=E
{

X
r(l,X)

r(t,X)
Pr(T = t|X)E

[(
Y −X ′βt

)
|T = t,X

]}
since D(t) = 1⇔ T = t

=E
[

X
r(l,X)

r(t,X)
Pr(T = t|X)×0

]
by Assumption 4

=0 ,
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showing that βt solves the equation E[Mwols−t(βt ,δ )]= 0 for t = l,m regardless of whether

the GPS model is correct or not. Further, we have that

E[D(l)X ′βm]

=Pr(T = l)E
(
X ′βm|T = l

)
by (16)

=Pr(T = l)E [E(Y |X ,T = m) |T = l] by Assumption 4

=Pr(T = l)E{E [Y (m)|X ,T = m] |T = l} by Assumption 1

=Pr(T = l)E{E [Y (m)|X ,D(m) = 1] |T = l} since D(m) = 1⇔ T = m

=Pr(T = l)E{E [Y (m)|X ] |T = l} by Assumption 2

=Pr(T = l)E{E [Y (m)|X ,D(l)] |T = l} by Assumption 2

=Pr(T = l)E{E [Y (m)|X ,T = l] |T = l} since D(l) = 1⇔ T = l

=Pr(T = l)E [Y (m)|T = l] (LIE)

=Pr(T = l)µm|l.

Since β̃l = βl in (21), it now follows that

E[Mwols−att(γlm|l,βl,βm,δ )]

=E
{

D(l)
[
γlm|l−

(
X ′βl−X ′βm

)]}
=Pr(T = l)

[
γlm|l−

(
µl|l−µm|l

)]
=0

when γlm|l is the true value of the ATT.
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The gradient of Mgps with respect to δ

Assuming that model in Assumption 5 is multinomial, we have, for t ∈ T and s ∈ T \

{t,K} that

∂ r(t,X)

∂δs
=

∂

∂δs

exp(X ′δt)

∑
K
k=1 exp(X ′δk)

=
∂

∂δs

1

∑
K
k=1 exp[X ′(δk−δt)]

=
− ∂

∂δs
exp[X ′(δs−δt)]{

∑
K
k=1 exp[X ′(δk−δt)]

}2

=−X
exp[X ′(δs−δt)]{

∑
K
k=1 exp[X ′(δk−δt)]

}2

=−X
exp(X ′δs)exp(X ′δt){

∑
K
k=1 exp(X ′δk)

}2

=−Xr(t,X)r(s,X)

and

∂ r(t,X)

∂δt
=

∂

∂δt

exp(X ′δt)

∑
K
k=1 exp(X ′δk)

=
∂

∂δt

1

∑
K
k=1 exp[X ′(δk−δt)]

=
−∑

K
k=1

∂

∂δt
exp[X ′(δk−δt)]{

∑
K
k=1 exp[X ′(δk−δt)]

}2

=X
∑

K
k=1 exp[X ′(δk−δt)]−1{
∑

K
k=1 exp[X ′(δk−δt)]

}2

=X
1

∑
K
k=1 exp[X ′(δk−δt)]

∑
K
k=1 exp[X ′(δk−δt)]−1

∑
K
k=1 exp[X ′(δk−δt)]

=Xr(t,X) [1− r(t,X)]

=−Xr(t,X) [r(t,X)−1] ,
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for t ∈T \{K}. More compactly, we can thus write

∂ r(t,X)

∂δs
=−Xr(t,X) [r(s,X)− I(t = s)] ,

for t ∈T and k ∈T \{K}. Therefore

∂ logr(t,X)

∂δs
=

1
r(t,X)

× ∂ r(t,X)

∂δs

=
1

r(t,X)
×−Xr(t,X) [r(s,X)− I(t = s)]

=−X [r(s,X)− I(t = s)] ,

The contribution to the likelihood for the GPS parameters δ1, . . . ,δK−1 from an observa-

tion is

log

[
K−1

∑
t=1

D(t)r(t,X)

]
=

K−1

∑
t=1

D(t) logr(t,X).

Thus the ML score function for each GPS parameter δs, s ∈T \{K}, is

Mgps−s(δ ) =−X [r(s,X)− I(T = s)] =−X [r(s,X)−D(s)]

Taking the gradient of Mgps−s with respect to δt , we get

∂Mgps−s(δ )

∂δ ′t
=−X

∂ r(s,X)

∂δ ′t
= XX ′r(s,X) [r(t,X)− I(s = t)]

for s, t ∈T \{K}.

The gradient of wi(t, l) with respect to δs

Next, we calculate the gradient of the weights wi(t, l) with respect to δs for t ∈T :

∂wi(t, l)
∂δ ′s

=
∂

∂δ ′s
Di(t)e(δ

′
l−δ ′t )Xi =


X ′i wi(t, l) when s = l and t 6= l

−X ′i wi(t, l) when s = t and t 6= l

0 otherwise
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The gradient of Mipw−att with respect to δs

Since
∂Mipw−att

i (θ ipw)

∂δs
=

∂wi(m)

∂δs
Yi,

we have, for s ∈T \{0}, that

∂Mipw−att
i (θ ipw)

∂δs
=


wi(m, l)X ′iYi when s = l

−wi(m, l)X ′iYi when s = m

0 otherwise

assuming that m 6= l.

The gradient of Mwols−m with respect to δs

Since the estimating function for the parameter βt is

Mwols−t
i = wi(t, l)Xi(Yi−X ′i βt),

for t ∈ {l,m}, it follows that

∂Mwols−t
i

∂δ ′s
= Xi(Yi−X ′i βt)

∂wi(t, l)
∂δ ′s

,

so

∂Mwols−t
i

∂δ ′s
=


XiX ′i wi(t, l)(Yi−X ′i βt) when s = l and t 6= l

−XiX ′i wi(t, l)(Yi−X ′i βt) when s = m and t 6= l

0 otherwise

.

assuming that m 6= l.
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Appendix B

The GPS conditional on two levels

When the distribution of the treatment level T follows a multinomial model as defined

in Assumption 5, conditioning on the treatment being in one of two levels t and l can be

written as

Pr(T = t|T ∈ {t, l},X) =
Pr(T = t|X)

Pr(T ∈ {t, l},X)

=
Pr(T = t|X)

Pr(T = t|X)+Pr(T = l|X)

=
exp(X ′δt)

∑
K
s=1 exp(X ′δs)

/
exp(X ′δt)+ exp(X ′δl)

∑
K
s=1 exp(X ′δs)

=
exp(X ′δt)

exp(X ′δt)+ exp(X ′δl)

=
exp[X ′(δt−δl)]

1+ exp[X ′(δt−δl)]
,

showing that, the distribution follows a logistic regression model. Further, in order to

estimate the conditional probabilities, we only need to estimate the parameter δ ∗= δt−δl ,

thus reducing the dimensionality of the estimation problem.

The weights w(m, l) depends on δm and δl only

The weights w(m, l) can be rewritten as

w(m, l) =D(m)
Pr(T = l|X)

Pr(T = m|X)

=D(m)
Pr(T = l|X)/Pr(T ∈ {m, l}|X)

Pr(T = m|X)/Pr(T ∈ {m, l}|X)

=D(m)
Pr(T = l|T ∈ {m, l},X)

Pr(T = m|T ∈ {m, l},X)

=D(m)
Pr(T = l|T ∈ {m, l},X)

1−Pr(T = l|T ∈ {m, l},X)

= D(m)
1−Pr(T = m|T ∈ {m, l},X)

Pr(T = m|T ∈ {m, l},X)

= D(m)exp[X ′(δm−δl)].
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This shows that IPW and WOLS estimators only depends on the conditional probabilities

Pr(T = m|T ∈ {m, l},X) and not the full GPS distribution.

The GPS conditional on more than two levels

Assuming that the distribution of the treatment level T follows a multinomial model as

defined in Assumption 5, conditioning on the treatment being in a strict subset R of

T = {1, . . . ,K} yields another multinomial distribution. Given a reference level l ∈R,

the probability of this distribution can be written as

Pr(T = t|T ∈R,X) =
Pr(T = t|X)

Pr(T ∈R,X)

=
Pr(T = t|X)

∑r∈R Pr(T = r|X)

=
exp(X ′δt)

∑
K
s=1 exp(X ′δs)

/
∑r∈R exp(X ′δr)

∑
K
s=1 exp(X ′δs)

=
exp(X ′δt)

∑r∈R exp(X ′δr)

=
exp[X ′(δt−δl)]

1+∑r∈R\{l} exp[X ′(δr−δl)]
,

for t ∈ R, showing that, the restricting the exposure to a subset of the original levels

also yields a multinomial distribution, which can be parameterized by parameters δ ∗r,l ,

r ∈R \{l}, thereby restricting the dimensionality of the estimation problem.

Joint inference for multiple ATT parameters

When several ATT parameters γl1,m1|l1, . . . ,γlR,mR|lR for

(m1, l1), . . . ,(mR, lR)∈T ×T are of interest, it is straightforward to extend the estimating

function (3) for the IPW estimator to include components Mipw−att(O;γlm|l,δ ) for for

each ATT contrast γlm|l of interest. Similarly, by extending the estimating function (3) to

include components Mwols−l(O;βl,δ ), Mwols−m(O;βm,δ ) and Mwols−att(O;γlm|l,βl,βm)

for each contrast γlm|l , we can obtain an estimator of the full vector

(γl1,m1|l1, . . . ,γlR,mR|lR). Further, the variance of this estimator can then be obtained by

extending the gradients (13) and (14) to include components for each ATT parameter

γlm|l of interest along with the corresponding components for βl and βm. Using the delta
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method, comparisons of different ATT parameters can then be performed by considering

linear combinations of the parameter vector (γl1,m1|l1, . . . ,γlR,mR|lR). In this way, we take

the uncertainty from the estimation of the parameters δt and βt , for t ∈ T , into account,

while allowing us to test several parameters at once.

Appendix C
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Figure 1: Distributions of log[ŵ(0,1)] = log[P̂r(T = 1|X)]− log[P̂r(T = 0|X)] over 5000 obser-
vations when the correct working exposure model in simulation study 1 is used. Only non-zero
values of ŵ(0,1) showed.
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Figure 2: Distributions of log[ŵ(0,2)] = log[P̂r(T = 2|X)]− log[P̂r(T = 0|X)] over 5000 obser-
vations when the correct working exposure model in simulation study 1 is used. Only non-zero
values of ŵ(0,2) showed.
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Figure 3: Distributions of log[ŵ(1,2)] = log[P̂r(T = 2|X)]− log[P̂r(T = 1|X)] over 5000 obser-
vations when the correct working exposure model in simulation study 1 is used. Only non-zero
values of ŵ(1,2) showed.
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Figure 4: Distributions of log[ŵ(0,1)] = log[P̂r(T = 1|X)]− log[P̂r(T = 0|X)] over 5000 ob-
servations when the incorrect working exposure model in simulation study 1 is used. Only
non-zero values of ŵ(0,1) showed.
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Figure 5: Distributions of log[ŵ(0,2)] = log[P̂r(T = 2|X)]− log[P̂r(T = 0|X)] over 5000 ob-
servations when the incorrect working exposure model in simulation study 1 is used. Only
non-zero values of ŵ(0,2) showed.
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Figure 6: Distributions of log[ŵ(1,2)] = log[P̂r(T = 2|X)]− log[P̂r(T = 1|X)] over 5000 ob-
servations when the incorrect working exposure model in simulation study 1 is used. Only
non-zero values of ŵ(1,2) showed.
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Figure 7: Distributions of log[ŵ(0,1)] = log[P̂r(T = 1|X)]− log[P̂r(T = 0|X)] over 5000 obser-
vations using a correct model for the exposure in simulation study 2.
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Figure 8: Distributions of log[ŵ(4,5)] = log[P̂r(T = 5|X)]− log[P̂r(T = 4|X)] over 5000 obser-
vations using a correct model for the exposure in simulation study 2.
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Figure 9: Distributions of log[ŵ(0,1)] = log[P̂r(T = 1|X)]− log[P̂r(T = 0|X)] over 5000 obser-
vations using an incorrect model for the exposure in simulation study 2.
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Figure 10: Distributions of log(ŵ(4,5)) = log[P̂r(T = 5|X)]− log[P̂r(T = 4|X)] over 5000
observations using an incorrect model for the exposure in simulation study 2.
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Figure 11: Distributions of P̂r(T = 1|X ,T ∈ {0,1}) and P̂r(T = 0|X ,T ∈ {0,1}) over 5000
observations in simulation study 1.

IFAU – Semi-parametric estimation of multi-valued ATTs 59



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

Pr(T=1|X, T=0 or T=1)

D
en

si
ty

Correct GPS model Incorrect GPS model

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

Pr(T=0|X, T=0 or T=1)

D
en

si
ty

Correct GPS model Incorrect GPS model

Figure 12: Distributions of P̂r(T = 2|X ,T ∈ {0,2}) and P̂r(T = 0|X ,T ∈ {0,2}) over 5000
observations in simulation study 1.
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Figure 13: Distributions of P̂r(T = 2|X ,T ∈ {1,2}) and P̂r(T = 1|X ,T ∈ {1,2}) over 5000
observations in simulation study 1.
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Figure 14: Distributions of P̂r(T = 1|X ,T ∈ {0,1}) and P̂r(T = 0|X ,T ∈ {0,1}) over 5000
observations in simulations study 2.
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Figure 15: Distributions of P̂r(T = 5|X ,T ∈ {4,5}) and P̂r(T = 4|X ,T ∈ {4,5}) over 5000
observations in simulations study 2.
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